| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nbgr1vtx | Structured version Visualization version GIF version | ||
| Description: In a graph with one vertex, all neighborhoods are empty. (Contributed by AV, 15-Nov-2020.) |
| Ref | Expression |
|---|---|
| nbgr1vtx | ⊢ ((♯‘(Vtx‘𝐺)) = 1 → (𝐺 NeighbVtx 𝐾) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6889 | . . . . . . 7 ⊢ (Vtx‘𝐺) ∈ V | |
| 2 | hash1snb 14437 | . . . . . . 7 ⊢ ((Vtx‘𝐺) ∈ V → ((♯‘(Vtx‘𝐺)) = 1 ↔ ∃𝑣(Vtx‘𝐺) = {𝑣})) | |
| 3 | 1, 2 | ax-mp 5 | . . . . . 6 ⊢ ((♯‘(Vtx‘𝐺)) = 1 ↔ ∃𝑣(Vtx‘𝐺) = {𝑣}) |
| 4 | ral0 4488 | . . . . . . . . 9 ⊢ ∀𝑛 ∈ ∅ ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒 | |
| 5 | eleq2 2823 | . . . . . . . . . . . 12 ⊢ ((Vtx‘𝐺) = {𝑣} → (𝐾 ∈ (Vtx‘𝐺) ↔ 𝐾 ∈ {𝑣})) | |
| 6 | simpr 484 | . . . . . . . . . . . . . . . 16 ⊢ ((𝐾 = 𝑣 ∧ (Vtx‘𝐺) = {𝑣}) → (Vtx‘𝐺) = {𝑣}) | |
| 7 | sneq 4611 | . . . . . . . . . . . . . . . . 17 ⊢ (𝐾 = 𝑣 → {𝐾} = {𝑣}) | |
| 8 | 7 | adantr 480 | . . . . . . . . . . . . . . . 16 ⊢ ((𝐾 = 𝑣 ∧ (Vtx‘𝐺) = {𝑣}) → {𝐾} = {𝑣}) |
| 9 | 6, 8 | difeq12d 4102 | . . . . . . . . . . . . . . 15 ⊢ ((𝐾 = 𝑣 ∧ (Vtx‘𝐺) = {𝑣}) → ((Vtx‘𝐺) ∖ {𝐾}) = ({𝑣} ∖ {𝑣})) |
| 10 | difid 4351 | . . . . . . . . . . . . . . 15 ⊢ ({𝑣} ∖ {𝑣}) = ∅ | |
| 11 | 9, 10 | eqtrdi 2786 | . . . . . . . . . . . . . 14 ⊢ ((𝐾 = 𝑣 ∧ (Vtx‘𝐺) = {𝑣}) → ((Vtx‘𝐺) ∖ {𝐾}) = ∅) |
| 12 | 11 | ex 412 | . . . . . . . . . . . . 13 ⊢ (𝐾 = 𝑣 → ((Vtx‘𝐺) = {𝑣} → ((Vtx‘𝐺) ∖ {𝐾}) = ∅)) |
| 13 | elsni 4618 | . . . . . . . . . . . . 13 ⊢ (𝐾 ∈ {𝑣} → 𝐾 = 𝑣) | |
| 14 | 12, 13 | syl11 33 | . . . . . . . . . . . 12 ⊢ ((Vtx‘𝐺) = {𝑣} → (𝐾 ∈ {𝑣} → ((Vtx‘𝐺) ∖ {𝐾}) = ∅)) |
| 15 | 5, 14 | sylbid 240 | . . . . . . . . . . 11 ⊢ ((Vtx‘𝐺) = {𝑣} → (𝐾 ∈ (Vtx‘𝐺) → ((Vtx‘𝐺) ∖ {𝐾}) = ∅)) |
| 16 | 15 | imp 406 | . . . . . . . . . 10 ⊢ (((Vtx‘𝐺) = {𝑣} ∧ 𝐾 ∈ (Vtx‘𝐺)) → ((Vtx‘𝐺) ∖ {𝐾}) = ∅) |
| 17 | 16 | raleqdv 3305 | . . . . . . . . 9 ⊢ (((Vtx‘𝐺) = {𝑣} ∧ 𝐾 ∈ (Vtx‘𝐺)) → (∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒 ↔ ∀𝑛 ∈ ∅ ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒)) |
| 18 | 4, 17 | mpbiri 258 | . . . . . . . 8 ⊢ (((Vtx‘𝐺) = {𝑣} ∧ 𝐾 ∈ (Vtx‘𝐺)) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) |
| 19 | 18 | ex 412 | . . . . . . 7 ⊢ ((Vtx‘𝐺) = {𝑣} → (𝐾 ∈ (Vtx‘𝐺) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒)) |
| 20 | 19 | exlimiv 1930 | . . . . . 6 ⊢ (∃𝑣(Vtx‘𝐺) = {𝑣} → (𝐾 ∈ (Vtx‘𝐺) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒)) |
| 21 | 3, 20 | sylbi 217 | . . . . 5 ⊢ ((♯‘(Vtx‘𝐺)) = 1 → (𝐾 ∈ (Vtx‘𝐺) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒)) |
| 22 | 21 | impcom 407 | . . . 4 ⊢ ((𝐾 ∈ (Vtx‘𝐺) ∧ (♯‘(Vtx‘𝐺)) = 1) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) |
| 23 | 22 | nbgr0edglem 29335 | . . 3 ⊢ ((𝐾 ∈ (Vtx‘𝐺) ∧ (♯‘(Vtx‘𝐺)) = 1) → (𝐺 NeighbVtx 𝐾) = ∅) |
| 24 | 23 | ex 412 | . 2 ⊢ (𝐾 ∈ (Vtx‘𝐺) → ((♯‘(Vtx‘𝐺)) = 1 → (𝐺 NeighbVtx 𝐾) = ∅)) |
| 25 | df-nel 3037 | . . . 4 ⊢ (𝐾 ∉ (Vtx‘𝐺) ↔ ¬ 𝐾 ∈ (Vtx‘𝐺)) | |
| 26 | eqid 2735 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 27 | 26 | nbgrnvtx0 29318 | . . . 4 ⊢ (𝐾 ∉ (Vtx‘𝐺) → (𝐺 NeighbVtx 𝐾) = ∅) |
| 28 | 25, 27 | sylbir 235 | . . 3 ⊢ (¬ 𝐾 ∈ (Vtx‘𝐺) → (𝐺 NeighbVtx 𝐾) = ∅) |
| 29 | 28 | a1d 25 | . 2 ⊢ (¬ 𝐾 ∈ (Vtx‘𝐺) → ((♯‘(Vtx‘𝐺)) = 1 → (𝐺 NeighbVtx 𝐾) = ∅)) |
| 30 | 24, 29 | pm2.61i 182 | 1 ⊢ ((♯‘(Vtx‘𝐺)) = 1 → (𝐺 NeighbVtx 𝐾) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∉ wnel 3036 ∀wral 3051 ∃wrex 3060 Vcvv 3459 ∖ cdif 3923 ⊆ wss 3926 ∅c0 4308 {csn 4601 {cpr 4603 ‘cfv 6531 (class class class)co 7405 1c1 11130 ♯chash 14348 Vtxcvtx 28975 Edgcedg 29026 NeighbVtx cnbgr 29311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-dju 9915 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-hash 14349 df-nbgr 29312 |
| This theorem is referenced by: rusgr1vtx 29568 |
| Copyright terms: Public domain | W3C validator |