Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismxidl Structured version   Visualization version   GIF version

Theorem ismxidl 32231
Description: The predicate "is a maximal ideal". (Contributed by Jeff Madsen, 5-Jan-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.)
Hypothesis
Ref Expression
mxidlval.1 𝐡 = (Baseβ€˜π‘…)
Assertion
Ref Expression
ismxidl (𝑅 ∈ Ring β†’ (𝑀 ∈ (MaxIdealβ€˜π‘…) ↔ (𝑀 ∈ (LIdealβ€˜π‘…) ∧ 𝑀 β‰  𝐡 ∧ βˆ€π‘— ∈ (LIdealβ€˜π‘…)(𝑀 βŠ† 𝑗 β†’ (𝑗 = 𝑀 ∨ 𝑗 = 𝐡)))))
Distinct variable groups:   𝑅,𝑗   𝑗,𝑀
Allowed substitution hint:   𝐡(𝑗)

Proof of Theorem ismxidl
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 mxidlval.1 . . . 4 𝐡 = (Baseβ€˜π‘…)
21mxidlval 32230 . . 3 (𝑅 ∈ Ring β†’ (MaxIdealβ€˜π‘…) = {𝑖 ∈ (LIdealβ€˜π‘…) ∣ (𝑖 β‰  𝐡 ∧ βˆ€π‘— ∈ (LIdealβ€˜π‘…)(𝑖 βŠ† 𝑗 β†’ (𝑗 = 𝑖 ∨ 𝑗 = 𝐡)))})
32eleq2d 2823 . 2 (𝑅 ∈ Ring β†’ (𝑀 ∈ (MaxIdealβ€˜π‘…) ↔ 𝑀 ∈ {𝑖 ∈ (LIdealβ€˜π‘…) ∣ (𝑖 β‰  𝐡 ∧ βˆ€π‘— ∈ (LIdealβ€˜π‘…)(𝑖 βŠ† 𝑗 β†’ (𝑗 = 𝑖 ∨ 𝑗 = 𝐡)))}))
4 neeq1 3006 . . . . 5 (𝑖 = 𝑀 β†’ (𝑖 β‰  𝐡 ↔ 𝑀 β‰  𝐡))
5 sseq1 3969 . . . . . . 7 (𝑖 = 𝑀 β†’ (𝑖 βŠ† 𝑗 ↔ 𝑀 βŠ† 𝑗))
6 eqeq2 2748 . . . . . . . 8 (𝑖 = 𝑀 β†’ (𝑗 = 𝑖 ↔ 𝑗 = 𝑀))
76orbi1d 915 . . . . . . 7 (𝑖 = 𝑀 β†’ ((𝑗 = 𝑖 ∨ 𝑗 = 𝐡) ↔ (𝑗 = 𝑀 ∨ 𝑗 = 𝐡)))
85, 7imbi12d 344 . . . . . 6 (𝑖 = 𝑀 β†’ ((𝑖 βŠ† 𝑗 β†’ (𝑗 = 𝑖 ∨ 𝑗 = 𝐡)) ↔ (𝑀 βŠ† 𝑗 β†’ (𝑗 = 𝑀 ∨ 𝑗 = 𝐡))))
98ralbidv 3174 . . . . 5 (𝑖 = 𝑀 β†’ (βˆ€π‘— ∈ (LIdealβ€˜π‘…)(𝑖 βŠ† 𝑗 β†’ (𝑗 = 𝑖 ∨ 𝑗 = 𝐡)) ↔ βˆ€π‘— ∈ (LIdealβ€˜π‘…)(𝑀 βŠ† 𝑗 β†’ (𝑗 = 𝑀 ∨ 𝑗 = 𝐡))))
104, 9anbi12d 631 . . . 4 (𝑖 = 𝑀 β†’ ((𝑖 β‰  𝐡 ∧ βˆ€π‘— ∈ (LIdealβ€˜π‘…)(𝑖 βŠ† 𝑗 β†’ (𝑗 = 𝑖 ∨ 𝑗 = 𝐡))) ↔ (𝑀 β‰  𝐡 ∧ βˆ€π‘— ∈ (LIdealβ€˜π‘…)(𝑀 βŠ† 𝑗 β†’ (𝑗 = 𝑀 ∨ 𝑗 = 𝐡)))))
1110elrab 3645 . . 3 (𝑀 ∈ {𝑖 ∈ (LIdealβ€˜π‘…) ∣ (𝑖 β‰  𝐡 ∧ βˆ€π‘— ∈ (LIdealβ€˜π‘…)(𝑖 βŠ† 𝑗 β†’ (𝑗 = 𝑖 ∨ 𝑗 = 𝐡)))} ↔ (𝑀 ∈ (LIdealβ€˜π‘…) ∧ (𝑀 β‰  𝐡 ∧ βˆ€π‘— ∈ (LIdealβ€˜π‘…)(𝑀 βŠ† 𝑗 β†’ (𝑗 = 𝑀 ∨ 𝑗 = 𝐡)))))
12 3anass 1095 . . 3 ((𝑀 ∈ (LIdealβ€˜π‘…) ∧ 𝑀 β‰  𝐡 ∧ βˆ€π‘— ∈ (LIdealβ€˜π‘…)(𝑀 βŠ† 𝑗 β†’ (𝑗 = 𝑀 ∨ 𝑗 = 𝐡))) ↔ (𝑀 ∈ (LIdealβ€˜π‘…) ∧ (𝑀 β‰  𝐡 ∧ βˆ€π‘— ∈ (LIdealβ€˜π‘…)(𝑀 βŠ† 𝑗 β†’ (𝑗 = 𝑀 ∨ 𝑗 = 𝐡)))))
1311, 12bitr4i 277 . 2 (𝑀 ∈ {𝑖 ∈ (LIdealβ€˜π‘…) ∣ (𝑖 β‰  𝐡 ∧ βˆ€π‘— ∈ (LIdealβ€˜π‘…)(𝑖 βŠ† 𝑗 β†’ (𝑗 = 𝑖 ∨ 𝑗 = 𝐡)))} ↔ (𝑀 ∈ (LIdealβ€˜π‘…) ∧ 𝑀 β‰  𝐡 ∧ βˆ€π‘— ∈ (LIdealβ€˜π‘…)(𝑀 βŠ† 𝑗 β†’ (𝑗 = 𝑀 ∨ 𝑗 = 𝐡))))
143, 13bitrdi 286 1 (𝑅 ∈ Ring β†’ (𝑀 ∈ (MaxIdealβ€˜π‘…) ↔ (𝑀 ∈ (LIdealβ€˜π‘…) ∧ 𝑀 β‰  𝐡 ∧ βˆ€π‘— ∈ (LIdealβ€˜π‘…)(𝑀 βŠ† 𝑗 β†’ (𝑗 = 𝑀 ∨ 𝑗 = 𝐡)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ wo 845   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2943  βˆ€wral 3064  {crab 3407   βŠ† wss 3910  β€˜cfv 6496  Basecbs 17083  Ringcrg 19964  LIdealclidl 20631  MaxIdealcmxidl 32228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-iota 6448  df-fun 6498  df-fv 6504  df-mxidl 32229
This theorem is referenced by:  mxidlidl  32232  mxidlnr  32233  mxidlmax  32234  ssmxidl  32239  zarclssn  32454
  Copyright terms: Public domain W3C validator