MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgrisvtx Structured version   Visualization version   GIF version

Theorem nbgrisvtx 26806
Description: Every neighbor 𝑁 of a vertex 𝐾 is a vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 26-Oct-2020.) (Revised by AV, 12-Feb-2022.)
Hypothesis
Ref Expression
nbgrisvtx.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
nbgrisvtx (𝑁 ∈ (𝐺 NeighbVtx 𝐾) → 𝑁𝑉)

Proof of Theorem nbgrisvtx
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 nbgrisvtx.v . . 3 𝑉 = (Vtx‘𝐺)
2 eqid 2795 . . 3 (Edg‘𝐺) = (Edg‘𝐺)
31, 2nbgrel 26805 . 2 (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ ((𝑁𝑉𝐾𝑉) ∧ 𝑁𝐾 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒))
4 simp1l 1190 . 2 (((𝑁𝑉𝐾𝑉) ∧ 𝑁𝐾 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒) → 𝑁𝑉)
53, 4sylbi 218 1 (𝑁 ∈ (𝐺 NeighbVtx 𝐾) → 𝑁𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1080   = wceq 1522  wcel 2081  wne 2984  wrex 3106  wss 3859  {cpr 4474  cfv 6225  (class class class)co 7016  Vtxcvtx 26464  Edgcedg 26515   NeighbVtx cnbgr 26797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fv 6233  df-ov 7019  df-oprab 7020  df-mpo 7021  df-1st 7545  df-2nd 7546  df-nbgr 26798
This theorem is referenced by:  nbgrssvtx  26807  nbgrnself2  26825  nbgrssovtx  26826  frgrnbnb  27764  frgrncvvdeqlem2  27771  frgrncvvdeqlem3  27772  frgrncvvdeqlem9  27778  numclwwlk1lem2foa  27825  numclwwlk1lem2fo  27829
  Copyright terms: Public domain W3C validator