![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ncolne2 | Structured version Visualization version GIF version |
Description: Non-colinear points are different. (Contributed by Thierry Arnoux, 8-Aug-2019.) TODO (NM): maybe ncolne2 28649 could be simplified out and deleted, replaced by ncolcom 28584. |
Ref | Expression |
---|---|
tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
ncolne.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ncolne.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ncolne.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
ncolne.2 | ⊢ (𝜑 → ¬ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) |
Ref | Expression |
---|---|
ncolne2 | ⊢ (𝜑 → 𝑋 ≠ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineelsb2.p | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | tglineelsb2.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
3 | tglineelsb2.l | . 2 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglineelsb2.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | ncolne.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | ncolne.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
7 | ncolne.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
8 | ncolne.2 | . . 3 ⊢ (𝜑 → ¬ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) | |
9 | 1, 3, 2, 4, 7, 6, 5, 8 | ncolcom 28584 | . 2 ⊢ (𝜑 → ¬ (𝑋 ∈ (𝑍𝐿𝑌) ∨ 𝑍 = 𝑌)) |
10 | 1, 2, 3, 4, 5, 6, 7, 9 | ncolne1 28648 | 1 ⊢ (𝜑 → 𝑋 ≠ 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 TarskiGcstrkg 28450 Itvcitv 28456 LineGclng 28457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-trkgc 28471 df-trkgb 28472 df-trkgcb 28473 df-trkg 28476 |
This theorem is referenced by: midexlem 28715 |
Copyright terms: Public domain | W3C validator |