| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapdom3 | Structured version Visualization version GIF version | ||
| Description: Set exponentiation dominates the base. (Contributed by Mario Carneiro, 30-Apr-2015.) (Proof shortened by AV, 17-Jul-2022.) |
| Ref | Expression |
|---|---|
| mapdom3 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 ↑m 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4316 | . . 3 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐵) | |
| 2 | simp1 1136 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝑉) | |
| 3 | simp3 1138 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 4 | 2, 3 | mapsnend 9007 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → (𝐴 ↑m {𝑥}) ≈ 𝐴) |
| 5 | 4 | ensymd 8976 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → 𝐴 ≈ (𝐴 ↑m {𝑥})) |
| 6 | simp2 1137 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → 𝐵 ∈ 𝑊) | |
| 7 | 3 | snssd 4773 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → {𝑥} ⊆ 𝐵) |
| 8 | ssdomg 8971 | . . . . . . . 8 ⊢ (𝐵 ∈ 𝑊 → ({𝑥} ⊆ 𝐵 → {𝑥} ≼ 𝐵)) | |
| 9 | 6, 7, 8 | sylc 65 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → {𝑥} ≼ 𝐵) |
| 10 | vex 3451 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
| 11 | 10 | snnz 4740 | . . . . . . . 8 ⊢ {𝑥} ≠ ∅ |
| 12 | simpl 482 | . . . . . . . . 9 ⊢ (({𝑥} = ∅ ∧ 𝐴 = ∅) → {𝑥} = ∅) | |
| 13 | 12 | necon3ai 2950 | . . . . . . . 8 ⊢ ({𝑥} ≠ ∅ → ¬ ({𝑥} = ∅ ∧ 𝐴 = ∅)) |
| 14 | 11, 13 | ax-mp 5 | . . . . . . 7 ⊢ ¬ ({𝑥} = ∅ ∧ 𝐴 = ∅) |
| 15 | mapdom2 9112 | . . . . . . 7 ⊢ (({𝑥} ≼ 𝐵 ∧ ¬ ({𝑥} = ∅ ∧ 𝐴 = ∅)) → (𝐴 ↑m {𝑥}) ≼ (𝐴 ↑m 𝐵)) | |
| 16 | 9, 14, 15 | sylancl 586 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → (𝐴 ↑m {𝑥}) ≼ (𝐴 ↑m 𝐵)) |
| 17 | endomtr 8983 | . . . . . 6 ⊢ ((𝐴 ≈ (𝐴 ↑m {𝑥}) ∧ (𝐴 ↑m {𝑥}) ≼ (𝐴 ↑m 𝐵)) → 𝐴 ≼ (𝐴 ↑m 𝐵)) | |
| 18 | 5, 16, 17 | syl2anc 584 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵) → 𝐴 ≼ (𝐴 ↑m 𝐵)) |
| 19 | 18 | 3expia 1121 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐵 → 𝐴 ≼ (𝐴 ↑m 𝐵))) |
| 20 | 19 | exlimdv 1933 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 𝑥 ∈ 𝐵 → 𝐴 ≼ (𝐴 ↑m 𝐵))) |
| 21 | 1, 20 | biimtrid 242 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ≠ ∅ → 𝐴 ≼ (𝐴 ↑m 𝐵))) |
| 22 | 21 | 3impia 1117 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 ↑m 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3914 ∅c0 4296 {csn 4589 class class class wbr 5107 (class class class)co 7387 ↑m cmap 8799 ≈ cen 8915 ≼ cdom 8916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 |
| This theorem is referenced by: infmap2 10170 |
| Copyright terms: Public domain | W3C validator |