Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mapdom3 | Structured version Visualization version GIF version |
Description: Set exponentiation dominates the base. (Contributed by Mario Carneiro, 30-Apr-2015.) (Proof shortened by AV, 17-Jul-2022.) |
Ref | Expression |
---|---|
mapdom3 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 ↑m 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4283 | . . 3 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐵) | |
2 | simp1 1134 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝑉) | |
3 | simp3 1136 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
4 | 2, 3 | mapsnend 8850 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → (𝐴 ↑m {𝑥}) ≈ 𝐴) |
5 | 4 | ensymd 8815 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → 𝐴 ≈ (𝐴 ↑m {𝑥})) |
6 | simp2 1135 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → 𝐵 ∈ 𝑊) | |
7 | 3 | snssd 4745 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → {𝑥} ⊆ 𝐵) |
8 | ssdomg 8810 | . . . . . . . 8 ⊢ (𝐵 ∈ 𝑊 → ({𝑥} ⊆ 𝐵 → {𝑥} ≼ 𝐵)) | |
9 | 6, 7, 8 | sylc 65 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → {𝑥} ≼ 𝐵) |
10 | vex 3438 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
11 | 10 | snnz 4715 | . . . . . . . 8 ⊢ {𝑥} ≠ ∅ |
12 | simpl 482 | . . . . . . . . 9 ⊢ (({𝑥} = ∅ ∧ 𝐴 = ∅) → {𝑥} = ∅) | |
13 | 12 | necon3ai 2963 | . . . . . . . 8 ⊢ ({𝑥} ≠ ∅ → ¬ ({𝑥} = ∅ ∧ 𝐴 = ∅)) |
14 | 11, 13 | ax-mp 5 | . . . . . . 7 ⊢ ¬ ({𝑥} = ∅ ∧ 𝐴 = ∅) |
15 | mapdom2 8960 | . . . . . . 7 ⊢ (({𝑥} ≼ 𝐵 ∧ ¬ ({𝑥} = ∅ ∧ 𝐴 = ∅)) → (𝐴 ↑m {𝑥}) ≼ (𝐴 ↑m 𝐵)) | |
16 | 9, 14, 15 | sylancl 585 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → (𝐴 ↑m {𝑥}) ≼ (𝐴 ↑m 𝐵)) |
17 | endomtr 8822 | . . . . . 6 ⊢ ((𝐴 ≈ (𝐴 ↑m {𝑥}) ∧ (𝐴 ↑m {𝑥}) ≼ (𝐴 ↑m 𝐵)) → 𝐴 ≼ (𝐴 ↑m 𝐵)) | |
18 | 5, 16, 17 | syl2anc 583 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → 𝐴 ≼ (𝐴 ↑m 𝐵)) |
19 | 18 | 3expia 1119 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐵 → 𝐴 ≼ (𝐴 ↑m 𝐵))) |
20 | 19 | exlimdv 1932 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 𝑥 ∈ 𝐵 → 𝐴 ≼ (𝐴 ↑m 𝐵))) |
21 | 1, 20 | syl5bi 241 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ≠ ∅ → 𝐴 ≼ (𝐴 ↑m 𝐵))) |
22 | 21 | 3impia 1115 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 ↑m 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1537 ∃wex 1777 ∈ wcel 2101 ≠ wne 2938 ⊆ wss 3889 ∅c0 4259 {csn 4564 class class class wbr 5077 (class class class)co 7295 ↑m cmap 8635 ≈ cen 8750 ≼ cdom 8751 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-int 4883 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-ov 7298 df-oprab 7299 df-mpo 7300 df-1st 7851 df-2nd 7852 df-er 8518 df-map 8637 df-en 8754 df-dom 8755 |
This theorem is referenced by: infmap2 10002 |
Copyright terms: Public domain | W3C validator |