![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mxidlnr | Structured version Visualization version GIF version |
Description: A maximal ideal is proper. (Contributed by Jeff Madsen, 16-Jun-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
Ref | Expression |
---|---|
mxidlval.1 | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
mxidlnr | ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mxidlval.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
2 | 1 | ismxidl 33447 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝐵))))) |
3 | 2 | biimpa 476 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝐵)))) |
4 | 3 | simp2d 1143 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ⊆ wss 3976 ‘cfv 6568 Basecbs 17252 Ringcrg 20254 LIdealclidl 21233 MaxIdealcmxidl 33444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-iota 6520 df-fun 6570 df-fv 6576 df-mxidl 33445 |
This theorem is referenced by: mxidln1 33451 mxidlprm 33455 mxidlirredi 33456 drngmxidl 33462 opprmxidlabs 33472 qsdrngi 33480 |
Copyright terms: Public domain | W3C validator |