Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvtval Structured version   Visualization version   GIF version

Theorem mvtval 33462
Description: The set of variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvtval.f 𝑉 = (mVT‘𝑇)
mvtval.y 𝑌 = (mType‘𝑇)
Assertion
Ref Expression
mvtval 𝑉 = ran 𝑌

Proof of Theorem mvtval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6774 . . . . 5 (𝑡 = 𝑇 → (mType‘𝑡) = (mType‘𝑇))
21rneqd 5847 . . . 4 (𝑡 = 𝑇 → ran (mType‘𝑡) = ran (mType‘𝑇))
3 df-mvt 33447 . . . 4 mVT = (𝑡 ∈ V ↦ ran (mType‘𝑡))
4 fvex 6787 . . . . 5 (mType‘𝑇) ∈ V
54rnex 7759 . . . 4 ran (mType‘𝑇) ∈ V
62, 3, 5fvmpt 6875 . . 3 (𝑇 ∈ V → (mVT‘𝑇) = ran (mType‘𝑇))
7 rn0 5835 . . . . 5 ran ∅ = ∅
87eqcomi 2747 . . . 4 ∅ = ran ∅
9 fvprc 6766 . . . 4 𝑇 ∈ V → (mVT‘𝑇) = ∅)
10 fvprc 6766 . . . . 5 𝑇 ∈ V → (mType‘𝑇) = ∅)
1110rneqd 5847 . . . 4 𝑇 ∈ V → ran (mType‘𝑇) = ran ∅)
128, 9, 113eqtr4a 2804 . . 3 𝑇 ∈ V → (mVT‘𝑇) = ran (mType‘𝑇))
136, 12pm2.61i 182 . 2 (mVT‘𝑇) = ran (mType‘𝑇)
14 mvtval.f . 2 𝑉 = (mVT‘𝑇)
15 mvtval.y . . 3 𝑌 = (mType‘𝑇)
1615rneqi 5846 . 2 ran 𝑌 = ran (mType‘𝑇)
1713, 14, 163eqtr4i 2776 1 𝑉 = ran 𝑌
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2106  Vcvv 3432  c0 4256  ran crn 5590  cfv 6433  mTypecmty 33424  mVTcmvt 33425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fv 6441  df-mvt 33447
This theorem is referenced by:  mtyf  33514  mvtss  33515
  Copyright terms: Public domain W3C validator