Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvtval Structured version   Visualization version   GIF version

Theorem mvtval 35485
Description: The set of variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvtval.f 𝑉 = (mVT‘𝑇)
mvtval.y 𝑌 = (mType‘𝑇)
Assertion
Ref Expression
mvtval 𝑉 = ran 𝑌

Proof of Theorem mvtval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6907 . . . . 5 (𝑡 = 𝑇 → (mType‘𝑡) = (mType‘𝑇))
21rneqd 5952 . . . 4 (𝑡 = 𝑇 → ran (mType‘𝑡) = ran (mType‘𝑇))
3 df-mvt 35470 . . . 4 mVT = (𝑡 ∈ V ↦ ran (mType‘𝑡))
4 fvex 6920 . . . . 5 (mType‘𝑇) ∈ V
54rnex 7933 . . . 4 ran (mType‘𝑇) ∈ V
62, 3, 5fvmpt 7016 . . 3 (𝑇 ∈ V → (mVT‘𝑇) = ran (mType‘𝑇))
7 rn0 5939 . . . . 5 ran ∅ = ∅
87eqcomi 2744 . . . 4 ∅ = ran ∅
9 fvprc 6899 . . . 4 𝑇 ∈ V → (mVT‘𝑇) = ∅)
10 fvprc 6899 . . . . 5 𝑇 ∈ V → (mType‘𝑇) = ∅)
1110rneqd 5952 . . . 4 𝑇 ∈ V → ran (mType‘𝑇) = ran ∅)
128, 9, 113eqtr4a 2801 . . 3 𝑇 ∈ V → (mVT‘𝑇) = ran (mType‘𝑇))
136, 12pm2.61i 182 . 2 (mVT‘𝑇) = ran (mType‘𝑇)
14 mvtval.f . 2 𝑉 = (mVT‘𝑇)
15 mvtval.y . . 3 𝑌 = (mType‘𝑇)
1615rneqi 5951 . 2 ran 𝑌 = ran (mType‘𝑇)
1713, 14, 163eqtr4i 2773 1 𝑉 = ran 𝑌
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2106  Vcvv 3478  c0 4339  ran crn 5690  cfv 6563  mTypecmty 35447  mVTcmvt 35448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fv 6571  df-mvt 35470
This theorem is referenced by:  mtyf  35537  mvtss  35538
  Copyright terms: Public domain W3C validator