| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ncolne2 | Structured version Visualization version GIF version | ||
| Description: Non-colinear points are different. (Contributed by Thierry Arnoux, 8-Aug-2019.) TODO (NM): maybe ncolne2 28571 could be simplified out and deleted, replaced by ncolcom 28506. |
| Ref | Expression |
|---|---|
| tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
| tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| ncolne.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ncolne.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| ncolne.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| ncolne.2 | ⊢ (𝜑 → ¬ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) |
| Ref | Expression |
|---|---|
| ncolne2 | ⊢ (𝜑 → 𝑋 ≠ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglineelsb2.p | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | tglineelsb2.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
| 3 | tglineelsb2.l | . 2 ⊢ 𝐿 = (LineG‘𝐺) | |
| 4 | tglineelsb2.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | ncolne.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | ncolne.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 7 | ncolne.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 8 | ncolne.2 | . . 3 ⊢ (𝜑 → ¬ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) | |
| 9 | 1, 3, 2, 4, 7, 6, 5, 8 | ncolcom 28506 | . 2 ⊢ (𝜑 → ¬ (𝑋 ∈ (𝑍𝐿𝑌) ∨ 𝑍 = 𝑌)) |
| 10 | 1, 2, 3, 4, 5, 6, 7, 9 | ncolne1 28570 | 1 ⊢ (𝜑 → 𝑋 ≠ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 TarskiGcstrkg 28372 Itvcitv 28378 LineGclng 28379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-trkgc 28393 df-trkgb 28394 df-trkgcb 28395 df-trkg 28398 |
| This theorem is referenced by: midexlem 28637 |
| Copyright terms: Public domain | W3C validator |