|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nbgrisvtx | Structured version Visualization version GIF version | ||
| Description: Every neighbor 𝑁 of a vertex 𝐾 is a vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 26-Oct-2020.) (Revised by AV, 12-Feb-2022.) | 
| Ref | Expression | 
|---|---|
| nbgrisvtx.v | ⊢ 𝑉 = (Vtx‘𝐺) | 
| Ref | Expression | 
|---|---|
| nbgrisvtx | ⊢ (𝑁 ∈ (𝐺 NeighbVtx 𝐾) → 𝑁 ∈ 𝑉) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nbgrisvtx.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | eqid 2737 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 3 | 1, 2 | nbgrel 29357 | . 2 ⊢ (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ ((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑉) ∧ 𝑁 ≠ 𝐾 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒)) | 
| 4 | simp1l 1198 | . 2 ⊢ (((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑉) ∧ 𝑁 ≠ 𝐾 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒) → 𝑁 ∈ 𝑉) | |
| 5 | 3, 4 | sylbi 217 | 1 ⊢ (𝑁 ∈ (𝐺 NeighbVtx 𝐾) → 𝑁 ∈ 𝑉) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∃wrex 3070 ⊆ wss 3951 {cpr 4628 ‘cfv 6561 (class class class)co 7431 Vtxcvtx 29013 Edgcedg 29064 NeighbVtx cnbgr 29349 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-nbgr 29350 | 
| This theorem is referenced by: nbgrssvtx 29359 nbgrnself2 29377 nbgrssovtx 29378 frgrnbnb 30312 frgrncvvdeqlem2 30319 frgrncvvdeqlem3 30320 frgrncvvdeqlem9 30326 numclwwlk1lem2foa 30373 numclwwlk1lem2fo 30377 | 
| Copyright terms: Public domain | W3C validator |