Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncolcom Structured version   Visualization version   GIF version

Theorem ncolcom 25912
 Description: Swapping non-colinear points. (Contributed by Thierry Arnoux, 19-Oct-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tgcolg.z (𝜑𝑍𝑃)
ncolrot (𝜑 → ¬ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
Assertion
Ref Expression
ncolcom (𝜑 → ¬ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋))

Proof of Theorem ncolcom
StepHypRef Expression
1 ncolrot . 2 (𝜑 → ¬ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
2 tglngval.p . . 3 𝑃 = (Base‘𝐺)
3 tglngval.l . . 3 𝐿 = (LineG‘𝐺)
4 tglngval.i . . 3 𝐼 = (Itv‘𝐺)
5 tglngval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
65adantr 474 . . 3 ((𝜑 ∧ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) → 𝐺 ∈ TarskiG)
7 tglngval.y . . . 4 (𝜑𝑌𝑃)
87adantr 474 . . 3 ((𝜑 ∧ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) → 𝑌𝑃)
9 tglngval.x . . . 4 (𝜑𝑋𝑃)
109adantr 474 . . 3 ((𝜑 ∧ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) → 𝑋𝑃)
11 tgcolg.z . . . 4 (𝜑𝑍𝑃)
1211adantr 474 . . 3 ((𝜑 ∧ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) → 𝑍𝑃)
13 simpr 479 . . 3 ((𝜑 ∧ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) → (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋))
142, 3, 4, 6, 8, 10, 12, 13colcom 25909 . 2 ((𝜑 ∧ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
151, 14mtand 806 1 (𝜑 → ¬ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 386   ∨ wo 836   = wceq 1601   ∈ wcel 2106  ‘cfv 6135  (class class class)co 6922  Basecbs 16255  TarskiGcstrkg 25781  Itvcitv 25787  LineGclng 25788 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pr 5138 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3399  df-sbc 3652  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-br 4887  df-opab 4949  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-iota 6099  df-fun 6137  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-trkgc 25799  df-trkgb 25800  df-trkgcb 25801  df-trkg 25804 This theorem is referenced by:  ncolne2  25977  symquadlem  26040  midexlem  26043  outpasch  26103  acopyeu  26183  cgrg3col4  26202  tgasa1  26207
 Copyright terms: Public domain W3C validator