Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mvtval | Structured version Visualization version GIF version |
Description: The set of variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mvtval.f | ⊢ 𝑉 = (mVT‘𝑇) |
mvtval.y | ⊢ 𝑌 = (mType‘𝑇) |
Ref | Expression |
---|---|
mvtval | ⊢ 𝑉 = ran 𝑌 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6830 | . . . . 5 ⊢ (𝑡 = 𝑇 → (mType‘𝑡) = (mType‘𝑇)) | |
2 | 1 | rneqd 5884 | . . . 4 ⊢ (𝑡 = 𝑇 → ran (mType‘𝑡) = ran (mType‘𝑇)) |
3 | df-mvt 33744 | . . . 4 ⊢ mVT = (𝑡 ∈ V ↦ ran (mType‘𝑡)) | |
4 | fvex 6843 | . . . . 5 ⊢ (mType‘𝑇) ∈ V | |
5 | 4 | rnex 7832 | . . . 4 ⊢ ran (mType‘𝑇) ∈ V |
6 | 2, 3, 5 | fvmpt 6936 | . . 3 ⊢ (𝑇 ∈ V → (mVT‘𝑇) = ran (mType‘𝑇)) |
7 | rn0 5872 | . . . . 5 ⊢ ran ∅ = ∅ | |
8 | 7 | eqcomi 2746 | . . . 4 ⊢ ∅ = ran ∅ |
9 | fvprc 6822 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (mVT‘𝑇) = ∅) | |
10 | fvprc 6822 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → (mType‘𝑇) = ∅) | |
11 | 10 | rneqd 5884 | . . . 4 ⊢ (¬ 𝑇 ∈ V → ran (mType‘𝑇) = ran ∅) |
12 | 8, 9, 11 | 3eqtr4a 2803 | . . 3 ⊢ (¬ 𝑇 ∈ V → (mVT‘𝑇) = ran (mType‘𝑇)) |
13 | 6, 12 | pm2.61i 182 | . 2 ⊢ (mVT‘𝑇) = ran (mType‘𝑇) |
14 | mvtval.f | . 2 ⊢ 𝑉 = (mVT‘𝑇) | |
15 | mvtval.y | . . 3 ⊢ 𝑌 = (mType‘𝑇) | |
16 | 15 | rneqi 5883 | . 2 ⊢ ran 𝑌 = ran (mType‘𝑇) |
17 | 13, 14, 16 | 3eqtr4i 2775 | 1 ⊢ 𝑉 = ran 𝑌 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2106 Vcvv 3442 ∅c0 4274 ran crn 5626 ‘cfv 6484 mTypecmty 33721 mVTcmvt 33722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pr 5377 ax-un 7655 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-iota 6436 df-fun 6486 df-fv 6492 df-mvt 33744 |
This theorem is referenced by: mtyf 33811 mvtss 33812 |
Copyright terms: Public domain | W3C validator |