![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ncolne2 | Structured version Visualization version GIF version |
Description: Non-colinear points are different. (Contributed by Thierry Arnoux, 8-Aug-2019.) TODO (NM): maybe ncolne2 28145 could be simplified out and deleted, replaced by ncolcom 28080. |
Ref | Expression |
---|---|
tglineelsb2.p | β’ π΅ = (BaseβπΊ) |
tglineelsb2.i | β’ πΌ = (ItvβπΊ) |
tglineelsb2.l | β’ πΏ = (LineGβπΊ) |
tglineelsb2.g | β’ (π β πΊ β TarskiG) |
ncolne.x | β’ (π β π β π΅) |
ncolne.y | β’ (π β π β π΅) |
ncolne.z | β’ (π β π β π΅) |
ncolne.2 | β’ (π β Β¬ (π β (ππΏπ) β¨ π = π)) |
Ref | Expression |
---|---|
ncolne2 | β’ (π β π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineelsb2.p | . 2 β’ π΅ = (BaseβπΊ) | |
2 | tglineelsb2.i | . 2 β’ πΌ = (ItvβπΊ) | |
3 | tglineelsb2.l | . 2 β’ πΏ = (LineGβπΊ) | |
4 | tglineelsb2.g | . 2 β’ (π β πΊ β TarskiG) | |
5 | ncolne.x | . 2 β’ (π β π β π΅) | |
6 | ncolne.z | . 2 β’ (π β π β π΅) | |
7 | ncolne.y | . 2 β’ (π β π β π΅) | |
8 | ncolne.2 | . . 3 β’ (π β Β¬ (π β (ππΏπ) β¨ π = π)) | |
9 | 1, 3, 2, 4, 7, 6, 5, 8 | ncolcom 28080 | . 2 β’ (π β Β¬ (π β (ππΏπ) β¨ π = π)) |
10 | 1, 2, 3, 4, 5, 6, 7, 9 | ncolne1 28144 | 1 β’ (π β π β π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β¨ wo 844 = wceq 1540 β wcel 2105 β wne 2939 βcfv 6543 (class class class)co 7412 Basecbs 17149 TarskiGcstrkg 27946 Itvcitv 27952 LineGclng 27953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-trkgc 27967 df-trkgb 27968 df-trkgcb 27969 df-trkg 27972 |
This theorem is referenced by: midexlem 28211 |
Copyright terms: Public domain | W3C validator |