MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgrssvtx Structured version   Visualization version   GIF version

Theorem nbgrssvtx 29385
Description: The neighbors of a vertex 𝐾 in a graph form a subset of all vertices of the graph. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 26-Oct-2020.) (Revised by AV, 12-Feb-2022.)
Hypothesis
Ref Expression
nbgrisvtx.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
nbgrssvtx (𝐺 NeighbVtx 𝐾) ⊆ 𝑉

Proof of Theorem nbgrssvtx
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nbgrisvtx.v . . 3 𝑉 = (Vtx‘𝐺)
21nbgrisvtx 29384 . 2 (𝑛 ∈ (𝐺 NeighbVtx 𝐾) → 𝑛𝑉)
32ssriv 4002 1 (𝐺 NeighbVtx 𝐾) ⊆ 𝑉
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wss 3966  cfv 6569  (class class class)co 7438  Vtxcvtx 29039   NeighbVtx cnbgr 29375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-1st 8022  df-2nd 8023  df-nbgr 29376
This theorem is referenced by:  fusgreghash2wspv  30380
  Copyright terms: Public domain W3C validator