MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncolne2 Structured version   Visualization version   GIF version

Theorem ncolne2 28145
Description: Non-colinear points are different. (Contributed by Thierry Arnoux, 8-Aug-2019.) TODO (NM): maybe ncolne2 28145 could be simplified out and deleted, replaced by ncolcom 28080.
Hypotheses
Ref Expression
tglineelsb2.p 𝐡 = (Baseβ€˜πΊ)
tglineelsb2.i 𝐼 = (Itvβ€˜πΊ)
tglineelsb2.l 𝐿 = (LineGβ€˜πΊ)
tglineelsb2.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
ncolne.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
ncolne.y (πœ‘ β†’ π‘Œ ∈ 𝐡)
ncolne.z (πœ‘ β†’ 𝑍 ∈ 𝐡)
ncolne.2 (πœ‘ β†’ Β¬ (𝑋 ∈ (π‘ŒπΏπ‘) ∨ π‘Œ = 𝑍))
Assertion
Ref Expression
ncolne2 (πœ‘ β†’ 𝑋 β‰  𝑍)

Proof of Theorem ncolne2
StepHypRef Expression
1 tglineelsb2.p . 2 𝐡 = (Baseβ€˜πΊ)
2 tglineelsb2.i . 2 𝐼 = (Itvβ€˜πΊ)
3 tglineelsb2.l . 2 𝐿 = (LineGβ€˜πΊ)
4 tglineelsb2.g . 2 (πœ‘ β†’ 𝐺 ∈ TarskiG)
5 ncolne.x . 2 (πœ‘ β†’ 𝑋 ∈ 𝐡)
6 ncolne.z . 2 (πœ‘ β†’ 𝑍 ∈ 𝐡)
7 ncolne.y . 2 (πœ‘ β†’ π‘Œ ∈ 𝐡)
8 ncolne.2 . . 3 (πœ‘ β†’ Β¬ (𝑋 ∈ (π‘ŒπΏπ‘) ∨ π‘Œ = 𝑍))
91, 3, 2, 4, 7, 6, 5, 8ncolcom 28080 . 2 (πœ‘ β†’ Β¬ (𝑋 ∈ (π‘πΏπ‘Œ) ∨ 𝑍 = π‘Œ))
101, 2, 3, 4, 5, 6, 7, 9ncolne1 28144 1 (πœ‘ β†’ 𝑋 β‰  𝑍)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∨ wo 844   = wceq 1540   ∈ wcel 2105   β‰  wne 2939  β€˜cfv 6543  (class class class)co 7412  Basecbs 17149  TarskiGcstrkg 27946  Itvcitv 27952  LineGclng 27953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-trkgc 27967  df-trkgb 27968  df-trkgcb 27969  df-trkg 27972
This theorem is referenced by:  midexlem  28211
  Copyright terms: Public domain W3C validator