![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbgrisvtx | Structured version Visualization version GIF version |
Description: Every neighbor 𝑁 of a vertex 𝐾 is a vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 26-Oct-2020.) (Revised by AV, 12-Feb-2022.) |
Ref | Expression |
---|---|
nbgrisvtx.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
nbgrisvtx | ⊢ (𝑁 ∈ (𝐺 NeighbVtx 𝐾) → 𝑁 ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbgrisvtx.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | eqid 2795 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
3 | 1, 2 | nbgrel 26805 | . 2 ⊢ (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ ((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑉) ∧ 𝑁 ≠ 𝐾 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒)) |
4 | simp1l 1190 | . 2 ⊢ (((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑉) ∧ 𝑁 ≠ 𝐾 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒) → 𝑁 ∈ 𝑉) | |
5 | 3, 4 | sylbi 218 | 1 ⊢ (𝑁 ∈ (𝐺 NeighbVtx 𝐾) → 𝑁 ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1080 = wceq 1522 ∈ wcel 2081 ≠ wne 2984 ∃wrex 3106 ⊆ wss 3859 {cpr 4474 ‘cfv 6225 (class class class)co 7016 Vtxcvtx 26464 Edgcedg 26515 NeighbVtx cnbgr 26797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-fal 1535 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fv 6233 df-ov 7019 df-oprab 7020 df-mpo 7021 df-1st 7545 df-2nd 7546 df-nbgr 26798 |
This theorem is referenced by: nbgrssvtx 26807 nbgrnself2 26825 nbgrssovtx 26826 frgrnbnb 27764 frgrncvvdeqlem2 27771 frgrncvvdeqlem3 27772 frgrncvvdeqlem9 27778 numclwwlk1lem2foa 27825 numclwwlk1lem2fo 27829 |
Copyright terms: Public domain | W3C validator |