Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mapdom3 | Structured version Visualization version GIF version |
Description: Set exponentiation dominates the mantissa. (Contributed by Mario Carneiro, 30-Apr-2015.) (Proof shortened by AV, 17-Jul-2022.) |
Ref | Expression |
---|---|
mapdom3 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 ↑m 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4245 | . . 3 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐵) | |
2 | simp1 1133 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝑉) | |
3 | simp3 1135 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
4 | 2, 3 | mapsnend 8607 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → (𝐴 ↑m {𝑥}) ≈ 𝐴) |
5 | 4 | ensymd 8578 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → 𝐴 ≈ (𝐴 ↑m {𝑥})) |
6 | simp2 1134 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → 𝐵 ∈ 𝑊) | |
7 | 3 | snssd 4699 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → {𝑥} ⊆ 𝐵) |
8 | ssdomg 8573 | . . . . . . . 8 ⊢ (𝐵 ∈ 𝑊 → ({𝑥} ⊆ 𝐵 → {𝑥} ≼ 𝐵)) | |
9 | 6, 7, 8 | sylc 65 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → {𝑥} ≼ 𝐵) |
10 | vex 3413 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
11 | 10 | snnz 4669 | . . . . . . . 8 ⊢ {𝑥} ≠ ∅ |
12 | simpl 486 | . . . . . . . . 9 ⊢ (({𝑥} = ∅ ∧ 𝐴 = ∅) → {𝑥} = ∅) | |
13 | 12 | necon3ai 2976 | . . . . . . . 8 ⊢ ({𝑥} ≠ ∅ → ¬ ({𝑥} = ∅ ∧ 𝐴 = ∅)) |
14 | 11, 13 | ax-mp 5 | . . . . . . 7 ⊢ ¬ ({𝑥} = ∅ ∧ 𝐴 = ∅) |
15 | mapdom2 8710 | . . . . . . 7 ⊢ (({𝑥} ≼ 𝐵 ∧ ¬ ({𝑥} = ∅ ∧ 𝐴 = ∅)) → (𝐴 ↑m {𝑥}) ≼ (𝐴 ↑m 𝐵)) | |
16 | 9, 14, 15 | sylancl 589 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → (𝐴 ↑m {𝑥}) ≼ (𝐴 ↑m 𝐵)) |
17 | endomtr 8585 | . . . . . 6 ⊢ ((𝐴 ≈ (𝐴 ↑m {𝑥}) ∧ (𝐴 ↑m {𝑥}) ≼ (𝐴 ↑m 𝐵)) → 𝐴 ≼ (𝐴 ↑m 𝐵)) | |
18 | 5, 16, 17 | syl2anc 587 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → 𝐴 ≼ (𝐴 ↑m 𝐵)) |
19 | 18 | 3expia 1118 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐵 → 𝐴 ≼ (𝐴 ↑m 𝐵))) |
20 | 19 | exlimdv 1934 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 𝑥 ∈ 𝐵 → 𝐴 ≼ (𝐴 ↑m 𝐵))) |
21 | 1, 20 | syl5bi 245 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ≠ ∅ → 𝐴 ≼ (𝐴 ↑m 𝐵))) |
22 | 21 | 3impia 1114 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 ↑m 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∃wex 1781 ∈ wcel 2111 ≠ wne 2951 ⊆ wss 3858 ∅c0 4225 {csn 4522 class class class wbr 5032 (class class class)co 7150 ↑m cmap 8416 ≈ cen 8524 ≼ cdom 8525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-1st 7693 df-2nd 7694 df-er 8299 df-map 8418 df-en 8528 df-dom 8529 |
This theorem is referenced by: infmap2 9678 |
Copyright terms: Public domain | W3C validator |