| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mvtval | Structured version Visualization version GIF version | ||
| Description: The set of variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mvtval.f | ⊢ 𝑉 = (mVT‘𝑇) |
| mvtval.y | ⊢ 𝑌 = (mType‘𝑇) |
| Ref | Expression |
|---|---|
| mvtval | ⊢ 𝑉 = ran 𝑌 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6828 | . . . . 5 ⊢ (𝑡 = 𝑇 → (mType‘𝑡) = (mType‘𝑇)) | |
| 2 | 1 | rneqd 5882 | . . . 4 ⊢ (𝑡 = 𝑇 → ran (mType‘𝑡) = ran (mType‘𝑇)) |
| 3 | df-mvt 35550 | . . . 4 ⊢ mVT = (𝑡 ∈ V ↦ ran (mType‘𝑡)) | |
| 4 | fvex 6841 | . . . . 5 ⊢ (mType‘𝑇) ∈ V | |
| 5 | 4 | rnex 7846 | . . . 4 ⊢ ran (mType‘𝑇) ∈ V |
| 6 | 2, 3, 5 | fvmpt 6935 | . . 3 ⊢ (𝑇 ∈ V → (mVT‘𝑇) = ran (mType‘𝑇)) |
| 7 | rn0 5870 | . . . . 5 ⊢ ran ∅ = ∅ | |
| 8 | 7 | eqcomi 2742 | . . . 4 ⊢ ∅ = ran ∅ |
| 9 | fvprc 6820 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (mVT‘𝑇) = ∅) | |
| 10 | fvprc 6820 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → (mType‘𝑇) = ∅) | |
| 11 | 10 | rneqd 5882 | . . . 4 ⊢ (¬ 𝑇 ∈ V → ran (mType‘𝑇) = ran ∅) |
| 12 | 8, 9, 11 | 3eqtr4a 2794 | . . 3 ⊢ (¬ 𝑇 ∈ V → (mVT‘𝑇) = ran (mType‘𝑇)) |
| 13 | 6, 12 | pm2.61i 182 | . 2 ⊢ (mVT‘𝑇) = ran (mType‘𝑇) |
| 14 | mvtval.f | . 2 ⊢ 𝑉 = (mVT‘𝑇) | |
| 15 | mvtval.y | . . 3 ⊢ 𝑌 = (mType‘𝑇) | |
| 16 | 15 | rneqi 5881 | . 2 ⊢ ran 𝑌 = ran (mType‘𝑇) |
| 17 | 13, 14, 16 | 3eqtr4i 2766 | 1 ⊢ 𝑉 = ran 𝑌 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 ran crn 5620 ‘cfv 6486 mTypecmty 35527 mVTcmvt 35528 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6442 df-fun 6488 df-fv 6494 df-mvt 35550 |
| This theorem is referenced by: mtyf 35617 mvtss 35618 |
| Copyright terms: Public domain | W3C validator |