Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opprmxidlabs Structured version   Visualization version   GIF version

Theorem opprmxidlabs 33495
Description: The maximal ideal of the opposite ring's opposite ring. (Contributed by Thierry Arnoux, 9-Mar-2025.)
Hypotheses
Ref Expression
oppreqg.o 𝑂 = (oppr𝑅)
oppr2idl.2 (𝜑𝑅 ∈ Ring)
opprmxidl.3 (𝜑𝑀 ∈ (MaxIdeal‘𝑅))
Assertion
Ref Expression
opprmxidlabs (𝜑𝑀 ∈ (MaxIdeal‘(oppr𝑂)))

Proof of Theorem opprmxidlabs
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 oppr2idl.2 . . 3 (𝜑𝑅 ∈ Ring)
2 oppreqg.o . . . 4 𝑂 = (oppr𝑅)
32opprring 20364 . . 3 (𝑅 ∈ Ring → 𝑂 ∈ Ring)
4 eqid 2735 . . . 4 (oppr𝑂) = (oppr𝑂)
54opprring 20364 . . 3 (𝑂 ∈ Ring → (oppr𝑂) ∈ Ring)
61, 3, 53syl 18 . 2 (𝜑 → (oppr𝑂) ∈ Ring)
7 opprmxidl.3 . . . 4 (𝜑𝑀 ∈ (MaxIdeal‘𝑅))
8 eqid 2735 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
98mxidlidl 33471 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (LIdeal‘𝑅))
101, 7, 9syl2anc 584 . . 3 (𝜑𝑀 ∈ (LIdeal‘𝑅))
112, 1opprlidlabs 33493 . . 3 (𝜑 → (LIdeal‘𝑅) = (LIdeal‘(oppr𝑂)))
1210, 11eleqtrd 2841 . 2 (𝜑𝑀 ∈ (LIdeal‘(oppr𝑂)))
138mxidlnr 33472 . . 3 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ≠ (Base‘𝑅))
141, 7, 13syl2anc 584 . 2 (𝜑𝑀 ≠ (Base‘𝑅))
151ad2antrr 726 . . . . 5 (((𝜑𝑗 ∈ (LIdeal‘(oppr𝑂))) ∧ 𝑀𝑗) → 𝑅 ∈ Ring)
167ad2antrr 726 . . . . 5 (((𝜑𝑗 ∈ (LIdeal‘(oppr𝑂))) ∧ 𝑀𝑗) → 𝑀 ∈ (MaxIdeal‘𝑅))
17 simplr 769 . . . . . 6 (((𝜑𝑗 ∈ (LIdeal‘(oppr𝑂))) ∧ 𝑀𝑗) → 𝑗 ∈ (LIdeal‘(oppr𝑂)))
1811ad2antrr 726 . . . . . 6 (((𝜑𝑗 ∈ (LIdeal‘(oppr𝑂))) ∧ 𝑀𝑗) → (LIdeal‘𝑅) = (LIdeal‘(oppr𝑂)))
1917, 18eleqtrrd 2842 . . . . 5 (((𝜑𝑗 ∈ (LIdeal‘(oppr𝑂))) ∧ 𝑀𝑗) → 𝑗 ∈ (LIdeal‘𝑅))
20 simpr 484 . . . . 5 (((𝜑𝑗 ∈ (LIdeal‘(oppr𝑂))) ∧ 𝑀𝑗) → 𝑀𝑗)
218mxidlmax 33473 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (LIdeal‘𝑅) ∧ 𝑀𝑗)) → (𝑗 = 𝑀𝑗 = (Base‘𝑅)))
2215, 16, 19, 20, 21syl22anc 839 . . . 4 (((𝜑𝑗 ∈ (LIdeal‘(oppr𝑂))) ∧ 𝑀𝑗) → (𝑗 = 𝑀𝑗 = (Base‘𝑅)))
2322ex 412 . . 3 ((𝜑𝑗 ∈ (LIdeal‘(oppr𝑂))) → (𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))
2423ralrimiva 3144 . 2 (𝜑 → ∀𝑗 ∈ (LIdeal‘(oppr𝑂))(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))
252, 8opprbas 20358 . . . . 5 (Base‘𝑅) = (Base‘𝑂)
264, 25opprbas 20358 . . . 4 (Base‘𝑅) = (Base‘(oppr𝑂))
2726ismxidl 33470 . . 3 ((oppr𝑂) ∈ Ring → (𝑀 ∈ (MaxIdeal‘(oppr𝑂)) ↔ (𝑀 ∈ (LIdeal‘(oppr𝑂)) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘(oppr𝑂))(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))))
2827biimpar 477 . 2 (((oppr𝑂) ∈ Ring ∧ (𝑀 ∈ (LIdeal‘(oppr𝑂)) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘(oppr𝑂))(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))) → 𝑀 ∈ (MaxIdeal‘(oppr𝑂)))
296, 12, 14, 24, 28syl13anc 1371 1 (𝜑𝑀 ∈ (MaxIdeal‘(oppr𝑂)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  wss 3963  cfv 6563  Basecbs 17245  Ringcrg 20251  opprcoppr 20350  LIdealclidl 21234  MaxIdealcmxidl 33467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-lss 20948  df-sra 21190  df-rgmod 21191  df-lidl 21236  df-mxidl 33468
This theorem is referenced by:  qsdrngi  33503
  Copyright terms: Public domain W3C validator