| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opprmxidlabs | Structured version Visualization version GIF version | ||
| Description: The maximal ideal of the opposite ring's opposite ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| Ref | Expression |
|---|---|
| oppreqg.o | ⊢ 𝑂 = (oppr‘𝑅) |
| oppr2idl.2 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| opprmxidl.3 | ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑅)) |
| Ref | Expression |
|---|---|
| opprmxidlabs | ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘(oppr‘𝑂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppr2idl.2 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | oppreqg.o | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
| 3 | 2 | opprring 20250 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑂 ∈ Ring) |
| 4 | eqid 2729 | . . . 4 ⊢ (oppr‘𝑂) = (oppr‘𝑂) | |
| 5 | 4 | opprring 20250 | . . 3 ⊢ (𝑂 ∈ Ring → (oppr‘𝑂) ∈ Ring) |
| 6 | 1, 3, 5 | 3syl 18 | . 2 ⊢ (𝜑 → (oppr‘𝑂) ∈ Ring) |
| 7 | opprmxidl.3 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑅)) | |
| 8 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 9 | 8 | mxidlidl 33410 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (LIdeal‘𝑅)) |
| 10 | 1, 7, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (LIdeal‘𝑅)) |
| 11 | 2, 1 | opprlidlabs 33432 | . . 3 ⊢ (𝜑 → (LIdeal‘𝑅) = (LIdeal‘(oppr‘𝑂))) |
| 12 | 10, 11 | eleqtrd 2830 | . 2 ⊢ (𝜑 → 𝑀 ∈ (LIdeal‘(oppr‘𝑂))) |
| 13 | 8 | mxidlnr 33411 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ≠ (Base‘𝑅)) |
| 14 | 1, 7, 13 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝑀 ≠ (Base‘𝑅)) |
| 15 | 1 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ (LIdeal‘(oppr‘𝑂))) ∧ 𝑀 ⊆ 𝑗) → 𝑅 ∈ Ring) |
| 16 | 7 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ (LIdeal‘(oppr‘𝑂))) ∧ 𝑀 ⊆ 𝑗) → 𝑀 ∈ (MaxIdeal‘𝑅)) |
| 17 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ (LIdeal‘(oppr‘𝑂))) ∧ 𝑀 ⊆ 𝑗) → 𝑗 ∈ (LIdeal‘(oppr‘𝑂))) | |
| 18 | 11 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ (LIdeal‘(oppr‘𝑂))) ∧ 𝑀 ⊆ 𝑗) → (LIdeal‘𝑅) = (LIdeal‘(oppr‘𝑂))) |
| 19 | 17, 18 | eleqtrrd 2831 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ (LIdeal‘(oppr‘𝑂))) ∧ 𝑀 ⊆ 𝑗) → 𝑗 ∈ (LIdeal‘𝑅)) |
| 20 | simpr 484 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ (LIdeal‘(oppr‘𝑂))) ∧ 𝑀 ⊆ 𝑗) → 𝑀 ⊆ 𝑗) | |
| 21 | 8 | mxidlmax 33412 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (LIdeal‘𝑅) ∧ 𝑀 ⊆ 𝑗)) → (𝑗 = 𝑀 ∨ 𝑗 = (Base‘𝑅))) |
| 22 | 15, 16, 19, 20, 21 | syl22anc 838 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ (LIdeal‘(oppr‘𝑂))) ∧ 𝑀 ⊆ 𝑗) → (𝑗 = 𝑀 ∨ 𝑗 = (Base‘𝑅))) |
| 23 | 22 | ex 412 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ (LIdeal‘(oppr‘𝑂))) → (𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = (Base‘𝑅)))) |
| 24 | 23 | ralrimiva 3121 | . 2 ⊢ (𝜑 → ∀𝑗 ∈ (LIdeal‘(oppr‘𝑂))(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = (Base‘𝑅)))) |
| 25 | 2, 8 | opprbas 20246 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑂) |
| 26 | 4, 25 | opprbas 20246 | . . . 4 ⊢ (Base‘𝑅) = (Base‘(oppr‘𝑂)) |
| 27 | 26 | ismxidl 33409 | . . 3 ⊢ ((oppr‘𝑂) ∈ Ring → (𝑀 ∈ (MaxIdeal‘(oppr‘𝑂)) ↔ (𝑀 ∈ (LIdeal‘(oppr‘𝑂)) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘(oppr‘𝑂))(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = (Base‘𝑅)))))) |
| 28 | 27 | biimpar 477 | . 2 ⊢ (((oppr‘𝑂) ∈ Ring ∧ (𝑀 ∈ (LIdeal‘(oppr‘𝑂)) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘(oppr‘𝑂))(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = (Base‘𝑅))))) → 𝑀 ∈ (MaxIdeal‘(oppr‘𝑂))) |
| 29 | 6, 12, 14, 24, 28 | syl13anc 1374 | 1 ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘(oppr‘𝑂))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ⊆ wss 3905 ‘cfv 6486 Basecbs 17138 Ringcrg 20136 opprcoppr 20239 LIdealclidl 21131 MaxIdealcmxidl 33406 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-oppr 20240 df-lss 20853 df-sra 21095 df-rgmod 21096 df-lidl 21133 df-mxidl 33407 |
| This theorem is referenced by: qsdrngi 33442 |
| Copyright terms: Public domain | W3C validator |