![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbgrssvtx | Structured version Visualization version GIF version |
Description: The neighbors of a vertex ðŸ in a graph form a subset of all vertices of the graph. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 26-Oct-2020.) (Revised by AV, 12-Feb-2022.) |
Ref | Expression |
---|---|
nbgrisvtx.v | ⢠ð = (Vtxâðº) |
Ref | Expression |
---|---|
nbgrssvtx | ⢠(ðº NeighbVtx ðŸ) â ð |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbgrisvtx.v | . . 3 ⢠ð = (Vtxâðº) | |
2 | 1 | nbgrisvtx 28866 | . 2 ⢠(ð â (ðº NeighbVtx ðŸ) â ð â ð) |
3 | 2 | ssriv 3986 | 1 ⢠(ðº NeighbVtx ðŸ) â ð |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 â wss 3948 âcfv 6543 (class class class)co 7412 Vtxcvtx 28524 NeighbVtx cnbgr 28857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7978 df-2nd 7979 df-nbgr 28858 |
This theorem is referenced by: fusgreghash2wspv 29856 |
Copyright terms: Public domain | W3C validator |