MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncolcom Structured version   Visualization version   GIF version

Theorem ncolcom 28485
Description: Swapping non-colinear points. (Contributed by Thierry Arnoux, 19-Oct-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tgcolg.z (𝜑𝑍𝑃)
ncolrot (𝜑 → ¬ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
Assertion
Ref Expression
ncolcom (𝜑 → ¬ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋))

Proof of Theorem ncolcom
StepHypRef Expression
1 ncolrot . 2 (𝜑 → ¬ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
2 tglngval.p . . 3 𝑃 = (Base‘𝐺)
3 tglngval.l . . 3 𝐿 = (LineG‘𝐺)
4 tglngval.i . . 3 𝐼 = (Itv‘𝐺)
5 tglngval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
65adantr 479 . . 3 ((𝜑 ∧ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) → 𝐺 ∈ TarskiG)
7 tglngval.y . . . 4 (𝜑𝑌𝑃)
87adantr 479 . . 3 ((𝜑 ∧ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) → 𝑌𝑃)
9 tglngval.x . . . 4 (𝜑𝑋𝑃)
109adantr 479 . . 3 ((𝜑 ∧ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) → 𝑋𝑃)
11 tgcolg.z . . . 4 (𝜑𝑍𝑃)
1211adantr 479 . . 3 ((𝜑 ∧ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) → 𝑍𝑃)
13 simpr 483 . . 3 ((𝜑 ∧ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) → (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋))
142, 3, 4, 6, 8, 10, 12, 13colcom 28482 . 2 ((𝜑 ∧ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
151, 14mtand 814 1 (𝜑 → ¬ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wo 845   = wceq 1534  wcel 2099  cfv 6546  (class class class)co 7416  Basecbs 17208  TarskiGcstrkg 28351  Itvcitv 28357  LineGclng 28358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pr 5425
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3776  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5146  df-opab 5208  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-iota 6498  df-fun 6548  df-fv 6554  df-ov 7419  df-oprab 7420  df-mpo 7421  df-trkgc 28372  df-trkgb 28373  df-trkgcb 28374  df-trkg 28377
This theorem is referenced by:  ncolne2  28550  symquadlem  28613  midexlem  28616  outpasch  28679  acopyeu  28758  cgrg3col4  28777  tgasa1  28782
  Copyright terms: Public domain W3C validator