| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nbgr1vtx | Structured version Visualization version GIF version | ||
| Description: In a graph with one vertex, all neighborhoods are empty. (Contributed by AV, 15-Nov-2020.) |
| Ref | Expression |
|---|---|
| nbgr1vtx | ⊢ ((♯‘(Vtx‘𝐺)) = 1 → (𝐺 NeighbVtx 𝐾) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6874 | . . . . . . 7 ⊢ (Vtx‘𝐺) ∈ V | |
| 2 | hash1snb 14391 | . . . . . . 7 ⊢ ((Vtx‘𝐺) ∈ V → ((♯‘(Vtx‘𝐺)) = 1 ↔ ∃𝑣(Vtx‘𝐺) = {𝑣})) | |
| 3 | 1, 2 | ax-mp 5 | . . . . . 6 ⊢ ((♯‘(Vtx‘𝐺)) = 1 ↔ ∃𝑣(Vtx‘𝐺) = {𝑣}) |
| 4 | ral0 4479 | . . . . . . . . 9 ⊢ ∀𝑛 ∈ ∅ ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒 | |
| 5 | eleq2 2818 | . . . . . . . . . . . 12 ⊢ ((Vtx‘𝐺) = {𝑣} → (𝐾 ∈ (Vtx‘𝐺) ↔ 𝐾 ∈ {𝑣})) | |
| 6 | simpr 484 | . . . . . . . . . . . . . . . 16 ⊢ ((𝐾 = 𝑣 ∧ (Vtx‘𝐺) = {𝑣}) → (Vtx‘𝐺) = {𝑣}) | |
| 7 | sneq 4602 | . . . . . . . . . . . . . . . . 17 ⊢ (𝐾 = 𝑣 → {𝐾} = {𝑣}) | |
| 8 | 7 | adantr 480 | . . . . . . . . . . . . . . . 16 ⊢ ((𝐾 = 𝑣 ∧ (Vtx‘𝐺) = {𝑣}) → {𝐾} = {𝑣}) |
| 9 | 6, 8 | difeq12d 4093 | . . . . . . . . . . . . . . 15 ⊢ ((𝐾 = 𝑣 ∧ (Vtx‘𝐺) = {𝑣}) → ((Vtx‘𝐺) ∖ {𝐾}) = ({𝑣} ∖ {𝑣})) |
| 10 | difid 4342 | . . . . . . . . . . . . . . 15 ⊢ ({𝑣} ∖ {𝑣}) = ∅ | |
| 11 | 9, 10 | eqtrdi 2781 | . . . . . . . . . . . . . 14 ⊢ ((𝐾 = 𝑣 ∧ (Vtx‘𝐺) = {𝑣}) → ((Vtx‘𝐺) ∖ {𝐾}) = ∅) |
| 12 | 11 | ex 412 | . . . . . . . . . . . . 13 ⊢ (𝐾 = 𝑣 → ((Vtx‘𝐺) = {𝑣} → ((Vtx‘𝐺) ∖ {𝐾}) = ∅)) |
| 13 | elsni 4609 | . . . . . . . . . . . . 13 ⊢ (𝐾 ∈ {𝑣} → 𝐾 = 𝑣) | |
| 14 | 12, 13 | syl11 33 | . . . . . . . . . . . 12 ⊢ ((Vtx‘𝐺) = {𝑣} → (𝐾 ∈ {𝑣} → ((Vtx‘𝐺) ∖ {𝐾}) = ∅)) |
| 15 | 5, 14 | sylbid 240 | . . . . . . . . . . 11 ⊢ ((Vtx‘𝐺) = {𝑣} → (𝐾 ∈ (Vtx‘𝐺) → ((Vtx‘𝐺) ∖ {𝐾}) = ∅)) |
| 16 | 15 | imp 406 | . . . . . . . . . 10 ⊢ (((Vtx‘𝐺) = {𝑣} ∧ 𝐾 ∈ (Vtx‘𝐺)) → ((Vtx‘𝐺) ∖ {𝐾}) = ∅) |
| 17 | 16 | raleqdv 3301 | . . . . . . . . 9 ⊢ (((Vtx‘𝐺) = {𝑣} ∧ 𝐾 ∈ (Vtx‘𝐺)) → (∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒 ↔ ∀𝑛 ∈ ∅ ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒)) |
| 18 | 4, 17 | mpbiri 258 | . . . . . . . 8 ⊢ (((Vtx‘𝐺) = {𝑣} ∧ 𝐾 ∈ (Vtx‘𝐺)) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) |
| 19 | 18 | ex 412 | . . . . . . 7 ⊢ ((Vtx‘𝐺) = {𝑣} → (𝐾 ∈ (Vtx‘𝐺) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒)) |
| 20 | 19 | exlimiv 1930 | . . . . . 6 ⊢ (∃𝑣(Vtx‘𝐺) = {𝑣} → (𝐾 ∈ (Vtx‘𝐺) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒)) |
| 21 | 3, 20 | sylbi 217 | . . . . 5 ⊢ ((♯‘(Vtx‘𝐺)) = 1 → (𝐾 ∈ (Vtx‘𝐺) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒)) |
| 22 | 21 | impcom 407 | . . . 4 ⊢ ((𝐾 ∈ (Vtx‘𝐺) ∧ (♯‘(Vtx‘𝐺)) = 1) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) |
| 23 | 22 | nbgr0edglem 29290 | . . 3 ⊢ ((𝐾 ∈ (Vtx‘𝐺) ∧ (♯‘(Vtx‘𝐺)) = 1) → (𝐺 NeighbVtx 𝐾) = ∅) |
| 24 | 23 | ex 412 | . 2 ⊢ (𝐾 ∈ (Vtx‘𝐺) → ((♯‘(Vtx‘𝐺)) = 1 → (𝐺 NeighbVtx 𝐾) = ∅)) |
| 25 | df-nel 3031 | . . . 4 ⊢ (𝐾 ∉ (Vtx‘𝐺) ↔ ¬ 𝐾 ∈ (Vtx‘𝐺)) | |
| 26 | eqid 2730 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 27 | 26 | nbgrnvtx0 29273 | . . . 4 ⊢ (𝐾 ∉ (Vtx‘𝐺) → (𝐺 NeighbVtx 𝐾) = ∅) |
| 28 | 25, 27 | sylbir 235 | . . 3 ⊢ (¬ 𝐾 ∈ (Vtx‘𝐺) → (𝐺 NeighbVtx 𝐾) = ∅) |
| 29 | 28 | a1d 25 | . 2 ⊢ (¬ 𝐾 ∈ (Vtx‘𝐺) → ((♯‘(Vtx‘𝐺)) = 1 → (𝐺 NeighbVtx 𝐾) = ∅)) |
| 30 | 24, 29 | pm2.61i 182 | 1 ⊢ ((♯‘(Vtx‘𝐺)) = 1 → (𝐺 NeighbVtx 𝐾) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∉ wnel 3030 ∀wral 3045 ∃wrex 3054 Vcvv 3450 ∖ cdif 3914 ⊆ wss 3917 ∅c0 4299 {csn 4592 {cpr 4594 ‘cfv 6514 (class class class)co 7390 1c1 11076 ♯chash 14302 Vtxcvtx 28930 Edgcedg 28981 NeighbVtx cnbgr 29266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-hash 14303 df-nbgr 29267 |
| This theorem is referenced by: rusgr1vtx 29523 |
| Copyright terms: Public domain | W3C validator |