Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ismxidl | Structured version Visualization version GIF version |
Description: The predicate "is a maximal ideal". (Contributed by Jeff Madsen, 5-Jan-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
Ref | Expression |
---|---|
mxidlval.1 | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
ismxidl | ⊢ (𝑅 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝐵))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mxidlval.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
2 | 1 | mxidlval 31633 | . . 3 ⊢ (𝑅 ∈ Ring → (MaxIdeal‘𝑅) = {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝐵)))}) |
3 | 2 | eleq2d 2824 | . 2 ⊢ (𝑅 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ 𝑀 ∈ {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝐵)))})) |
4 | neeq1 3006 | . . . . 5 ⊢ (𝑖 = 𝑀 → (𝑖 ≠ 𝐵 ↔ 𝑀 ≠ 𝐵)) | |
5 | sseq1 3946 | . . . . . . 7 ⊢ (𝑖 = 𝑀 → (𝑖 ⊆ 𝑗 ↔ 𝑀 ⊆ 𝑗)) | |
6 | eqeq2 2750 | . . . . . . . 8 ⊢ (𝑖 = 𝑀 → (𝑗 = 𝑖 ↔ 𝑗 = 𝑀)) | |
7 | 6 | orbi1d 914 | . . . . . . 7 ⊢ (𝑖 = 𝑀 → ((𝑗 = 𝑖 ∨ 𝑗 = 𝐵) ↔ (𝑗 = 𝑀 ∨ 𝑗 = 𝐵))) |
8 | 5, 7 | imbi12d 345 | . . . . . 6 ⊢ (𝑖 = 𝑀 → ((𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝐵)) ↔ (𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝐵)))) |
9 | 8 | ralbidv 3112 | . . . . 5 ⊢ (𝑖 = 𝑀 → (∀𝑗 ∈ (LIdeal‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝐵)) ↔ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝐵)))) |
10 | 4, 9 | anbi12d 631 | . . . 4 ⊢ (𝑖 = 𝑀 → ((𝑖 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝐵))) ↔ (𝑀 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝐵))))) |
11 | 10 | elrab 3624 | . . 3 ⊢ (𝑀 ∈ {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝐵)))} ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ (𝑀 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝐵))))) |
12 | 3anass 1094 | . . 3 ⊢ ((𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝐵))) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ (𝑀 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝐵))))) | |
13 | 11, 12 | bitr4i 277 | . 2 ⊢ (𝑀 ∈ {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝐵)))} ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝐵)))) |
14 | 3, 13 | bitrdi 287 | 1 ⊢ (𝑅 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝐵))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 {crab 3068 ⊆ wss 3887 ‘cfv 6433 Basecbs 16912 Ringcrg 19783 LIdealclidl 20432 MaxIdealcmxidl 31631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-mxidl 31632 |
This theorem is referenced by: mxidlidl 31635 mxidlnr 31636 mxidlmax 31637 ssmxidl 31642 zarclssn 31823 |
Copyright terms: Public domain | W3C validator |