![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mapdom3 | Structured version Visualization version GIF version |
Description: Set exponentiation dominates the base. (Contributed by Mario Carneiro, 30-Apr-2015.) (Proof shortened by AV, 17-Jul-2022.) |
Ref | Expression |
---|---|
mapdom3 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 ↑m 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4376 | . . 3 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐵) | |
2 | simp1 1136 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝑉) | |
3 | simp3 1138 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
4 | 2, 3 | mapsnend 9101 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → (𝐴 ↑m {𝑥}) ≈ 𝐴) |
5 | 4 | ensymd 9065 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → 𝐴 ≈ (𝐴 ↑m {𝑥})) |
6 | simp2 1137 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → 𝐵 ∈ 𝑊) | |
7 | 3 | snssd 4834 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → {𝑥} ⊆ 𝐵) |
8 | ssdomg 9060 | . . . . . . . 8 ⊢ (𝐵 ∈ 𝑊 → ({𝑥} ⊆ 𝐵 → {𝑥} ≼ 𝐵)) | |
9 | 6, 7, 8 | sylc 65 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → {𝑥} ≼ 𝐵) |
10 | vex 3492 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
11 | 10 | snnz 4801 | . . . . . . . 8 ⊢ {𝑥} ≠ ∅ |
12 | simpl 482 | . . . . . . . . 9 ⊢ (({𝑥} = ∅ ∧ 𝐴 = ∅) → {𝑥} = ∅) | |
13 | 12 | necon3ai 2971 | . . . . . . . 8 ⊢ ({𝑥} ≠ ∅ → ¬ ({𝑥} = ∅ ∧ 𝐴 = ∅)) |
14 | 11, 13 | ax-mp 5 | . . . . . . 7 ⊢ ¬ ({𝑥} = ∅ ∧ 𝐴 = ∅) |
15 | mapdom2 9214 | . . . . . . 7 ⊢ (({𝑥} ≼ 𝐵 ∧ ¬ ({𝑥} = ∅ ∧ 𝐴 = ∅)) → (𝐴 ↑m {𝑥}) ≼ (𝐴 ↑m 𝐵)) | |
16 | 9, 14, 15 | sylancl 585 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → (𝐴 ↑m {𝑥}) ≼ (𝐴 ↑m 𝐵)) |
17 | endomtr 9072 | . . . . . 6 ⊢ ((𝐴 ≈ (𝐴 ↑m {𝑥}) ∧ (𝐴 ↑m {𝑥}) ≼ (𝐴 ↑m 𝐵)) → 𝐴 ≼ (𝐴 ↑m 𝐵)) | |
18 | 5, 16, 17 | syl2anc 583 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → 𝐴 ≼ (𝐴 ↑m 𝐵)) |
19 | 18 | 3expia 1121 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐵 → 𝐴 ≼ (𝐴 ↑m 𝐵))) |
20 | 19 | exlimdv 1932 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 𝑥 ∈ 𝐵 → 𝐴 ≼ (𝐴 ↑m 𝐵))) |
21 | 1, 20 | biimtrid 242 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ≠ ∅ → 𝐴 ≼ (𝐴 ↑m 𝐵))) |
22 | 21 | 3impia 1117 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 ↑m 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 ⊆ wss 3976 ∅c0 4352 {csn 4648 class class class wbr 5166 (class class class)co 7448 ↑m cmap 8884 ≈ cen 9000 ≼ cdom 9001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 |
This theorem is referenced by: infmap2 10286 |
Copyright terms: Public domain | W3C validator |