Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opprmxidlabs Structured version   Visualization version   GIF version

Theorem opprmxidlabs 32511
Description: The maximal ideal of the opposite ring's opposite ring. (Contributed by Thierry Arnoux, 9-Mar-2025.)
Hypotheses
Ref Expression
oppreqg.o 𝑂 = (oppr𝑅)
oppr2idl.2 (𝜑𝑅 ∈ Ring)
opprmxidl.3 (𝜑𝑀 ∈ (MaxIdeal‘𝑅))
Assertion
Ref Expression
opprmxidlabs (𝜑𝑀 ∈ (MaxIdeal‘(oppr𝑂)))

Proof of Theorem opprmxidlabs
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 oppr2idl.2 . . 3 (𝜑𝑅 ∈ Ring)
2 oppreqg.o . . . 4 𝑂 = (oppr𝑅)
32opprring 20115 . . 3 (𝑅 ∈ Ring → 𝑂 ∈ Ring)
4 eqid 2732 . . . 4 (oppr𝑂) = (oppr𝑂)
54opprring 20115 . . 3 (𝑂 ∈ Ring → (oppr𝑂) ∈ Ring)
61, 3, 53syl 18 . 2 (𝜑 → (oppr𝑂) ∈ Ring)
7 opprmxidl.3 . . . 4 (𝜑𝑀 ∈ (MaxIdeal‘𝑅))
8 eqid 2732 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
98mxidlidl 32494 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (LIdeal‘𝑅))
101, 7, 9syl2anc 584 . . 3 (𝜑𝑀 ∈ (LIdeal‘𝑅))
112, 1opprlidlabs 32509 . . 3 (𝜑 → (LIdeal‘𝑅) = (LIdeal‘(oppr𝑂)))
1210, 11eleqtrd 2835 . 2 (𝜑𝑀 ∈ (LIdeal‘(oppr𝑂)))
138mxidlnr 32495 . . 3 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ≠ (Base‘𝑅))
141, 7, 13syl2anc 584 . 2 (𝜑𝑀 ≠ (Base‘𝑅))
151ad2antrr 724 . . . . 5 (((𝜑𝑗 ∈ (LIdeal‘(oppr𝑂))) ∧ 𝑀𝑗) → 𝑅 ∈ Ring)
167ad2antrr 724 . . . . 5 (((𝜑𝑗 ∈ (LIdeal‘(oppr𝑂))) ∧ 𝑀𝑗) → 𝑀 ∈ (MaxIdeal‘𝑅))
17 simplr 767 . . . . . 6 (((𝜑𝑗 ∈ (LIdeal‘(oppr𝑂))) ∧ 𝑀𝑗) → 𝑗 ∈ (LIdeal‘(oppr𝑂)))
1811ad2antrr 724 . . . . . 6 (((𝜑𝑗 ∈ (LIdeal‘(oppr𝑂))) ∧ 𝑀𝑗) → (LIdeal‘𝑅) = (LIdeal‘(oppr𝑂)))
1917, 18eleqtrrd 2836 . . . . 5 (((𝜑𝑗 ∈ (LIdeal‘(oppr𝑂))) ∧ 𝑀𝑗) → 𝑗 ∈ (LIdeal‘𝑅))
20 simpr 485 . . . . 5 (((𝜑𝑗 ∈ (LIdeal‘(oppr𝑂))) ∧ 𝑀𝑗) → 𝑀𝑗)
218mxidlmax 32496 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (LIdeal‘𝑅) ∧ 𝑀𝑗)) → (𝑗 = 𝑀𝑗 = (Base‘𝑅)))
2215, 16, 19, 20, 21syl22anc 837 . . . 4 (((𝜑𝑗 ∈ (LIdeal‘(oppr𝑂))) ∧ 𝑀𝑗) → (𝑗 = 𝑀𝑗 = (Base‘𝑅)))
2322ex 413 . . 3 ((𝜑𝑗 ∈ (LIdeal‘(oppr𝑂))) → (𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))
2423ralrimiva 3146 . 2 (𝜑 → ∀𝑗 ∈ (LIdeal‘(oppr𝑂))(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))
252, 8opprbas 20111 . . . . 5 (Base‘𝑅) = (Base‘𝑂)
264, 25opprbas 20111 . . . 4 (Base‘𝑅) = (Base‘(oppr𝑂))
2726ismxidl 32493 . . 3 ((oppr𝑂) ∈ Ring → (𝑀 ∈ (MaxIdeal‘(oppr𝑂)) ↔ (𝑀 ∈ (LIdeal‘(oppr𝑂)) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘(oppr𝑂))(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))))
2827biimpar 478 . 2 (((oppr𝑂) ∈ Ring ∧ (𝑀 ∈ (LIdeal‘(oppr𝑂)) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘(oppr𝑂))(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))) → 𝑀 ∈ (MaxIdeal‘(oppr𝑂)))
296, 12, 14, 24, 28syl13anc 1372 1 (𝜑𝑀 ∈ (MaxIdeal‘(oppr𝑂)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061  wss 3945  cfv 6533  Basecbs 17128  Ringcrg 20016  opprcoppr 20103  LIdealclidl 20734  MaxIdealcmxidl 32490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-cnex 11150  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170  ax-pre-mulgt0 11171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7840  df-2nd 7960  df-tpos 8195  df-frecs 8250  df-wrecs 8281  df-recs 8355  df-rdg 8394  df-er 8688  df-en 8925  df-dom 8926  df-sdom 8927  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238  df-sub 11430  df-neg 11431  df-nn 12197  df-2 12259  df-3 12260  df-4 12261  df-5 12262  df-6 12263  df-7 12264  df-8 12265  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17129  df-ress 17158  df-plusg 17194  df-mulr 17195  df-sca 17197  df-vsca 17198  df-ip 17199  df-0g 17371  df-mgm 18545  df-sgrp 18594  df-mnd 18605  df-grp 18799  df-mgp 19949  df-ur 19966  df-ring 20018  df-oppr 20104  df-lss 20494  df-sra 20736  df-rgmod 20737  df-lidl 20738  df-mxidl 32491
This theorem is referenced by:  qsdrngi  32519
  Copyright terms: Public domain W3C validator