MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pockthlem Structured version   Visualization version   GIF version

Theorem pockthlem 16240
Description: Lemma for pockthg 16241. (Contributed by Mario Carneiro, 2-Mar-2014.)
Hypotheses
Ref Expression
pockthg.1 (𝜑𝐴 ∈ ℕ)
pockthg.2 (𝜑𝐵 ∈ ℕ)
pockthg.3 (𝜑𝐵 < 𝐴)
pockthg.4 (𝜑𝑁 = ((𝐴 · 𝐵) + 1))
pockthlem.5 (𝜑𝑃 ∈ ℙ)
pockthlem.6 (𝜑𝑃𝑁)
pockthlem.7 (𝜑𝑄 ∈ ℙ)
pockthlem.8 (𝜑 → (𝑄 pCnt 𝐴) ∈ ℕ)
pockthlem.9 (𝜑𝐶 ∈ ℤ)
pockthlem.10 (𝜑 → ((𝐶↑(𝑁 − 1)) mod 𝑁) = 1)
pockthlem.11 (𝜑 → (((𝐶↑((𝑁 − 1) / 𝑄)) − 1) gcd 𝑁) = 1)
Assertion
Ref Expression
pockthlem (𝜑 → (𝑄 pCnt 𝐴) ≤ (𝑄 pCnt (𝑃 − 1)))

Proof of Theorem pockthlem
StepHypRef Expression
1 pockthlem.7 . . . . . . 7 (𝜑𝑄 ∈ ℙ)
2 pockthg.1 . . . . . . 7 (𝜑𝐴 ∈ ℕ)
3 pcdvds 16199 . . . . . . 7 ((𝑄 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑄↑(𝑄 pCnt 𝐴)) ∥ 𝐴)
41, 2, 3syl2anc 586 . . . . . 6 (𝜑 → (𝑄↑(𝑄 pCnt 𝐴)) ∥ 𝐴)
52nnzd 12085 . . . . . . . 8 (𝜑𝐴 ∈ ℤ)
6 pockthg.2 . . . . . . . . 9 (𝜑𝐵 ∈ ℕ)
76nnzd 12085 . . . . . . . 8 (𝜑𝐵 ∈ ℤ)
8 dvdsmul1 15630 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∥ (𝐴 · 𝐵))
95, 7, 8syl2anc 586 . . . . . . 7 (𝜑𝐴 ∥ (𝐴 · 𝐵))
10 pockthg.4 . . . . . . . . 9 (𝜑𝑁 = ((𝐴 · 𝐵) + 1))
1110oveq1d 7170 . . . . . . . 8 (𝜑 → (𝑁 − 1) = (((𝐴 · 𝐵) + 1) − 1))
122, 6nnmulcld 11689 . . . . . . . . . 10 (𝜑 → (𝐴 · 𝐵) ∈ ℕ)
1312nncnd 11653 . . . . . . . . 9 (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
14 ax-1cn 10594 . . . . . . . . 9 1 ∈ ℂ
15 pncan 10891 . . . . . . . . 9 (((𝐴 · 𝐵) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐴 · 𝐵) + 1) − 1) = (𝐴 · 𝐵))
1613, 14, 15sylancl 588 . . . . . . . 8 (𝜑 → (((𝐴 · 𝐵) + 1) − 1) = (𝐴 · 𝐵))
1711, 16eqtrd 2856 . . . . . . 7 (𝜑 → (𝑁 − 1) = (𝐴 · 𝐵))
189, 17breqtrrd 5093 . . . . . 6 (𝜑𝐴 ∥ (𝑁 − 1))
19 prmnn 16017 . . . . . . . . . 10 (𝑄 ∈ ℙ → 𝑄 ∈ ℕ)
201, 19syl 17 . . . . . . . . 9 (𝜑𝑄 ∈ ℕ)
21 pockthlem.8 . . . . . . . . . 10 (𝜑 → (𝑄 pCnt 𝐴) ∈ ℕ)
2221nnnn0d 11954 . . . . . . . . 9 (𝜑 → (𝑄 pCnt 𝐴) ∈ ℕ0)
2320, 22nnexpcld 13605 . . . . . . . 8 (𝜑 → (𝑄↑(𝑄 pCnt 𝐴)) ∈ ℕ)
2423nnzd 12085 . . . . . . 7 (𝜑 → (𝑄↑(𝑄 pCnt 𝐴)) ∈ ℤ)
25 1z 12011 . . . . . . . . . 10 1 ∈ ℤ
26 nnuz 12280 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
2712, 26eleqtrdi 2923 . . . . . . . . . . . 12 (𝜑 → (𝐴 · 𝐵) ∈ (ℤ‘1))
28 eluzp1p1 12269 . . . . . . . . . . . 12 ((𝐴 · 𝐵) ∈ (ℤ‘1) → ((𝐴 · 𝐵) + 1) ∈ (ℤ‘(1 + 1)))
