MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapdom3 Structured version   Visualization version   GIF version

Theorem mapdom3 9062
Description: Set exponentiation dominates the base. (Contributed by Mario Carneiro, 30-Apr-2015.) (Proof shortened by AV, 17-Jul-2022.)
Assertion
Ref Expression
mapdom3 ((𝐴𝑉𝐵𝑊𝐵 ≠ ∅) → 𝐴 ≼ (𝐴m 𝐵))

Proof of Theorem mapdom3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 n0 4300 . . 3 (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥𝐵)
2 simp1 1136 . . . . . . . 8 ((𝐴𝑉𝐵𝑊𝑥𝐵) → 𝐴𝑉)
3 simp3 1138 . . . . . . . 8 ((𝐴𝑉𝐵𝑊𝑥𝐵) → 𝑥𝐵)
42, 3mapsnend 8958 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝑥𝐵) → (𝐴m {𝑥}) ≈ 𝐴)
54ensymd 8927 . . . . . 6 ((𝐴𝑉𝐵𝑊𝑥𝐵) → 𝐴 ≈ (𝐴m {𝑥}))
6 simp2 1137 . . . . . . . 8 ((𝐴𝑉𝐵𝑊𝑥𝐵) → 𝐵𝑊)
73snssd 4758 . . . . . . . 8 ((𝐴𝑉𝐵𝑊𝑥𝐵) → {𝑥} ⊆ 𝐵)
8 ssdomg 8922 . . . . . . . 8 (𝐵𝑊 → ({𝑥} ⊆ 𝐵 → {𝑥} ≼ 𝐵))
96, 7, 8sylc 65 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝑥𝐵) → {𝑥} ≼ 𝐵)
10 vex 3440 . . . . . . . . 9 𝑥 ∈ V
1110snnz 4726 . . . . . . . 8 {𝑥} ≠ ∅
12 simpl 482 . . . . . . . . 9 (({𝑥} = ∅ ∧ 𝐴 = ∅) → {𝑥} = ∅)
1312necon3ai 2953 . . . . . . . 8 ({𝑥} ≠ ∅ → ¬ ({𝑥} = ∅ ∧ 𝐴 = ∅))
1411, 13ax-mp 5 . . . . . . 7 ¬ ({𝑥} = ∅ ∧ 𝐴 = ∅)
15 mapdom2 9061 . . . . . . 7 (({𝑥} ≼ 𝐵 ∧ ¬ ({𝑥} = ∅ ∧ 𝐴 = ∅)) → (𝐴m {𝑥}) ≼ (𝐴m 𝐵))
169, 14, 15sylancl 586 . . . . . 6 ((𝐴𝑉𝐵𝑊𝑥𝐵) → (𝐴m {𝑥}) ≼ (𝐴m 𝐵))
17 endomtr 8934 . . . . . 6 ((𝐴 ≈ (𝐴m {𝑥}) ∧ (𝐴m {𝑥}) ≼ (𝐴m 𝐵)) → 𝐴 ≼ (𝐴m 𝐵))
185, 16, 17syl2anc 584 . . . . 5 ((𝐴𝑉𝐵𝑊𝑥𝐵) → 𝐴 ≼ (𝐴m 𝐵))
19183expia 1121 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝑥𝐵𝐴 ≼ (𝐴m 𝐵)))
2019exlimdv 1934 . . 3 ((𝐴𝑉𝐵𝑊) → (∃𝑥 𝑥𝐵𝐴 ≼ (𝐴m 𝐵)))
211, 20biimtrid 242 . 2 ((𝐴𝑉𝐵𝑊) → (𝐵 ≠ ∅ → 𝐴 ≼ (𝐴m 𝐵)))
22213impia 1117 1 ((𝐴𝑉𝐵𝑊𝐵 ≠ ∅) → 𝐴 ≼ (𝐴m 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wne 2928  wss 3897  c0 4280  {csn 4573   class class class wbr 5089  (class class class)co 7346  m cmap 8750  cen 8866  cdom 8867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-map 8752  df-en 8870  df-dom 8871
This theorem is referenced by:  infmap2  10108
  Copyright terms: Public domain W3C validator