MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncolne2 Structured version   Visualization version   GIF version

Theorem ncolne2 28606
Description: Non-colinear points are different. (Contributed by Thierry Arnoux, 8-Aug-2019.) TODO (NM): maybe ncolne2 28606 could be simplified out and deleted, replaced by ncolcom 28541.
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
ncolne.x (𝜑𝑋𝐵)
ncolne.y (𝜑𝑌𝐵)
ncolne.z (𝜑𝑍𝐵)
ncolne.2 (𝜑 → ¬ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍))
Assertion
Ref Expression
ncolne2 (𝜑𝑋𝑍)

Proof of Theorem ncolne2
StepHypRef Expression
1 tglineelsb2.p . 2 𝐵 = (Base‘𝐺)
2 tglineelsb2.i . 2 𝐼 = (Itv‘𝐺)
3 tglineelsb2.l . 2 𝐿 = (LineG‘𝐺)
4 tglineelsb2.g . 2 (𝜑𝐺 ∈ TarskiG)
5 ncolne.x . 2 (𝜑𝑋𝐵)
6 ncolne.z . 2 (𝜑𝑍𝐵)
7 ncolne.y . 2 (𝜑𝑌𝐵)
8 ncolne.2 . . 3 (𝜑 → ¬ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍))
91, 3, 2, 4, 7, 6, 5, 8ncolcom 28541 . 2 (𝜑 → ¬ (𝑋 ∈ (𝑍𝐿𝑌) ∨ 𝑍 = 𝑌))
101, 2, 3, 4, 5, 6, 7, 9ncolne1 28605 1 (𝜑𝑋𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847   = wceq 1540  wcel 2109  wne 2925  cfv 6499  (class class class)co 7369  Basecbs 17155  TarskiGcstrkg 28407  Itvcitv 28413  LineGclng 28414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-trkgc 28428  df-trkgb 28429  df-trkgcb 28430  df-trkg 28433
This theorem is referenced by:  midexlem  28672
  Copyright terms: Public domain W3C validator