2927, 28syl 17 . . . . . . . . . . 11 (𝜑 → ((𝐴 · 𝐵) + 1) ∈ (ℤ‘(1 + 1)))
3010, 29eqeltrd 2913 . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ‘(1 + 1)))
31 eluzp1m1 12267 . . . . . . . . . 10 ((1 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(1 + 1))) → (𝑁 − 1) ∈ (ℤ‘1))
3225, 30, 31sylancr 589 . . . . . . . . 9 (𝜑 → (𝑁 − 1) ∈ (ℤ‘1))
3332, 26eleqtrrdi 2924 . . . . . . . 8 (𝜑 → (𝑁 − 1) ∈ ℕ)
3433nnzd 12085 . . . . . . 7 (𝜑 → (𝑁 − 1) ∈ ℤ)
35 dvdstr 15645 . . . . . . 7 (((𝑄↑(𝑄 pCnt 𝐴)) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (((𝑄↑(𝑄 pCnt 𝐴)) ∥ 𝐴𝐴 ∥ (𝑁 − 1)) → (𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑁 − 1)))
3624, 5, 34, 35syl3anc 1367 . . . . . 6 (𝜑 → (((𝑄↑(𝑄 pCnt 𝐴)) ∥ 𝐴𝐴 ∥ (𝑁 − 1)) → (𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑁 − 1)))
374, 18, 36mp2and 697 . . . . 5 (𝜑 → (𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑁 − 1))
3823nnne0d 11686 . . . . . 6 (𝜑 → (𝑄↑(𝑄 pCnt 𝐴)) ≠ 0)
39 dvdsval2 15609 . . . . . 6 (((𝑄↑(𝑄 pCnt 𝐴)) ∈ ℤ ∧ (𝑄↑(𝑄 pCnt 𝐴)) ≠ 0 ∧ (𝑁 − 1) ∈ ℤ) → ((𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) ∈ ℤ))
4024, 38, 34, 39syl3anc 1367 . . . . 5 (𝜑 → ((𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) ∈ ℤ))
4137, 40mpbid 234 . . . 4 (𝜑 → ((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) ∈ ℤ)
42 pockthlem.5 . . . . . . 7 (𝜑𝑃 ∈ ℙ)
43 prmnn 16017 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
4442, 43syl 17 . . . . . 6 (𝜑𝑃 ∈ ℕ)
45 pockthlem.9 . . . . . 6 (𝜑𝐶 ∈ ℤ)
4644nnzd 12085 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℤ)
47 gcddvds 15851 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝐶 gcd 𝑃) ∥ 𝐶 ∧ (𝐶 gcd 𝑃) ∥ 𝑃))
4845, 46, 47syl2anc 586 . . . . . . . . . 10 (𝜑 → ((𝐶 gcd 𝑃) ∥ 𝐶 ∧ (𝐶 gcd 𝑃) ∥ 𝑃))
4948simpld 497 . . . . . . . . 9 (𝜑 → (𝐶 gcd 𝑃) ∥ 𝐶)
5048simprd 498 . . . . . . . . . 10 (𝜑 → (𝐶 gcd 𝑃) ∥ 𝑃)
51 pockthlem.6 . . . . . . . . . 10 (𝜑𝑃𝑁)
5245, 46gcdcld 15856 . . . . . . . . . . . 12 (𝜑 → (𝐶 gcd 𝑃) ∈ ℕ0)
5352nn0zd 12084 . . . . . . . . . . 11 (𝜑 → (𝐶 gcd 𝑃) ∈ ℤ)
54 df-2 11699 . . . . . . . . . . . . . . . 16 2 = (1 + 1)
5554fveq2i 6672 . . . . . . . . . . . . . . 15 (ℤ‘2) = (ℤ‘(1 + 1))
5630, 55eleqtrrdi 2924 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ (ℤ‘2))
57 eluz2b2 12320 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))
