Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opprmxidlabs Structured version   Visualization version   GIF version

Theorem opprmxidlabs 33455
Description: The maximal ideal of the opposite ring's opposite ring. (Contributed by Thierry Arnoux, 9-Mar-2025.)
Hypotheses
Ref Expression
oppreqg.o 𝑂 = (oppr𝑅)
oppr2idl.2 (𝜑𝑅 ∈ Ring)
opprmxidl.3 (𝜑𝑀 ∈ (MaxIdeal‘𝑅))
Assertion
Ref Expression
opprmxidlabs (𝜑𝑀 ∈ (MaxIdeal‘(oppr𝑂)))

Proof of Theorem opprmxidlabs
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 oppr2idl.2 . . 3 (𝜑𝑅 ∈ Ring)
2 oppreqg.o . . . 4 𝑂 = (oppr𝑅)
32opprring 20316 . . 3 (𝑅 ∈ Ring → 𝑂 ∈ Ring)
4 eqid 2734 . . . 4 (oppr𝑂) = (oppr𝑂)
54opprring 20316 . . 3 (𝑂 ∈ Ring → (oppr𝑂) ∈ Ring)
61, 3, 53syl 18 . 2 (𝜑 → (oppr𝑂) ∈ Ring)
7 opprmxidl.3 . . . 4 (𝜑𝑀 ∈ (MaxIdeal‘𝑅))
8 eqid 2734 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
98mxidlidl 33431 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (LIdeal‘𝑅))
101, 7, 9syl2anc 584 . . 3 (𝜑𝑀 ∈ (LIdeal‘𝑅))
112, 1opprlidlabs 33453 . . 3 (𝜑 → (LIdeal‘𝑅) = (LIdeal‘(oppr𝑂)))
1210, 11eleqtrd 2835 . 2 (𝜑𝑀 ∈ (LIdeal‘(oppr𝑂)))
138mxidlnr 33432 . . 3 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ≠ (Base‘𝑅))
141, 7, 13syl2anc 584 . 2 (𝜑𝑀 ≠ (Base‘𝑅))
151ad2antrr 726 . . . . 5 (((𝜑𝑗 ∈ (LIdeal‘(oppr𝑂))) ∧ 𝑀𝑗) → 𝑅 ∈ Ring)
167ad2antrr 726 . . . . 5 (((𝜑𝑗 ∈ (LIdeal‘(oppr𝑂))) ∧ 𝑀𝑗) → 𝑀 ∈ (MaxIdeal‘𝑅))
17 simplr 768 . . . . . 6 (((𝜑𝑗 ∈ (LIdeal‘(oppr𝑂))) ∧ 𝑀𝑗) → 𝑗 ∈ (LIdeal‘(oppr𝑂)))
1811ad2antrr 726 . . . . . 6 (((𝜑𝑗 ∈ (LIdeal‘(oppr𝑂))) ∧ 𝑀𝑗) → (LIdeal‘𝑅) = (LIdeal‘(oppr𝑂)))
1917, 18eleqtrrd 2836 . . . . 5 (((𝜑𝑗 ∈ (LIdeal‘(oppr𝑂))) ∧ 𝑀𝑗) → 𝑗 ∈ (LIdeal‘𝑅))
20 simpr 484 . . . . 5 (((𝜑𝑗 ∈ (LIdeal‘(oppr𝑂))) ∧ 𝑀𝑗) → 𝑀𝑗)
218mxidlmax 33433 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑗 ∈ (LIdeal‘𝑅) ∧ 𝑀𝑗)) → (𝑗 = 𝑀𝑗 = (Base‘𝑅)))
2215, 16, 19, 20, 21syl22anc 838 . . . 4 (((𝜑𝑗 ∈ (LIdeal‘(oppr𝑂))) ∧ 𝑀𝑗) → (𝑗 = 𝑀𝑗 = (Base‘𝑅)))
2322ex 412 . . 3 ((𝜑𝑗 ∈ (LIdeal‘(oppr𝑂))) → (𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))
2423ralrimiva 3133 . 2 (𝜑 → ∀𝑗 ∈ (LIdeal‘(oppr𝑂))(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))
252, 8opprbas 20310 . . . . 5 (Base‘𝑅) = (Base‘𝑂)
264, 25opprbas 20310 . . . 4 (Base‘𝑅) = (Base‘(oppr𝑂))
2726ismxidl 33430 . . 3 ((oppr𝑂) ∈ Ring → (𝑀 ∈ (MaxIdeal‘(oppr𝑂)) ↔ (𝑀 ∈ (LIdeal‘(oppr𝑂)) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘(oppr𝑂))(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))))
2827biimpar 477 . 2 (((oppr𝑂) ∈ Ring ∧ (𝑀 ∈ (LIdeal‘(oppr𝑂)) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘(oppr𝑂))(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))) → 𝑀 ∈ (MaxIdeal‘(oppr𝑂)))
296, 12, 14, 24, 28syl13anc 1373 1 (𝜑𝑀 ∈ (MaxIdeal‘(oppr𝑂)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wral 3050  wss 3931  cfv 6541  Basecbs 17230  Ringcrg 20199  opprcoppr 20302  LIdealclidl 21179  MaxIdealcmxidl 33427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-2nd 7997  df-tpos 8233  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17254  df-plusg 17287  df-mulr 17288  df-sca 17290  df-vsca 17291  df-ip 17292  df-0g 17458  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-cmn 19769  df-abl 19770  df-mgp 20107  df-rng 20119  df-ur 20148  df-ring 20201  df-oppr 20303  df-lss 20899  df-sra 21141  df-rgmod 21142  df-lidl 21181  df-mxidl 33428
This theorem is referenced by:  qsdrngi  33463
  Copyright terms: Public domain W3C validator