Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mvtval | Structured version Visualization version GIF version |
Description: The set of variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mvtval.f | ⊢ 𝑉 = (mVT‘𝑇) |
mvtval.y | ⊢ 𝑌 = (mType‘𝑇) |
Ref | Expression |
---|---|
mvtval | ⊢ 𝑉 = ran 𝑌 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . . . . 5 ⊢ (𝑡 = 𝑇 → (mType‘𝑡) = (mType‘𝑇)) | |
2 | 1 | rneqd 5836 | . . . 4 ⊢ (𝑡 = 𝑇 → ran (mType‘𝑡) = ran (mType‘𝑇)) |
3 | df-mvt 33347 | . . . 4 ⊢ mVT = (𝑡 ∈ V ↦ ran (mType‘𝑡)) | |
4 | fvex 6769 | . . . . 5 ⊢ (mType‘𝑇) ∈ V | |
5 | 4 | rnex 7733 | . . . 4 ⊢ ran (mType‘𝑇) ∈ V |
6 | 2, 3, 5 | fvmpt 6857 | . . 3 ⊢ (𝑇 ∈ V → (mVT‘𝑇) = ran (mType‘𝑇)) |
7 | rn0 5824 | . . . . 5 ⊢ ran ∅ = ∅ | |
8 | 7 | eqcomi 2747 | . . . 4 ⊢ ∅ = ran ∅ |
9 | fvprc 6748 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (mVT‘𝑇) = ∅) | |
10 | fvprc 6748 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → (mType‘𝑇) = ∅) | |
11 | 10 | rneqd 5836 | . . . 4 ⊢ (¬ 𝑇 ∈ V → ran (mType‘𝑇) = ran ∅) |
12 | 8, 9, 11 | 3eqtr4a 2805 | . . 3 ⊢ (¬ 𝑇 ∈ V → (mVT‘𝑇) = ran (mType‘𝑇)) |
13 | 6, 12 | pm2.61i 182 | . 2 ⊢ (mVT‘𝑇) = ran (mType‘𝑇) |
14 | mvtval.f | . 2 ⊢ 𝑉 = (mVT‘𝑇) | |
15 | mvtval.y | . . 3 ⊢ 𝑌 = (mType‘𝑇) | |
16 | 15 | rneqi 5835 | . 2 ⊢ ran 𝑌 = ran (mType‘𝑇) |
17 | 13, 14, 16 | 3eqtr4i 2776 | 1 ⊢ 𝑉 = ran 𝑌 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 ran crn 5581 ‘cfv 6418 mTypecmty 33324 mVTcmvt 33325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-mvt 33347 |
This theorem is referenced by: mtyf 33414 mvtss 33415 |
Copyright terms: Public domain | W3C validator |