5856, 57sylib 220 . . . . . . . . . . . . 13 (𝜑 → (𝑁 ∈ ℕ ∧ 1 < 𝑁))
5958simpld 497 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
6059nnzd 12085 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
61 dvdstr 15645 . . . . . . . . . . 11 (((𝐶 gcd 𝑃) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐶 gcd 𝑃) ∥ 𝑃𝑃𝑁) → (𝐶 gcd 𝑃) ∥ 𝑁))
6253, 46, 60, 61syl3anc 1367 . . . . . . . . . 10 (𝜑 → (((𝐶 gcd 𝑃) ∥ 𝑃𝑃𝑁) → (𝐶 gcd 𝑃) ∥ 𝑁))
6350, 51, 62mp2and 697 . . . . . . . . 9 (𝜑 → (𝐶 gcd 𝑃) ∥ 𝑁)
6459nnne0d 11686 . . . . . . . . . . 11 (𝜑𝑁 ≠ 0)
65 simpr 487 . . . . . . . . . . . 12 ((𝐶 = 0 ∧ 𝑁 = 0) → 𝑁 = 0)
6665necon3ai 3041 . . . . . . . . . . 11 (𝑁 ≠ 0 → ¬ (𝐶 = 0 ∧ 𝑁 = 0))
6764, 66syl 17 . . . . . . . . . 10 (𝜑 → ¬ (𝐶 = 0 ∧ 𝑁 = 0))
68 dvdslegcd 15852 . . . . . . . . . 10 ((((𝐶 gcd 𝑃) ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝐶 = 0 ∧ 𝑁 = 0)) → (((𝐶 gcd 𝑃) ∥ 𝐶 ∧ (𝐶 gcd 𝑃) ∥ 𝑁) → (𝐶 gcd 𝑃) ≤ (𝐶 gcd 𝑁)))
6953, 45, 60, 67, 68syl31anc 1369 . . . . . . . . 9 (𝜑 → (((𝐶 gcd 𝑃) ∥ 𝐶 ∧ (𝐶 gcd 𝑃) ∥ 𝑁) → (𝐶 gcd 𝑃) ≤ (𝐶 gcd 𝑁)))
7049, 63, 69mp2and 697 . . . . . . . 8 (𝜑 → (𝐶 gcd 𝑃) ≤ (𝐶 gcd 𝑁))
71 pockthlem.10 . . . . . . . . . . 11 (𝜑 → ((𝐶↑(𝑁 − 1)) mod 𝑁) = 1)
7271oveq1d 7170 . . . . . . . . . 10 (𝜑 → (((𝐶↑(𝑁 − 1)) mod 𝑁) gcd 𝑁) = (1 gcd 𝑁))
7333nnnn0d 11954 . . . . . . . . . . . 12 (𝜑 → (𝑁 − 1) ∈ ℕ0)
74 zexpcl 13443 . . . . . . . . . . . 12 ((𝐶 ∈ ℤ ∧ (𝑁 − 1) ∈ ℕ0) → (𝐶↑(𝑁 − 1)) ∈ ℤ)
7545, 73, 74syl2anc 586 . . . . . . . . . . 11 (𝜑 → (𝐶↑(𝑁 − 1)) ∈ ℤ)
76 modgcd 15879 . . . . . . . . . . 11 (((𝐶↑(𝑁 − 1)) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐶↑(𝑁 − 1)) mod 𝑁) gcd 𝑁) = ((𝐶↑(𝑁 − 1)) gcd 𝑁))
7775, 59, 76syl2anc 586 . . . . . . . . . 10 (𝜑 → (((𝐶↑(𝑁 − 1)) mod 𝑁) gcd 𝑁) = ((𝐶↑(𝑁 − 1)) gcd 𝑁))
78 gcdcom 15861 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 gcd 𝑁) = (𝑁 gcd 1))
7925, 60, 78sylancr 589 . . . . . . . . . . 11 (𝜑 → (1 gcd 𝑁) = (𝑁 gcd 1))
80 gcd1 15875 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑁 gcd 1) = 1)
8160, 80syl 17 . . . . . . . . . . 11 (𝜑 → (𝑁 gcd 1) = 1)
8279, 81eqtrd 2856 . . . . . . . . . 10 (𝜑 → (1 gcd 𝑁) = 1)
8372, 77, 823eqtr3d 2864 . . . . . . . . 9 (𝜑 → ((𝐶↑(𝑁 − 1)) gcd 𝑁) = 1)
84 rpexp 16063 . . . . . . . . . 10 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − 1) ∈ ℕ) → (((𝐶↑(𝑁 − 1)) gcd 𝑁) = 1 ↔ (𝐶 gcd 𝑁) = 1))
