MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcd1 Structured version   Visualization version   GIF version

Theorem gcd1 15487
Description: The gcd of a number with 1 is 1. Theorem 1.4(d)1 in [ApostolNT] p. 16. (Contributed by Mario Carneiro, 19-Feb-2014.)
Assertion
Ref Expression
gcd1 (𝑀 ∈ ℤ → (𝑀 gcd 1) = 1)

Proof of Theorem gcd1
StepHypRef Expression
1 1z 11692 . . . . 5 1 ∈ ℤ
2 gcddvds 15463 . . . . 5 ((𝑀 ∈ ℤ ∧ 1 ∈ ℤ) → ((𝑀 gcd 1) ∥ 𝑀 ∧ (𝑀 gcd 1) ∥ 1))
31, 2mpan2 674 . . . 4 (𝑀 ∈ ℤ → ((𝑀 gcd 1) ∥ 𝑀 ∧ (𝑀 gcd 1) ∥ 1))
43simprd 485 . . 3 (𝑀 ∈ ℤ → (𝑀 gcd 1) ∥ 1)
5 ax-1ne0 10299 . . . . . . . 8 1 ≠ 0
6 simpr 473 . . . . . . . . 9 ((𝑀 = 0 ∧ 1 = 0) → 1 = 0)
76necon3ai 3014 . . . . . . . 8 (1 ≠ 0 → ¬ (𝑀 = 0 ∧ 1 = 0))
85, 7ax-mp 5 . . . . . . 7 ¬ (𝑀 = 0 ∧ 1 = 0)
9 gcdn0cl 15462 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 1 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 1 = 0)) → (𝑀 gcd 1) ∈ ℕ)
108, 9mpan2 674 . . . . . 6 ((𝑀 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑀 gcd 1) ∈ ℕ)
111, 10mpan2 674 . . . . 5 (𝑀 ∈ ℤ → (𝑀 gcd 1) ∈ ℕ)
1211nnzd 11766 . . . 4 (𝑀 ∈ ℤ → (𝑀 gcd 1) ∈ ℤ)
13 1nn 11327 . . . 4 1 ∈ ℕ
14 dvdsle 15274 . . . 4 (((𝑀 gcd 1) ∈ ℤ ∧ 1 ∈ ℕ) → ((𝑀 gcd 1) ∥ 1 → (𝑀 gcd 1) ≤ 1))
1512, 13, 14sylancl 576 . . 3 (𝑀 ∈ ℤ → ((𝑀 gcd 1) ∥ 1 → (𝑀 gcd 1) ≤ 1))
164, 15mpd 15 . 2 (𝑀 ∈ ℤ → (𝑀 gcd 1) ≤ 1)
17 nnle1eq1 11345 . . 3 ((𝑀 gcd 1) ∈ ℕ → ((𝑀 gcd 1) ≤ 1 ↔ (𝑀 gcd 1) = 1))
1811, 17syl 17 . 2 (𝑀 ∈ ℤ → ((𝑀 gcd 1) ≤ 1 ↔ (𝑀 gcd 1) = 1))
1916, 18mpbid 223 1 (𝑀 ∈ ℤ → (𝑀 gcd 1) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1637  wcel 2157  wne 2989   class class class wbr 4855  (class class class)co 6883  0cc0 10230  1c1 10231  cle 10369  cn 11314  cz 11662  cdvds 15222   gcd cgcd 15454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-sep 4988  ax-nul 4996  ax-pow 5048  ax-pr 5109  ax-un 7188  ax-cnex 10286  ax-resscn 10287  ax-1cn 10288  ax-icn 10289  ax-addcl 10290  ax-addrcl 10291  ax-mulcl 10292  ax-mulrcl 10293  ax-mulcom 10294  ax-addass 10295  ax-mulass 10296  ax-distr 10297  ax-i2m1 10298  ax-1ne0 10299  ax-1rid 10300  ax-rnegex 10301  ax-rrecex 10302  ax-cnre 10303  ax-pre-lttri 10304  ax-pre-lttrn 10305  ax-pre-ltadd 10306  ax-pre-mulgt0 10307  ax-pre-sup 10308
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-pss 3796  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-tp 4386  df-op 4388  df-uni 4642  df-iun 4725  df-br 4856  df-opab 4918  df-mpt 4935  df-tr 4958  df-id 5232  df-eprel 5237  df-po 5245  df-so 5246  df-fr 5283  df-we 5285  df-xp 5330  df-rel 5331  df-cnv 5332  df-co 5333  df-dm 5334  df-rn 5335  df-res 5336  df-ima 5337  df-pred 5906  df-ord 5952  df-on 5953  df-lim 5954  df-suc 5955  df-iota 6073  df-fun 6112  df-fn 6113  df-f 6114  df-f1 6115  df-fo 6116  df-f1o 6117  df-fv 6118  df-riota 6844  df-ov 6886  df-oprab 6887  df-mpt2 6888  df-om 7305  df-2nd 7408  df-wrecs 7651  df-recs 7713  df-rdg 7751  df-er 7988  df-en 8202  df-dom 8203  df-sdom 8204  df-sup 8596  df-inf 8597  df-pnf 10370  df-mnf 10371  df-xr 10372  df-ltxr 10373  df-le 10374  df-sub 10562  df-neg 10563  df-div 10979  df-nn 11315  df-2 11375  df-3 11376  df-n0 11579  df-z 11663  df-uz 11924  df-rp 12066  df-seq 13044  df-exp 13103  df-cj 14081  df-re 14082  df-im 14083  df-sqrt 14217  df-abs 14218  df-dvds 15223  df-gcd 15455
This theorem is referenced by:  1gcd  15492  lcm1  15561  dfphi2  15715  pockthlem  15845  fvprmselgcd1  15985  odinv  18198  pgpfac1lem2  18695  lgs1  25302  lgsquad2lem2  25346  2sqlem11  25390  qqh1  30376
  Copyright terms: Public domain W3C validator