MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgrisvtx Structured version   Visualization version   GIF version

Theorem nbgrisvtx 28866
Description: Every neighbor 𝑁 of a vertex 𝐾 is a vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 26-Oct-2020.) (Revised by AV, 12-Feb-2022.)
Hypothesis
Ref Expression
nbgrisvtx.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
nbgrisvtx (𝑁 ∈ (𝐺 NeighbVtx 𝐾) → 𝑁𝑉)

Proof of Theorem nbgrisvtx
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 nbgrisvtx.v . . 3 𝑉 = (Vtx‘𝐺)
2 eqid 2731 . . 3 (Edg‘𝐺) = (Edg‘𝐺)
31, 2nbgrel 28865 . 2 (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ ((𝑁𝑉𝐾𝑉) ∧ 𝑁𝐾 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒))
4 simp1l 1196 . 2 (((𝑁𝑉𝐾𝑉) ∧ 𝑁𝐾 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒) → 𝑁𝑉)
53, 4sylbi 216 1 (𝑁 ∈ (𝐺 NeighbVtx 𝐾) → 𝑁𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  wne 2939  wrex 3069  wss 3948  {cpr 4630  cfv 6543  (class class class)co 7412  Vtxcvtx 28524  Edgcedg 28575   NeighbVtx cnbgr 28857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-nbgr 28858
This theorem is referenced by:  nbgrssvtx  28867  nbgrnself2  28885  nbgrssovtx  28886  frgrnbnb  29814  frgrncvvdeqlem2  29821  frgrncvvdeqlem3  29822  frgrncvvdeqlem9  29828  numclwwlk1lem2foa  29875  numclwwlk1lem2fo  29879
  Copyright terms: Public domain W3C validator