| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opprmxidlabs | Structured version Visualization version GIF version | ||
| Description: The maximal ideal of the opposite ring's opposite ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| Ref | Expression |
|---|---|
| oppreqg.o | ⊢ 𝑂 = (oppr‘𝑅) |
| oppr2idl.2 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| opprmxidl.3 | ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑅)) |
| Ref | Expression |
|---|---|
| opprmxidlabs | ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘(oppr‘𝑂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppr2idl.2 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | oppreqg.o | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
| 3 | 2 | opprring 20258 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑂 ∈ Ring) |
| 4 | eqid 2730 | . . . 4 ⊢ (oppr‘𝑂) = (oppr‘𝑂) | |
| 5 | 4 | opprring 20258 | . . 3 ⊢ (𝑂 ∈ Ring → (oppr‘𝑂) ∈ Ring) |
| 6 | 1, 3, 5 | 3syl 18 | . 2 ⊢ (𝜑 → (oppr‘𝑂) ∈ Ring) |
| 7 | opprmxidl.3 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑅)) | |
| 8 | eqid 2730 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 9 | 8 | mxidlidl 33418 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (LIdeal‘𝑅)) |
| 10 | 1, 7, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (LIdeal‘𝑅)) |
| 11 | 2, 1 | opprlidlabs 33440 | . . 3 ⊢ (𝜑 → (LIdeal‘𝑅) = (LIdeal‘(oppr‘𝑂))) |
| 12 | 10, 11 | eleqtrd 2831 | . 2 ⊢ (𝜑 → 𝑀 ∈ (LIdeal‘(oppr‘𝑂))) |
| 13 | 8 | mxidlnr 33419 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ≠ (Base‘𝑅)) |
| 14 | 1, 7, 13 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝑀 ≠ (Base‘𝑅)) |
| 15 | 1 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ (LIdeal‘(oppr‘𝑂))) ∧ 𝑀 ⊆ 𝑗) → 𝑅 ∈ Ring) |
| 16 | 7 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ (LIdeal‘(oppr‘𝑂))) ∧ 𝑀 ⊆ 𝑗) → 𝑀 ∈ (MaxIdeal‘𝑅)) |
| 17 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ (LIdeal‘(oppr‘𝑂))) ∧ 𝑀 ⊆ 𝑗) → 𝑗 ∈ (LIdeal‘(oppr‘𝑂))) | |
| 18 | 11 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ (LIdeal‘(oppr‘𝑂))) ∧ 𝑀 ⊆ 𝑗) → (LIdeal‘𝑅) = (LIdeal‘(oppr‘𝑂))) |
| 19 | 17, 18 | eleqtrrd 2832 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ (LIdeal‘(oppr‘𝑂))) ∧ 𝑀 ⊆ 𝑗) → 𝑗 ∈ (LIdeal‘𝑅)) |
| 20 | simpr 484 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ (LIdeal‘(oppr‘𝑂))) ∧ 𝑀 ⊆ 𝑗) → 𝑀 ⊆ 𝑗) | |
| 21 | 8 | mxidlmax 33420 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (LIdeal‘𝑅) ∧ 𝑀 ⊆ 𝑗)) → (𝑗 = 𝑀 ∨ 𝑗 = (Base‘𝑅))) |
| 22 | 15, 16, 19, 20, 21 | syl22anc 838 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ (LIdeal‘(oppr‘𝑂))) ∧ 𝑀 ⊆ 𝑗) → (𝑗 = 𝑀 ∨ 𝑗 = (Base‘𝑅))) |
| 23 | 22 | ex 412 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ (LIdeal‘(oppr‘𝑂))) → (𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = (Base‘𝑅)))) |
| 24 | 23 | ralrimiva 3122 | . 2 ⊢ (𝜑 → ∀𝑗 ∈ (LIdeal‘(oppr‘𝑂))(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = (Base‘𝑅)))) |
| 25 | 2, 8 | opprbas 20254 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑂) |
| 26 | 4, 25 | opprbas 20254 | . . . 4 ⊢ (Base‘𝑅) = (Base‘(oppr‘𝑂)) |
| 27 | 26 | ismxidl 33417 | . . 3 ⊢ ((oppr‘𝑂) ∈ Ring → (𝑀 ∈ (MaxIdeal‘(oppr‘𝑂)) ↔ (𝑀 ∈ (LIdeal‘(oppr‘𝑂)) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘(oppr‘𝑂))(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = (Base‘𝑅)))))) |
| 28 | 27 | biimpar 477 | . 2 ⊢ (((oppr‘𝑂) ∈ Ring ∧ (𝑀 ∈ (LIdeal‘(oppr‘𝑂)) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘(oppr‘𝑂))(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = (Base‘𝑅))))) → 𝑀 ∈ (MaxIdeal‘(oppr‘𝑂))) |
| 29 | 6, 12, 14, 24, 28 | syl13anc 1374 | 1 ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘(oppr‘𝑂))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 ∀wral 3045 ⊆ wss 3900 ‘cfv 6477 Basecbs 17112 Ringcrg 20144 opprcoppr 20247 LIdealclidl 21136 MaxIdealcmxidl 33414 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-sca 17169 df-vsca 17170 df-ip 17171 df-0g 17337 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-grp 18841 df-minusg 18842 df-cmn 19687 df-abl 19688 df-mgp 20052 df-rng 20064 df-ur 20093 df-ring 20146 df-oppr 20248 df-lss 20858 df-sra 21100 df-rgmod 21101 df-lidl 21138 df-mxidl 33415 |
| This theorem is referenced by: qsdrngi 33450 |
| Copyright terms: Public domain | W3C validator |