| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mxidlnr | Structured version Visualization version GIF version | ||
| Description: A maximal ideal is proper. (Contributed by Jeff Madsen, 16-Jun-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
| Ref | Expression |
|---|---|
| mxidlval.1 | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| mxidlnr | ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mxidlval.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | 1 | ismxidl 33426 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝐵))))) |
| 3 | 2 | biimpa 476 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝐵)))) |
| 4 | 3 | simp2d 1143 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ⊆ wss 3911 ‘cfv 6499 Basecbs 17155 Ringcrg 20153 LIdealclidl 21148 MaxIdealcmxidl 33423 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-mxidl 33424 |
| This theorem is referenced by: mxidln1 33430 mxidlprm 33434 mxidlirredi 33435 drngmxidl 33441 opprmxidlabs 33451 qsdrngi 33459 |
| Copyright terms: Public domain | W3C validator |