MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapdom3 Structured version   Visualization version   GIF version

Theorem mapdom3 9132
Description: Set exponentiation dominates the base. (Contributed by Mario Carneiro, 30-Apr-2015.) (Proof shortened by AV, 17-Jul-2022.)
Assertion
Ref Expression
mapdom3 ((𝐴𝑉𝐵𝑊𝐵 ≠ ∅) → 𝐴 ≼ (𝐴m 𝐵))

Proof of Theorem mapdom3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 n0 4342 . . 3 (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥𝐵)
2 simp1 1136 . . . . . . . 8 ((𝐴𝑉𝐵𝑊𝑥𝐵) → 𝐴𝑉)
3 simp3 1138 . . . . . . . 8 ((𝐴𝑉𝐵𝑊𝑥𝐵) → 𝑥𝐵)
42, 3mapsnend 9019 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝑥𝐵) → (𝐴m {𝑥}) ≈ 𝐴)
54ensymd 8984 . . . . . 6 ((𝐴𝑉𝐵𝑊𝑥𝐵) → 𝐴 ≈ (𝐴m {𝑥}))
6 simp2 1137 . . . . . . . 8 ((𝐴𝑉𝐵𝑊𝑥𝐵) → 𝐵𝑊)
73snssd 4805 . . . . . . . 8 ((𝐴𝑉𝐵𝑊𝑥𝐵) → {𝑥} ⊆ 𝐵)
8 ssdomg 8979 . . . . . . . 8 (𝐵𝑊 → ({𝑥} ⊆ 𝐵 → {𝑥} ≼ 𝐵))
96, 7, 8sylc 65 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝑥𝐵) → {𝑥} ≼ 𝐵)
10 vex 3477 . . . . . . . . 9 𝑥 ∈ V
1110snnz 4773 . . . . . . . 8 {𝑥} ≠ ∅
12 simpl 483 . . . . . . . . 9 (({𝑥} = ∅ ∧ 𝐴 = ∅) → {𝑥} = ∅)
1312necon3ai 2964 . . . . . . . 8 ({𝑥} ≠ ∅ → ¬ ({𝑥} = ∅ ∧ 𝐴 = ∅))
1411, 13ax-mp 5 . . . . . . 7 ¬ ({𝑥} = ∅ ∧ 𝐴 = ∅)
15 mapdom2 9131 . . . . . . 7 (({𝑥} ≼ 𝐵 ∧ ¬ ({𝑥} = ∅ ∧ 𝐴 = ∅)) → (𝐴m {𝑥}) ≼ (𝐴m 𝐵))
169, 14, 15sylancl 586 . . . . . 6 ((𝐴𝑉𝐵𝑊𝑥𝐵) → (𝐴m {𝑥}) ≼ (𝐴m 𝐵))
17 endomtr 8991 . . . . . 6 ((𝐴 ≈ (𝐴m {𝑥}) ∧ (𝐴m {𝑥}) ≼ (𝐴m 𝐵)) → 𝐴 ≼ (𝐴m 𝐵))
185, 16, 17syl2anc 584 . . . . 5 ((𝐴𝑉𝐵𝑊𝑥𝐵) → 𝐴 ≼ (𝐴m 𝐵))
19183expia 1121 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝑥𝐵𝐴 ≼ (𝐴m 𝐵)))
2019exlimdv 1936 . . 3 ((𝐴𝑉𝐵𝑊) → (∃𝑥 𝑥𝐵𝐴 ≼ (𝐴m 𝐵)))
211, 20biimtrid 241 . 2 ((𝐴𝑉𝐵𝑊) → (𝐵 ≠ ∅ → 𝐴 ≼ (𝐴m 𝐵)))
22213impia 1117 1 ((𝐴𝑉𝐵𝑊𝐵 ≠ ∅) → 𝐴 ≼ (𝐴m 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wne 2939  wss 3944  c0 4318  {csn 4622   class class class wbr 5141  (class class class)co 7393  m cmap 8803  cen 8919  cdom 8920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-ov 7396  df-oprab 7397  df-mpo 7398  df-1st 7957  df-2nd 7958  df-er 8686  df-map 8805  df-en 8923  df-dom 8924
This theorem is referenced by:  infmap2  10195
  Copyright terms: Public domain W3C validator