| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mvtval | Structured version Visualization version GIF version | ||
| Description: The set of variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mvtval.f | ⊢ 𝑉 = (mVT‘𝑇) |
| mvtval.y | ⊢ 𝑌 = (mType‘𝑇) |
| Ref | Expression |
|---|---|
| mvtval | ⊢ 𝑉 = ran 𝑌 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . . . 5 ⊢ (𝑡 = 𝑇 → (mType‘𝑡) = (mType‘𝑇)) | |
| 2 | 1 | rneqd 5878 | . . . 4 ⊢ (𝑡 = 𝑇 → ran (mType‘𝑡) = ran (mType‘𝑇)) |
| 3 | df-mvt 35527 | . . . 4 ⊢ mVT = (𝑡 ∈ V ↦ ran (mType‘𝑡)) | |
| 4 | fvex 6835 | . . . . 5 ⊢ (mType‘𝑇) ∈ V | |
| 5 | 4 | rnex 7840 | . . . 4 ⊢ ran (mType‘𝑇) ∈ V |
| 6 | 2, 3, 5 | fvmpt 6929 | . . 3 ⊢ (𝑇 ∈ V → (mVT‘𝑇) = ran (mType‘𝑇)) |
| 7 | rn0 5866 | . . . . 5 ⊢ ran ∅ = ∅ | |
| 8 | 7 | eqcomi 2740 | . . . 4 ⊢ ∅ = ran ∅ |
| 9 | fvprc 6814 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (mVT‘𝑇) = ∅) | |
| 10 | fvprc 6814 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → (mType‘𝑇) = ∅) | |
| 11 | 10 | rneqd 5878 | . . . 4 ⊢ (¬ 𝑇 ∈ V → ran (mType‘𝑇) = ran ∅) |
| 12 | 8, 9, 11 | 3eqtr4a 2792 | . . 3 ⊢ (¬ 𝑇 ∈ V → (mVT‘𝑇) = ran (mType‘𝑇)) |
| 13 | 6, 12 | pm2.61i 182 | . 2 ⊢ (mVT‘𝑇) = ran (mType‘𝑇) |
| 14 | mvtval.f | . 2 ⊢ 𝑉 = (mVT‘𝑇) | |
| 15 | mvtval.y | . . 3 ⊢ 𝑌 = (mType‘𝑇) | |
| 16 | 15 | rneqi 5877 | . 2 ⊢ ran 𝑌 = ran (mType‘𝑇) |
| 17 | 13, 14, 16 | 3eqtr4i 2764 | 1 ⊢ 𝑉 = ran 𝑌 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4283 ran crn 5617 ‘cfv 6481 mTypecmty 35504 mVTcmvt 35505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-mvt 35527 |
| This theorem is referenced by: mtyf 35594 mvtss 35595 |
| Copyright terms: Public domain | W3C validator |