| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mvtval | Structured version Visualization version GIF version | ||
| Description: The set of variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mvtval.f | ⊢ 𝑉 = (mVT‘𝑇) |
| mvtval.y | ⊢ 𝑌 = (mType‘𝑇) |
| Ref | Expression |
|---|---|
| mvtval | ⊢ 𝑉 = ran 𝑌 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6858 | . . . . 5 ⊢ (𝑡 = 𝑇 → (mType‘𝑡) = (mType‘𝑇)) | |
| 2 | 1 | rneqd 5902 | . . . 4 ⊢ (𝑡 = 𝑇 → ran (mType‘𝑡) = ran (mType‘𝑇)) |
| 3 | df-mvt 35472 | . . . 4 ⊢ mVT = (𝑡 ∈ V ↦ ran (mType‘𝑡)) | |
| 4 | fvex 6871 | . . . . 5 ⊢ (mType‘𝑇) ∈ V | |
| 5 | 4 | rnex 7886 | . . . 4 ⊢ ran (mType‘𝑇) ∈ V |
| 6 | 2, 3, 5 | fvmpt 6968 | . . 3 ⊢ (𝑇 ∈ V → (mVT‘𝑇) = ran (mType‘𝑇)) |
| 7 | rn0 5889 | . . . . 5 ⊢ ran ∅ = ∅ | |
| 8 | 7 | eqcomi 2738 | . . . 4 ⊢ ∅ = ran ∅ |
| 9 | fvprc 6850 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (mVT‘𝑇) = ∅) | |
| 10 | fvprc 6850 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → (mType‘𝑇) = ∅) | |
| 11 | 10 | rneqd 5902 | . . . 4 ⊢ (¬ 𝑇 ∈ V → ran (mType‘𝑇) = ran ∅) |
| 12 | 8, 9, 11 | 3eqtr4a 2790 | . . 3 ⊢ (¬ 𝑇 ∈ V → (mVT‘𝑇) = ran (mType‘𝑇)) |
| 13 | 6, 12 | pm2.61i 182 | . 2 ⊢ (mVT‘𝑇) = ran (mType‘𝑇) |
| 14 | mvtval.f | . 2 ⊢ 𝑉 = (mVT‘𝑇) | |
| 15 | mvtval.y | . . 3 ⊢ 𝑌 = (mType‘𝑇) | |
| 16 | 15 | rneqi 5901 | . 2 ⊢ ran 𝑌 = ran (mType‘𝑇) |
| 17 | 13, 14, 16 | 3eqtr4i 2762 | 1 ⊢ 𝑉 = ran 𝑌 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 ran crn 5639 ‘cfv 6511 mTypecmty 35449 mVTcmvt 35450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fv 6519 df-mvt 35472 |
| This theorem is referenced by: mtyf 35539 mvtss 35540 |
| Copyright terms: Public domain | W3C validator |