MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcd1 Structured version   Visualization version   GIF version

Theorem gcd1 15868
Description: The gcd of a number with 1 is 1. Theorem 1.4(d)1 in [ApostolNT] p. 16. (Contributed by Mario Carneiro, 19-Feb-2014.)
Assertion
Ref Expression
gcd1 (𝑀 ∈ ℤ → (𝑀 gcd 1) = 1)

Proof of Theorem gcd1
StepHypRef Expression
1 1z 12004 . . . . 5 1 ∈ ℤ
2 gcddvds 15844 . . . . 5 ((𝑀 ∈ ℤ ∧ 1 ∈ ℤ) → ((𝑀 gcd 1) ∥ 𝑀 ∧ (𝑀 gcd 1) ∥ 1))
31, 2mpan2 687 . . . 4 (𝑀 ∈ ℤ → ((𝑀 gcd 1) ∥ 𝑀 ∧ (𝑀 gcd 1) ∥ 1))
43simprd 496 . . 3 (𝑀 ∈ ℤ → (𝑀 gcd 1) ∥ 1)
5 ax-1ne0 10598 . . . . . . . 8 1 ≠ 0
6 simpr 485 . . . . . . . . 9 ((𝑀 = 0 ∧ 1 = 0) → 1 = 0)
76necon3ai 3045 . . . . . . . 8 (1 ≠ 0 → ¬ (𝑀 = 0 ∧ 1 = 0))
85, 7ax-mp 5 . . . . . . 7 ¬ (𝑀 = 0 ∧ 1 = 0)
9 gcdn0cl 15843 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 1 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 1 = 0)) → (𝑀 gcd 1) ∈ ℕ)
108, 9mpan2 687 . . . . . 6 ((𝑀 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑀 gcd 1) ∈ ℕ)
111, 10mpan2 687 . . . . 5 (𝑀 ∈ ℤ → (𝑀 gcd 1) ∈ ℕ)
1211nnzd 12078 . . . 4 (𝑀 ∈ ℤ → (𝑀 gcd 1) ∈ ℤ)
13 1nn 11641 . . . 4 1 ∈ ℕ
14 dvdsle 15652 . . . 4 (((𝑀 gcd 1) ∈ ℤ ∧ 1 ∈ ℕ) → ((𝑀 gcd 1) ∥ 1 → (𝑀 gcd 1) ≤ 1))
1512, 13, 14sylancl 586 . . 3 (𝑀 ∈ ℤ → ((𝑀 gcd 1) ∥ 1 → (𝑀 gcd 1) ≤ 1))
164, 15mpd 15 . 2 (𝑀 ∈ ℤ → (𝑀 gcd 1) ≤ 1)
17 nnle1eq1 11659 . . 3 ((𝑀 gcd 1) ∈ ℕ → ((𝑀 gcd 1) ≤ 1 ↔ (𝑀 gcd 1) = 1))
1811, 17syl 17 . 2 (𝑀 ∈ ℤ → ((𝑀 gcd 1) ≤ 1 ↔ (𝑀 gcd 1) = 1))
1916, 18mpbid 233 1 (𝑀 ∈ ℤ → (𝑀 gcd 1) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wne 3020   class class class wbr 5062  (class class class)co 7151  0cc0 10529  1c1 10530  cle 10668  cn 11630  cz 11973  cdvds 15599   gcd cgcd 15835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12383  df-seq 13363  df-exp 13423  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-dvds 15600  df-gcd 15836
This theorem is referenced by:  1gcd  15873  lcm1  15946  dfphi2  16103  pockthlem  16233  fvprmselgcd1  16373  odinv  18610  pgpfac1lem2  19119  lgs1  25831  lgsquad2lem2  25875  2sqlem11  25919  qqh1  31112  nn0expgcd  39047
  Copyright terms: Public domain W3C validator