Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqsqrt2d | Structured version Visualization version GIF version |
Description: A deduction for showing that a number equals the square root of another. (Contributed by Mario Carneiro, 3-Apr-2015.) |
Ref | Expression |
---|---|
eqsqrtd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
eqsqrtd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
eqsqrtd.3 | ⊢ (𝜑 → (𝐴↑2) = 𝐵) |
eqsqrt2d.4 | ⊢ (𝜑 → 0 < (ℜ‘𝐴)) |
Ref | Expression |
---|---|
eqsqrt2d | ⊢ (𝜑 → 𝐴 = (√‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsqrtd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | eqsqrtd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | eqsqrtd.3 | . 2 ⊢ (𝜑 → (𝐴↑2) = 𝐵) | |
4 | eqsqrt2d.4 | . . 3 ⊢ (𝜑 → 0 < (ℜ‘𝐴)) | |
5 | 0re 11082 | . . . 4 ⊢ 0 ∈ ℝ | |
6 | 1 | recld 15004 | . . . 4 ⊢ (𝜑 → (ℜ‘𝐴) ∈ ℝ) |
7 | ltle 11168 | . . . 4 ⊢ ((0 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (0 < (ℜ‘𝐴) → 0 ≤ (ℜ‘𝐴))) | |
8 | 5, 6, 7 | sylancr 588 | . . 3 ⊢ (𝜑 → (0 < (ℜ‘𝐴) → 0 ≤ (ℜ‘𝐴))) |
9 | 4, 8 | mpd 15 | . 2 ⊢ (𝜑 → 0 ≤ (ℜ‘𝐴)) |
10 | reim 14919 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) = (ℑ‘(i · 𝐴))) | |
11 | 1, 10 | syl 17 | . . . 4 ⊢ (𝜑 → (ℜ‘𝐴) = (ℑ‘(i · 𝐴))) |
12 | 4 | gt0ne0d 11644 | . . . 4 ⊢ (𝜑 → (ℜ‘𝐴) ≠ 0) |
13 | 11, 12 | eqnetrrd 3010 | . . 3 ⊢ (𝜑 → (ℑ‘(i · 𝐴)) ≠ 0) |
14 | rpre 12843 | . . . . 5 ⊢ ((i · 𝐴) ∈ ℝ+ → (i · 𝐴) ∈ ℝ) | |
15 | 14 | reim0d 15035 | . . . 4 ⊢ ((i · 𝐴) ∈ ℝ+ → (ℑ‘(i · 𝐴)) = 0) |
16 | 15 | necon3ai 2966 | . . 3 ⊢ ((ℑ‘(i · 𝐴)) ≠ 0 → ¬ (i · 𝐴) ∈ ℝ+) |
17 | 13, 16 | syl 17 | . 2 ⊢ (𝜑 → ¬ (i · 𝐴) ∈ ℝ+) |
18 | 1, 2, 3, 9, 17 | eqsqrtd 15178 | 1 ⊢ (𝜑 → 𝐴 = (√‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 class class class wbr 5096 ‘cfv 6483 (class class class)co 7341 ℂcc 10974 ℝcr 10975 0cc0 10976 ici 10978 · cmul 10981 < clt 11114 ≤ cle 11115 2c2 12133 ℝ+crp 12835 ↑cexp 13887 ℜcre 14907 ℑcim 14908 √csqrt 15043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 ax-pre-sup 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-er 8573 df-en 8809 df-dom 8810 df-sdom 8811 df-sup 9303 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-div 11738 df-nn 12079 df-2 12141 df-3 12142 df-n0 12339 df-z 12425 df-uz 12688 df-rp 12836 df-seq 13827 df-exp 13888 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 |
This theorem is referenced by: asinsin 26147 |
Copyright terms: Public domain | W3C validator |