Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvtval Structured version   Visualization version   GIF version

Theorem mvtval 33759
Description: The set of variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvtval.f 𝑉 = (mVT‘𝑇)
mvtval.y 𝑌 = (mType‘𝑇)
Assertion
Ref Expression
mvtval 𝑉 = ran 𝑌

Proof of Theorem mvtval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6830 . . . . 5 (𝑡 = 𝑇 → (mType‘𝑡) = (mType‘𝑇))
21rneqd 5884 . . . 4 (𝑡 = 𝑇 → ran (mType‘𝑡) = ran (mType‘𝑇))
3 df-mvt 33744 . . . 4 mVT = (𝑡 ∈ V ↦ ran (mType‘𝑡))
4 fvex 6843 . . . . 5 (mType‘𝑇) ∈ V
54rnex 7832 . . . 4 ran (mType‘𝑇) ∈ V
62, 3, 5fvmpt 6936 . . 3 (𝑇 ∈ V → (mVT‘𝑇) = ran (mType‘𝑇))
7 rn0 5872 . . . . 5 ran ∅ = ∅
87eqcomi 2746 . . . 4 ∅ = ran ∅
9 fvprc 6822 . . . 4 𝑇 ∈ V → (mVT‘𝑇) = ∅)
10 fvprc 6822 . . . . 5 𝑇 ∈ V → (mType‘𝑇) = ∅)
1110rneqd 5884 . . . 4 𝑇 ∈ V → ran (mType‘𝑇) = ran ∅)
128, 9, 113eqtr4a 2803 . . 3 𝑇 ∈ V → (mVT‘𝑇) = ran (mType‘𝑇))
136, 12pm2.61i 182 . 2 (mVT‘𝑇) = ran (mType‘𝑇)
14 mvtval.f . 2 𝑉 = (mVT‘𝑇)
15 mvtval.y . . 3 𝑌 = (mType‘𝑇)
1615rneqi 5883 . 2 ran 𝑌 = ran (mType‘𝑇)
1713, 14, 163eqtr4i 2775 1 𝑉 = ran 𝑌
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2106  Vcvv 3442  c0 4274  ran crn 5626  cfv 6484  mTypecmty 33721  mVTcmvt 33722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pr 5377  ax-un 7655
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-br 5098  df-opab 5160  df-mpt 5181  df-id 5523  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-iota 6436  df-fun 6486  df-fv 6492  df-mvt 33744
This theorem is referenced by:  mtyf  33811  mvtss  33812
  Copyright terms: Public domain W3C validator