Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismxidl Structured version   Visualization version   GIF version

Theorem ismxidl 31634
Description: The predicate "is a maximal ideal". (Contributed by Jeff Madsen, 5-Jan-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.)
Hypothesis
Ref Expression
mxidlval.1 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
ismxidl (𝑅 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵)))))
Distinct variable groups:   𝑅,𝑗   𝑗,𝑀
Allowed substitution hint:   𝐵(𝑗)

Proof of Theorem ismxidl
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 mxidlval.1 . . . 4 𝐵 = (Base‘𝑅)
21mxidlval 31633 . . 3 (𝑅 ∈ Ring → (MaxIdeal‘𝑅) = {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝐵)))})
32eleq2d 2824 . 2 (𝑅 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ 𝑀 ∈ {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝐵)))}))
4 neeq1 3006 . . . . 5 (𝑖 = 𝑀 → (𝑖𝐵𝑀𝐵))
5 sseq1 3946 . . . . . . 7 (𝑖 = 𝑀 → (𝑖𝑗𝑀𝑗))
6 eqeq2 2750 . . . . . . . 8 (𝑖 = 𝑀 → (𝑗 = 𝑖𝑗 = 𝑀))
76orbi1d 914 . . . . . . 7 (𝑖 = 𝑀 → ((𝑗 = 𝑖𝑗 = 𝐵) ↔ (𝑗 = 𝑀𝑗 = 𝐵)))
85, 7imbi12d 345 . . . . . 6 (𝑖 = 𝑀 → ((𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝐵)) ↔ (𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵))))
98ralbidv 3112 . . . . 5 (𝑖 = 𝑀 → (∀𝑗 ∈ (LIdeal‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝐵)) ↔ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵))))
104, 9anbi12d 631 . . . 4 (𝑖 = 𝑀 → ((𝑖𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝐵))) ↔ (𝑀𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵)))))
1110elrab 3624 . . 3 (𝑀 ∈ {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝐵)))} ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ (𝑀𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵)))))
12 3anass 1094 . . 3 ((𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵))) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ (𝑀𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵)))))
1311, 12bitr4i 277 . 2 (𝑀 ∈ {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝐵)))} ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵))))
143, 13bitrdi 287 1 (𝑅 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  {crab 3068  wss 3887  cfv 6433  Basecbs 16912  Ringcrg 19783  LIdealclidl 20432  MaxIdealcmxidl 31631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-mxidl 31632
This theorem is referenced by:  mxidlidl  31635  mxidlnr  31636  mxidlmax  31637  ssmxidl  31642  zarclssn  31823
  Copyright terms: Public domain W3C validator