MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgrisvtx Structured version   Visualization version   GIF version

Theorem nbgrisvtx 29358
Description: Every neighbor 𝑁 of a vertex 𝐾 is a vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 26-Oct-2020.) (Revised by AV, 12-Feb-2022.)
Hypothesis
Ref Expression
nbgrisvtx.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
nbgrisvtx (𝑁 ∈ (𝐺 NeighbVtx 𝐾) → 𝑁𝑉)

Proof of Theorem nbgrisvtx
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 nbgrisvtx.v . . 3 𝑉 = (Vtx‘𝐺)
2 eqid 2737 . . 3 (Edg‘𝐺) = (Edg‘𝐺)
31, 2nbgrel 29357 . 2 (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ ((𝑁𝑉𝐾𝑉) ∧ 𝑁𝐾 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒))
4 simp1l 1198 . 2 (((𝑁𝑉𝐾𝑉) ∧ 𝑁𝐾 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒) → 𝑁𝑉)
53, 4sylbi 217 1 (𝑁 ∈ (𝐺 NeighbVtx 𝐾) → 𝑁𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wrex 3070  wss 3951  {cpr 4628  cfv 6561  (class class class)co 7431  Vtxcvtx 29013  Edgcedg 29064   NeighbVtx cnbgr 29349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-nbgr 29350
This theorem is referenced by:  nbgrssvtx  29359  nbgrnself2  29377  nbgrssovtx  29378  frgrnbnb  30312  frgrncvvdeqlem2  30319  frgrncvvdeqlem3  30320  frgrncvvdeqlem9  30326  numclwwlk1lem2foa  30373  numclwwlk1lem2fo  30377
  Copyright terms: Public domain W3C validator