Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvtval Structured version   Visualization version   GIF version

Theorem mvtval 35494
Description: The set of variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvtval.f 𝑉 = (mVT‘𝑇)
mvtval.y 𝑌 = (mType‘𝑇)
Assertion
Ref Expression
mvtval 𝑉 = ran 𝑌

Proof of Theorem mvtval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6861 . . . . 5 (𝑡 = 𝑇 → (mType‘𝑡) = (mType‘𝑇))
21rneqd 5905 . . . 4 (𝑡 = 𝑇 → ran (mType‘𝑡) = ran (mType‘𝑇))
3 df-mvt 35479 . . . 4 mVT = (𝑡 ∈ V ↦ ran (mType‘𝑡))
4 fvex 6874 . . . . 5 (mType‘𝑇) ∈ V
54rnex 7889 . . . 4 ran (mType‘𝑇) ∈ V
62, 3, 5fvmpt 6971 . . 3 (𝑇 ∈ V → (mVT‘𝑇) = ran (mType‘𝑇))
7 rn0 5892 . . . . 5 ran ∅ = ∅
87eqcomi 2739 . . . 4 ∅ = ran ∅
9 fvprc 6853 . . . 4 𝑇 ∈ V → (mVT‘𝑇) = ∅)
10 fvprc 6853 . . . . 5 𝑇 ∈ V → (mType‘𝑇) = ∅)
1110rneqd 5905 . . . 4 𝑇 ∈ V → ran (mType‘𝑇) = ran ∅)
128, 9, 113eqtr4a 2791 . . 3 𝑇 ∈ V → (mVT‘𝑇) = ran (mType‘𝑇))
136, 12pm2.61i 182 . 2 (mVT‘𝑇) = ran (mType‘𝑇)
14 mvtval.f . 2 𝑉 = (mVT‘𝑇)
15 mvtval.y . . 3 𝑌 = (mType‘𝑇)
1615rneqi 5904 . 2 ran 𝑌 = ran (mType‘𝑇)
1713, 14, 163eqtr4i 2763 1 𝑉 = ran 𝑌
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299  ran crn 5642  cfv 6514  mTypecmty 35456  mVTcmvt 35457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fv 6522  df-mvt 35479
This theorem is referenced by:  mtyf  35546  mvtss  35547
  Copyright terms: Public domain W3C validator