Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ncolcom | Structured version Visualization version GIF version |
Description: Swapping non-colinear points. (Contributed by Thierry Arnoux, 19-Oct-2019.) |
Ref | Expression |
---|---|
tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
tgcolg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
ncolrot | ⊢ (𝜑 → ¬ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
Ref | Expression |
---|---|
ncolcom | ⊢ (𝜑 → ¬ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ncolrot | . 2 ⊢ (𝜑 → ¬ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) | |
2 | tglngval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
3 | tglngval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglngval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | tglngval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | 5 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) → 𝐺 ∈ TarskiG) |
7 | tglngval.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
8 | 7 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) → 𝑌 ∈ 𝑃) |
9 | tglngval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
10 | 9 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) → 𝑋 ∈ 𝑃) |
11 | tgcolg.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
12 | 11 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) → 𝑍 ∈ 𝑃) |
13 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) → (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) | |
14 | 2, 3, 4, 6, 8, 10, 12, 13 | colcom 26929 | . 2 ⊢ ((𝜑 ∧ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
15 | 1, 14 | mtand 813 | 1 ⊢ (𝜑 → ¬ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ‘cfv 6426 (class class class)co 7267 Basecbs 16922 TarskiGcstrkg 26798 Itvcitv 26804 LineGclng 26805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pr 5350 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3431 df-sbc 3716 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5074 df-opab 5136 df-id 5484 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-iota 6384 df-fun 6428 df-fv 6434 df-ov 7270 df-oprab 7271 df-mpo 7272 df-trkgc 26819 df-trkgb 26820 df-trkgcb 26821 df-trkg 26824 |
This theorem is referenced by: ncolne2 26997 symquadlem 27060 midexlem 27063 outpasch 27126 acopyeu 27205 cgrg3col4 27224 tgasa1 27229 |
Copyright terms: Public domain | W3C validator |