| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nbgr1vtx | Structured version Visualization version GIF version | ||
| Description: In a graph with one vertex, all neighborhoods are empty. (Contributed by AV, 15-Nov-2020.) |
| Ref | Expression |
|---|---|
| nbgr1vtx | ⊢ ((♯‘(Vtx‘𝐺)) = 1 → (𝐺 NeighbVtx 𝐾) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6871 | . . . . . . 7 ⊢ (Vtx‘𝐺) ∈ V | |
| 2 | hash1snb 14384 | . . . . . . 7 ⊢ ((Vtx‘𝐺) ∈ V → ((♯‘(Vtx‘𝐺)) = 1 ↔ ∃𝑣(Vtx‘𝐺) = {𝑣})) | |
| 3 | 1, 2 | ax-mp 5 | . . . . . 6 ⊢ ((♯‘(Vtx‘𝐺)) = 1 ↔ ∃𝑣(Vtx‘𝐺) = {𝑣}) |
| 4 | ral0 4476 | . . . . . . . . 9 ⊢ ∀𝑛 ∈ ∅ ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒 | |
| 5 | eleq2 2817 | . . . . . . . . . . . 12 ⊢ ((Vtx‘𝐺) = {𝑣} → (𝐾 ∈ (Vtx‘𝐺) ↔ 𝐾 ∈ {𝑣})) | |
| 6 | simpr 484 | . . . . . . . . . . . . . . . 16 ⊢ ((𝐾 = 𝑣 ∧ (Vtx‘𝐺) = {𝑣}) → (Vtx‘𝐺) = {𝑣}) | |
| 7 | sneq 4599 | . . . . . . . . . . . . . . . . 17 ⊢ (𝐾 = 𝑣 → {𝐾} = {𝑣}) | |
| 8 | 7 | adantr 480 | . . . . . . . . . . . . . . . 16 ⊢ ((𝐾 = 𝑣 ∧ (Vtx‘𝐺) = {𝑣}) → {𝐾} = {𝑣}) |
| 9 | 6, 8 | difeq12d 4090 | . . . . . . . . . . . . . . 15 ⊢ ((𝐾 = 𝑣 ∧ (Vtx‘𝐺) = {𝑣}) → ((Vtx‘𝐺) ∖ {𝐾}) = ({𝑣} ∖ {𝑣})) |
| 10 | difid 4339 | . . . . . . . . . . . . . . 15 ⊢ ({𝑣} ∖ {𝑣}) = ∅ | |
| 11 | 9, 10 | eqtrdi 2780 | . . . . . . . . . . . . . 14 ⊢ ((𝐾 = 𝑣 ∧ (Vtx‘𝐺) = {𝑣}) → ((Vtx‘𝐺) ∖ {𝐾}) = ∅) |
| 12 | 11 | ex 412 | . . . . . . . . . . . . 13 ⊢ (𝐾 = 𝑣 → ((Vtx‘𝐺) = {𝑣} → ((Vtx‘𝐺) ∖ {𝐾}) = ∅)) |
| 13 | elsni 4606 | . . . . . . . . . . . . 13 ⊢ (𝐾 ∈ {𝑣} → 𝐾 = 𝑣) | |
| 14 | 12, 13 | syl11 33 | . . . . . . . . . . . 12 ⊢ ((Vtx‘𝐺) = {𝑣} → (𝐾 ∈ {𝑣} → ((Vtx‘𝐺) ∖ {𝐾}) = ∅)) |
| 15 | 5, 14 | sylbid 240 | . . . . . . . . . . 11 ⊢ ((Vtx‘𝐺) = {𝑣} → (𝐾 ∈ (Vtx‘𝐺) → ((Vtx‘𝐺) ∖ {𝐾}) = ∅)) |
| 16 | 15 | imp 406 | . . . . . . . . . 10 ⊢ (((Vtx‘𝐺) = {𝑣} ∧ 𝐾 ∈ (Vtx‘𝐺)) → ((Vtx‘𝐺) ∖ {𝐾}) = ∅) |
| 17 | 16 | raleqdv 3299 | . . . . . . . . 9 ⊢ (((Vtx‘𝐺) = {𝑣} ∧ 𝐾 ∈ (Vtx‘𝐺)) → (∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒 ↔ ∀𝑛 ∈ ∅ ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒)) |
| 18 | 4, 17 | mpbiri 258 | . . . . . . . 8 ⊢ (((Vtx‘𝐺) = {𝑣} ∧ 𝐾 ∈ (Vtx‘𝐺)) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) |
| 19 | 18 | ex 412 | . . . . . . 7 ⊢ ((Vtx‘𝐺) = {𝑣} → (𝐾 ∈ (Vtx‘𝐺) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒)) |
| 20 | 19 | exlimiv 1930 | . . . . . 6 ⊢ (∃𝑣(Vtx‘𝐺) = {𝑣} → (𝐾 ∈ (Vtx‘𝐺) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒)) |
| 21 | 3, 20 | sylbi 217 | . . . . 5 ⊢ ((♯‘(Vtx‘𝐺)) = 1 → (𝐾 ∈ (Vtx‘𝐺) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒)) |
| 22 | 21 | impcom 407 | . . . 4 ⊢ ((𝐾 ∈ (Vtx‘𝐺) ∧ (♯‘(Vtx‘𝐺)) = 1) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) |
| 23 | 22 | nbgr0edglem 29283 | . . 3 ⊢ ((𝐾 ∈ (Vtx‘𝐺) ∧ (♯‘(Vtx‘𝐺)) = 1) → (𝐺 NeighbVtx 𝐾) = ∅) |
| 24 | 23 | ex 412 | . 2 ⊢ (𝐾 ∈ (Vtx‘𝐺) → ((♯‘(Vtx‘𝐺)) = 1 → (𝐺 NeighbVtx 𝐾) = ∅)) |
| 25 | df-nel 3030 | . . . 4 ⊢ (𝐾 ∉ (Vtx‘𝐺) ↔ ¬ 𝐾 ∈ (Vtx‘𝐺)) | |
| 26 | eqid 2729 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 27 | 26 | nbgrnvtx0 29266 | . . . 4 ⊢ (𝐾 ∉ (Vtx‘𝐺) → (𝐺 NeighbVtx 𝐾) = ∅) |
| 28 | 25, 27 | sylbir 235 | . . 3 ⊢ (¬ 𝐾 ∈ (Vtx‘𝐺) → (𝐺 NeighbVtx 𝐾) = ∅) |
| 29 | 28 | a1d 25 | . 2 ⊢ (¬ 𝐾 ∈ (Vtx‘𝐺) → ((♯‘(Vtx‘𝐺)) = 1 → (𝐺 NeighbVtx 𝐾) = ∅)) |
| 30 | 24, 29 | pm2.61i 182 | 1 ⊢ ((♯‘(Vtx‘𝐺)) = 1 → (𝐺 NeighbVtx 𝐾) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∉ wnel 3029 ∀wral 3044 ∃wrex 3053 Vcvv 3447 ∖ cdif 3911 ⊆ wss 3914 ∅c0 4296 {csn 4589 {cpr 4591 ‘cfv 6511 (class class class)co 7387 1c1 11069 ♯chash 14295 Vtxcvtx 28923 Edgcedg 28974 NeighbVtx cnbgr 29259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-hash 14296 df-nbgr 29260 |
| This theorem is referenced by: rusgr1vtx 29516 |
| Copyright terms: Public domain | W3C validator |