MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncolne2 Structured version   Visualization version   GIF version

Theorem ncolne2 26891
Description: Non-colinear points are different. (Contributed by Thierry Arnoux, 8-Aug-2019.) TODO (NM): maybe ncolne2 26891 could be simplified out and deleted, replaced by ncolcom 26826.
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
ncolne.x (𝜑𝑋𝐵)
ncolne.y (𝜑𝑌𝐵)
ncolne.z (𝜑𝑍𝐵)
ncolne.2 (𝜑 → ¬ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍))
Assertion
Ref Expression
ncolne2 (𝜑𝑋𝑍)

Proof of Theorem ncolne2
StepHypRef Expression
1 tglineelsb2.p . 2 𝐵 = (Base‘𝐺)
2 tglineelsb2.i . 2 𝐼 = (Itv‘𝐺)
3 tglineelsb2.l . 2 𝐿 = (LineG‘𝐺)
4 tglineelsb2.g . 2 (𝜑𝐺 ∈ TarskiG)
5 ncolne.x . 2 (𝜑𝑋𝐵)
6 ncolne.z . 2 (𝜑𝑍𝐵)
7 ncolne.y . 2 (𝜑𝑌𝐵)
8 ncolne.2 . . 3 (𝜑 → ¬ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍))
91, 3, 2, 4, 7, 6, 5, 8ncolcom 26826 . 2 (𝜑 → ¬ (𝑋 ∈ (𝑍𝐿𝑌) ∨ 𝑍 = 𝑌))
101, 2, 3, 4, 5, 6, 7, 9ncolne1 26890 1 (𝜑𝑋𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 843   = wceq 1539  wcel 2108  wne 2942  cfv 6418  (class class class)co 7255  Basecbs 16840  TarskiGcstrkg 26693  Itvcitv 26699  LineGclng 26700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-trkgc 26713  df-trkgb 26714  df-trkgcb 26715  df-trkg 26718
This theorem is referenced by:  midexlem  26957
  Copyright terms: Public domain W3C validator