Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismxidl Structured version   Visualization version   GIF version

Theorem ismxidl 33434
Description: The predicate "is a maximal ideal". (Contributed by Jeff Madsen, 5-Jan-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.)
Hypothesis
Ref Expression
mxidlval.1 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
ismxidl (𝑅 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵)))))
Distinct variable groups:   𝑅,𝑗   𝑗,𝑀
Allowed substitution hint:   𝐵(𝑗)

Proof of Theorem ismxidl
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 mxidlval.1 . . . 4 𝐵 = (Base‘𝑅)
21mxidlval 33433 . . 3 (𝑅 ∈ Ring → (MaxIdeal‘𝑅) = {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝐵)))})
32eleq2d 2819 . 2 (𝑅 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ 𝑀 ∈ {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝐵)))}))
4 neeq1 2991 . . . . 5 (𝑖 = 𝑀 → (𝑖𝐵𝑀𝐵))
5 sseq1 3956 . . . . . . 7 (𝑖 = 𝑀 → (𝑖𝑗𝑀𝑗))
6 eqeq2 2745 . . . . . . . 8 (𝑖 = 𝑀 → (𝑗 = 𝑖𝑗 = 𝑀))
76orbi1d 916 . . . . . . 7 (𝑖 = 𝑀 → ((𝑗 = 𝑖𝑗 = 𝐵) ↔ (𝑗 = 𝑀𝑗 = 𝐵)))
85, 7imbi12d 344 . . . . . 6 (𝑖 = 𝑀 → ((𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝐵)) ↔ (𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵))))
98ralbidv 3156 . . . . 5 (𝑖 = 𝑀 → (∀𝑗 ∈ (LIdeal‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝐵)) ↔ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵))))
104, 9anbi12d 632 . . . 4 (𝑖 = 𝑀 → ((𝑖𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝐵))) ↔ (𝑀𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵)))))
1110elrab 3643 . . 3 (𝑀 ∈ {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝐵)))} ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ (𝑀𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵)))))
12 3anass 1094 . . 3 ((𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵))) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ (𝑀𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵)))))
1311, 12bitr4i 278 . 2 (𝑀 ∈ {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝐵)))} ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵))))
143, 13bitrdi 287 1 (𝑅 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  {crab 3396  wss 3898  cfv 6486  Basecbs 17122  Ringcrg 20153  LIdealclidl 21145  MaxIdealcmxidl 33431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-mxidl 33432
This theorem is referenced by:  mxidlidl  33435  mxidlnr  33436  mxidlmax  33437  crngmxidl  33441  mxidlirred  33444  ssmxidl  33446  drng0mxidl  33448  opprmxidlabs  33459  qsdrng  33469  zarclssn  33907
  Copyright terms: Public domain W3C validator