Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opprmxidlabs Structured version   Visualization version   GIF version

Theorem opprmxidlabs 33463
Description: The maximal ideal of the opposite ring's opposite ring. (Contributed by Thierry Arnoux, 9-Mar-2025.)
Hypotheses
Ref Expression
oppreqg.o 𝑂 = (oppr𝑅)
oppr2idl.2 (𝜑𝑅 ∈ Ring)
opprmxidl.3 (𝜑𝑀 ∈ (MaxIdeal‘𝑅))
Assertion
Ref Expression
opprmxidlabs (𝜑𝑀 ∈ (MaxIdeal‘(oppr𝑂)))

Proof of Theorem opprmxidlabs
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 oppr2idl.2 . . 3 (𝜑𝑅 ∈ Ring)
2 oppreqg.o . . . 4 𝑂 = (oppr𝑅)
32opprring 20275 . . 3 (𝑅 ∈ Ring → 𝑂 ∈ Ring)
4 eqid 2733 . . . 4 (oppr𝑂) = (oppr𝑂)
54opprring 20275 . . 3 (𝑂 ∈ Ring → (oppr𝑂) ∈ Ring)
61, 3, 53syl 18 . 2 (𝜑 → (oppr𝑂) ∈ Ring)
7 opprmxidl.3 . . . 4 (𝜑𝑀 ∈ (MaxIdeal‘𝑅))
8 eqid 2733 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
98mxidlidl 33439 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (LIdeal‘𝑅))
101, 7, 9syl2anc 584 . . 3 (𝜑𝑀 ∈ (LIdeal‘𝑅))
112, 1opprlidlabs 33461 . . 3 (𝜑 → (LIdeal‘𝑅) = (LIdeal‘(oppr𝑂)))
1210, 11eleqtrd 2835 . 2 (𝜑𝑀 ∈ (LIdeal‘(oppr𝑂)))
138mxidlnr 33440 . . 3 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ≠ (Base‘𝑅))
141, 7, 13syl2anc 584 . 2 (𝜑𝑀 ≠ (Base‘𝑅))
151ad2antrr 726 . . . . 5 (((𝜑𝑗 ∈ (LIdeal‘(oppr𝑂))) ∧ 𝑀𝑗) → 𝑅 ∈ Ring)
167ad2antrr 726 . . . . 5 (((𝜑𝑗 ∈ (LIdeal‘(oppr𝑂))) ∧ 𝑀𝑗) → 𝑀 ∈ (MaxIdeal‘𝑅))
17 simplr 768 . . . . . 6 (((𝜑𝑗 ∈ (LIdeal‘(oppr𝑂))) ∧ 𝑀𝑗) → 𝑗 ∈ (LIdeal‘(oppr𝑂)))
1811ad2antrr 726 . . . . . 6 (((𝜑𝑗 ∈ (LIdeal‘(oppr𝑂))) ∧ 𝑀𝑗) → (LIdeal‘𝑅) = (LIdeal‘(oppr𝑂)))
1917, 18eleqtrrd 2836 . . . . 5 (((𝜑𝑗 ∈ (LIdeal‘(oppr𝑂))) ∧ 𝑀𝑗) → 𝑗 ∈ (LIdeal‘𝑅))
20 simpr 484 . . . . 5 (((𝜑𝑗 ∈ (LIdeal‘(oppr𝑂))) ∧ 𝑀𝑗) → 𝑀𝑗)
218mxidlmax 33441 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (LIdeal‘𝑅) ∧ 𝑀𝑗)) → (𝑗 = 𝑀𝑗 = (Base‘𝑅)))
2215, 16, 19, 20, 21syl22anc 838 . . . 4 (((𝜑𝑗 ∈ (LIdeal‘(oppr𝑂))) ∧ 𝑀𝑗) → (𝑗 = 𝑀𝑗 = (Base‘𝑅)))
2322ex 412 . . 3 ((𝜑𝑗 ∈ (LIdeal‘(oppr𝑂))) → (𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))
2423ralrimiva 3126 . 2 (𝜑 → ∀𝑗 ∈ (LIdeal‘(oppr𝑂))(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))
252, 8opprbas 20271 . . . . 5 (Base‘𝑅) = (Base‘𝑂)
264, 25opprbas 20271 . . . 4 (Base‘𝑅) = (Base‘(oppr𝑂))
2726ismxidl 33438 . . 3 ((oppr𝑂) ∈ Ring → (𝑀 ∈ (MaxIdeal‘(oppr𝑂)) ↔ (𝑀 ∈ (LIdeal‘(oppr𝑂)) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘(oppr𝑂))(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))))
2827biimpar 477 . 2 (((oppr𝑂) ∈ Ring ∧ (𝑀 ∈ (LIdeal‘(oppr𝑂)) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘(oppr𝑂))(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))) → 𝑀 ∈ (MaxIdeal‘(oppr𝑂)))
296, 12, 14, 24, 28syl13anc 1374 1 (𝜑𝑀 ∈ (MaxIdeal‘(oppr𝑂)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wne 2930  wral 3049  wss 3899  cfv 6489  Basecbs 17130  Ringcrg 20161  opprcoppr 20264  LIdealclidl 21153  MaxIdealcmxidl 33435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-sca 17187  df-vsca 17188  df-ip 17189  df-0g 17355  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-grp 18859  df-minusg 18860  df-cmn 19704  df-abl 19705  df-mgp 20069  df-rng 20081  df-ur 20110  df-ring 20163  df-oppr 20265  df-lss 20875  df-sra 21117  df-rgmod 21118  df-lidl 21155  df-mxidl 33436
This theorem is referenced by:  qsdrngi  33471
  Copyright terms: Public domain W3C validator