MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgrssvtx Structured version   Visualization version   GIF version

Theorem nbgrssvtx 26639
Description: The neighbors of a vertex 𝐾 in a graph form a subset of all vertices of the graph. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 26-Oct-2020.) (Revised by AV, 12-Feb-2022.)
Hypothesis
Ref Expression
nbgrisvtx.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
nbgrssvtx (𝐺 NeighbVtx 𝐾) ⊆ 𝑉

Proof of Theorem nbgrssvtx
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nbgrisvtx.v . . 3 𝑉 = (Vtx‘𝐺)
21nbgrisvtx 26638 . 2 (𝑛 ∈ (𝐺 NeighbVtx 𝐾) → 𝑛𝑉)
32ssriv 3831 1 (𝐺 NeighbVtx 𝐾) ⊆ 𝑉
Colors of variables: wff setvar class
Syntax hints:   = wceq 1658  wss 3798  cfv 6123  (class class class)co 6905  Vtxcvtx 26294   NeighbVtx cnbgr 26629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fv 6131  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-1st 7428  df-2nd 7429  df-nbgr 26630
This theorem is referenced by:  fusgreghash2wspv  27716
  Copyright terms: Public domain W3C validator