Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nbgr1vtx | Structured version Visualization version GIF version |
Description: In a graph with one vertex, all neighborhoods are empty. (Contributed by AV, 15-Nov-2020.) |
Ref | Expression |
---|---|
nbgr1vtx | ⊢ ((♯‘(Vtx‘𝐺)) = 1 → (𝐺 NeighbVtx 𝐾) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6787 | . . . . . . 7 ⊢ (Vtx‘𝐺) ∈ V | |
2 | hash1snb 14134 | . . . . . . 7 ⊢ ((Vtx‘𝐺) ∈ V → ((♯‘(Vtx‘𝐺)) = 1 ↔ ∃𝑣(Vtx‘𝐺) = {𝑣})) | |
3 | 1, 2 | ax-mp 5 | . . . . . 6 ⊢ ((♯‘(Vtx‘𝐺)) = 1 ↔ ∃𝑣(Vtx‘𝐺) = {𝑣}) |
4 | ral0 4443 | . . . . . . . . 9 ⊢ ∀𝑛 ∈ ∅ ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒 | |
5 | eleq2 2827 | . . . . . . . . . . . 12 ⊢ ((Vtx‘𝐺) = {𝑣} → (𝐾 ∈ (Vtx‘𝐺) ↔ 𝐾 ∈ {𝑣})) | |
6 | simpr 485 | . . . . . . . . . . . . . . . 16 ⊢ ((𝐾 = 𝑣 ∧ (Vtx‘𝐺) = {𝑣}) → (Vtx‘𝐺) = {𝑣}) | |
7 | sneq 4571 | . . . . . . . . . . . . . . . . 17 ⊢ (𝐾 = 𝑣 → {𝐾} = {𝑣}) | |
8 | 7 | adantr 481 | . . . . . . . . . . . . . . . 16 ⊢ ((𝐾 = 𝑣 ∧ (Vtx‘𝐺) = {𝑣}) → {𝐾} = {𝑣}) |
9 | 6, 8 | difeq12d 4058 | . . . . . . . . . . . . . . 15 ⊢ ((𝐾 = 𝑣 ∧ (Vtx‘𝐺) = {𝑣}) → ((Vtx‘𝐺) ∖ {𝐾}) = ({𝑣} ∖ {𝑣})) |
10 | difid 4304 | . . . . . . . . . . . . . . 15 ⊢ ({𝑣} ∖ {𝑣}) = ∅ | |
11 | 9, 10 | eqtrdi 2794 | . . . . . . . . . . . . . 14 ⊢ ((𝐾 = 𝑣 ∧ (Vtx‘𝐺) = {𝑣}) → ((Vtx‘𝐺) ∖ {𝐾}) = ∅) |
12 | 11 | ex 413 | . . . . . . . . . . . . 13 ⊢ (𝐾 = 𝑣 → ((Vtx‘𝐺) = {𝑣} → ((Vtx‘𝐺) ∖ {𝐾}) = ∅)) |
13 | elsni 4578 | . . . . . . . . . . . . 13 ⊢ (𝐾 ∈ {𝑣} → 𝐾 = 𝑣) | |
14 | 12, 13 | syl11 33 | . . . . . . . . . . . 12 ⊢ ((Vtx‘𝐺) = {𝑣} → (𝐾 ∈ {𝑣} → ((Vtx‘𝐺) ∖ {𝐾}) = ∅)) |
15 | 5, 14 | sylbid 239 | . . . . . . . . . . 11 ⊢ ((Vtx‘𝐺) = {𝑣} → (𝐾 ∈ (Vtx‘𝐺) → ((Vtx‘𝐺) ∖ {𝐾}) = ∅)) |
16 | 15 | imp 407 | . . . . . . . . . 10 ⊢ (((Vtx‘𝐺) = {𝑣} ∧ 𝐾 ∈ (Vtx‘𝐺)) → ((Vtx‘𝐺) ∖ {𝐾}) = ∅) |
17 | 16 | raleqdv 3348 | . . . . . . . . 9 ⊢ (((Vtx‘𝐺) = {𝑣} ∧ 𝐾 ∈ (Vtx‘𝐺)) → (∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒 ↔ ∀𝑛 ∈ ∅ ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒)) |
18 | 4, 17 | mpbiri 257 | . . . . . . . 8 ⊢ (((Vtx‘𝐺) = {𝑣} ∧ 𝐾 ∈ (Vtx‘𝐺)) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) |
19 | 18 | ex 413 | . . . . . . 7 ⊢ ((Vtx‘𝐺) = {𝑣} → (𝐾 ∈ (Vtx‘𝐺) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒)) |
20 | 19 | exlimiv 1933 | . . . . . 6 ⊢ (∃𝑣(Vtx‘𝐺) = {𝑣} → (𝐾 ∈ (Vtx‘𝐺) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒)) |
21 | 3, 20 | sylbi 216 | . . . . 5 ⊢ ((♯‘(Vtx‘𝐺)) = 1 → (𝐾 ∈ (Vtx‘𝐺) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒)) |
22 | 21 | impcom 408 | . . . 4 ⊢ ((𝐾 ∈ (Vtx‘𝐺) ∧ (♯‘(Vtx‘𝐺)) = 1) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) |
23 | 22 | nbgr0vtxlem 27722 | . . 3 ⊢ ((𝐾 ∈ (Vtx‘𝐺) ∧ (♯‘(Vtx‘𝐺)) = 1) → (𝐺 NeighbVtx 𝐾) = ∅) |
24 | 23 | ex 413 | . 2 ⊢ (𝐾 ∈ (Vtx‘𝐺) → ((♯‘(Vtx‘𝐺)) = 1 → (𝐺 NeighbVtx 𝐾) = ∅)) |
25 | df-nel 3050 | . . . 4 ⊢ (𝐾 ∉ (Vtx‘𝐺) ↔ ¬ 𝐾 ∈ (Vtx‘𝐺)) | |
26 | eqid 2738 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
27 | 26 | nbgrnvtx0 27706 | . . . 4 ⊢ (𝐾 ∉ (Vtx‘𝐺) → (𝐺 NeighbVtx 𝐾) = ∅) |
28 | 25, 27 | sylbir 234 | . . 3 ⊢ (¬ 𝐾 ∈ (Vtx‘𝐺) → (𝐺 NeighbVtx 𝐾) = ∅) |
29 | 28 | a1d 25 | . 2 ⊢ (¬ 𝐾 ∈ (Vtx‘𝐺) → ((♯‘(Vtx‘𝐺)) = 1 → (𝐺 NeighbVtx 𝐾) = ∅)) |
30 | 24, 29 | pm2.61i 182 | 1 ⊢ ((♯‘(Vtx‘𝐺)) = 1 → (𝐺 NeighbVtx 𝐾) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∉ wnel 3049 ∀wral 3064 ∃wrex 3065 Vcvv 3432 ∖ cdif 3884 ⊆ wss 3887 ∅c0 4256 {csn 4561 {cpr 4563 ‘cfv 6433 (class class class)co 7275 1c1 10872 ♯chash 14044 Vtxcvtx 27366 Edgcedg 27417 NeighbVtx cnbgr 27699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-hash 14045 df-nbgr 27700 |
This theorem is referenced by: rusgr1vtx 27955 |
Copyright terms: Public domain | W3C validator |