![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mxidlidl | Structured version Visualization version GIF version |
Description: A maximal ideal is an ideal. (Contributed by Jeff Madsen, 5-Jan-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
Ref | Expression |
---|---|
mxidlval.1 | β’ π΅ = (Baseβπ ) |
Ref | Expression |
---|---|
mxidlidl | β’ ((π β Ring β§ π β (MaxIdealβπ )) β π β (LIdealβπ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mxidlval.1 | . . . 4 β’ π΅ = (Baseβπ ) | |
2 | 1 | ismxidl 32573 | . . 3 β’ (π β Ring β (π β (MaxIdealβπ ) β (π β (LIdealβπ ) β§ π β π΅ β§ βπ β (LIdealβπ )(π β π β (π = π β¨ π = π΅))))) |
3 | 2 | biimpa 477 | . 2 β’ ((π β Ring β§ π β (MaxIdealβπ )) β (π β (LIdealβπ ) β§ π β π΅ β§ βπ β (LIdealβπ )(π β π β (π = π β¨ π = π΅)))) |
4 | 3 | simp1d 1142 | 1 β’ ((π β Ring β§ π β (MaxIdealβπ )) β π β (LIdealβπ )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β¨ wo 845 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 βwral 3061 β wss 3948 βcfv 6543 Basecbs 17143 Ringcrg 20055 LIdealclidl 20782 MaxIdealcmxidl 32570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-mxidl 32571 |
This theorem is referenced by: mxidln1 32577 mxidlnzr 32578 mxidlprm 32581 drngmxidl 32588 opprmxidlabs 32596 qsdrngilem 32603 qsdrngi 32604 mxidlprmALT 32608 zarclssn 32848 zarmxt1 32855 |
Copyright terms: Public domain | W3C validator |