| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ismxidl | Structured version Visualization version GIF version | ||
| Description: The predicate "is a maximal ideal". (Contributed by Jeff Madsen, 5-Jan-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
| Ref | Expression |
|---|---|
| mxidlval.1 | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| ismxidl | ⊢ (𝑅 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝐵))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mxidlval.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | 1 | mxidlval 33432 | . . 3 ⊢ (𝑅 ∈ Ring → (MaxIdeal‘𝑅) = {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝐵)))}) |
| 3 | 2 | eleq2d 2814 | . 2 ⊢ (𝑅 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ 𝑀 ∈ {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝐵)))})) |
| 4 | neeq1 2987 | . . . . 5 ⊢ (𝑖 = 𝑀 → (𝑖 ≠ 𝐵 ↔ 𝑀 ≠ 𝐵)) | |
| 5 | sseq1 3972 | . . . . . . 7 ⊢ (𝑖 = 𝑀 → (𝑖 ⊆ 𝑗 ↔ 𝑀 ⊆ 𝑗)) | |
| 6 | eqeq2 2741 | . . . . . . . 8 ⊢ (𝑖 = 𝑀 → (𝑗 = 𝑖 ↔ 𝑗 = 𝑀)) | |
| 7 | 6 | orbi1d 916 | . . . . . . 7 ⊢ (𝑖 = 𝑀 → ((𝑗 = 𝑖 ∨ 𝑗 = 𝐵) ↔ (𝑗 = 𝑀 ∨ 𝑗 = 𝐵))) |
| 8 | 5, 7 | imbi12d 344 | . . . . . 6 ⊢ (𝑖 = 𝑀 → ((𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝐵)) ↔ (𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝐵)))) |
| 9 | 8 | ralbidv 3156 | . . . . 5 ⊢ (𝑖 = 𝑀 → (∀𝑗 ∈ (LIdeal‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝐵)) ↔ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝐵)))) |
| 10 | 4, 9 | anbi12d 632 | . . . 4 ⊢ (𝑖 = 𝑀 → ((𝑖 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝐵))) ↔ (𝑀 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝐵))))) |
| 11 | 10 | elrab 3659 | . . 3 ⊢ (𝑀 ∈ {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝐵)))} ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ (𝑀 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝐵))))) |
| 12 | 3anass 1094 | . . 3 ⊢ ((𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝐵))) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ (𝑀 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝐵))))) | |
| 13 | 11, 12 | bitr4i 278 | . 2 ⊢ (𝑀 ∈ {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝐵)))} ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝐵)))) |
| 14 | 3, 13 | bitrdi 287 | 1 ⊢ (𝑅 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝐵))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 {crab 3405 ⊆ wss 3914 ‘cfv 6511 Basecbs 17179 Ringcrg 20142 LIdealclidl 21116 MaxIdealcmxidl 33430 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-mxidl 33431 |
| This theorem is referenced by: mxidlidl 33434 mxidlnr 33435 mxidlmax 33436 crngmxidl 33440 mxidlirred 33443 ssmxidl 33445 drng0mxidl 33447 opprmxidlabs 33458 qsdrng 33468 zarclssn 33863 |
| Copyright terms: Public domain | W3C validator |