8545, 60, 33, 84syl3anc 1367 . . . . . . . . 9 (𝜑 → (((𝐶↑(𝑁 − 1)) gcd 𝑁) = 1 ↔ (𝐶 gcd 𝑁) = 1))
8683, 85mpbid 234 . . . . . . . 8 (𝜑 → (𝐶 gcd 𝑁) = 1)
8770, 86breqtrd 5091 . . . . . . 7 (𝜑 → (𝐶 gcd 𝑃) ≤ 1)
8844nnne0d 11686 . . . . . . . . . 10 (𝜑𝑃 ≠ 0)
89 simpr 487 . . . . . . . . . . 11 ((𝐶 = 0 ∧ 𝑃 = 0) → 𝑃 = 0)
9089necon3ai 3041 . . . . . . . . . 10 (𝑃 ≠ 0 → ¬ (𝐶 = 0 ∧ 𝑃 = 0))
9188, 90syl 17 . . . . . . . . 9 (𝜑 → ¬ (𝐶 = 0 ∧ 𝑃 = 0))
92 gcdn0cl 15850 . . . . . . . . 9 (((𝐶 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ ¬ (𝐶 = 0 ∧ 𝑃 = 0)) → (𝐶 gcd 𝑃) ∈ ℕ)
9345, 46, 91, 92syl21anc 835 . . . . . . . 8 (𝜑 → (𝐶 gcd 𝑃) ∈ ℕ)
94 nnle1eq1 11666 . . . . . . . 8 ((𝐶 gcd 𝑃) ∈ ℕ → ((𝐶 gcd 𝑃) ≤ 1 ↔ (𝐶 gcd 𝑃) = 1))
9593, 94syl 17 . . . . . . 7 (𝜑 → ((𝐶 gcd 𝑃) ≤ 1 ↔ (𝐶 gcd 𝑃) = 1))
9687, 95mpbid 234 . . . . . 6 (𝜑 → (𝐶 gcd 𝑃) = 1)
97 odzcl 16129 . . . . . 6 ((𝑃 ∈ ℕ ∧ 𝐶 ∈ ℤ ∧ (𝐶 gcd 𝑃) = 1) → ((od𝑃)‘𝐶) ∈ ℕ)
9844, 45, 96, 97syl3anc 1367 . . . . 5 (𝜑 → ((od𝑃)‘𝐶) ∈ ℕ)
9998nnzd 12085 . . . 4 (𝜑 → ((od𝑃)‘𝐶) ∈ ℤ)
10059nnred 11652 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
10158simprd 498 . . . . . . . . . 10 (𝜑 → 1 < 𝑁)
102 1mod 13270 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1)
103100, 101, 102syl2anc 586 . . . . . . . . 9 (𝜑 → (1 mod 𝑁) = 1)
10471, 103eqtr4d 2859 . . . . . . . 8 (𝜑 → ((𝐶↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁))
105 1zzd 12012 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
106 moddvds 15617 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐶↑(𝑁 − 1)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐶↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐶↑(𝑁 − 1)) − 1)))
10759, 75, 105, 106syl3anc 1367 . . . . . . . 8 (𝜑 → (((𝐶↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐶↑(𝑁 − 1)) − 1)))
108104, 107mpbid 234 . . . . . . 7 (𝜑𝑁 ∥ ((𝐶↑(𝑁 − 1)) − 1))
109 peano2zm 12024 . . . . . . . . 9 ((𝐶↑(𝑁 − 1)) ∈ ℤ → ((𝐶↑(𝑁 − 1)) − 1) ∈ ℤ)
11075, 109syl 17 . . . . . . . 8 (𝜑 → ((𝐶↑(𝑁 − 1)) − 1) ∈ ℤ)
111 dvdstr 15645 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((𝐶↑(𝑁 − 1)) − 1) ∈ ℤ) → ((𝑃𝑁𝑁 ∥ ((𝐶↑(𝑁 − 1)) − 1)) → 𝑃 ∥ ((𝐶↑(𝑁 − 1)) − 1)))
11246, 60, 110, 111syl3anc 1367 . . . . . . 7 (𝜑 → ((𝑃𝑁𝑁 ∥ ((𝐶↑(𝑁 − 1)) − 1)) → 𝑃 ∥ ((𝐶↑(𝑁 − 1)) − 1)))
11351, 108, 112mp2and 697 . . . . . 6 (𝜑𝑃 ∥ ((𝐶↑(𝑁 − 1)) − 1))
114 odzdvds 16131 . . . . . . 7 (((𝑃 ∈ ℕ ∧ 𝐶 ∈ ℤ ∧ (𝐶 gcd 𝑃) = 1) ∧ (𝑁 − 1) ∈ ℕ0) → (𝑃 ∥ ((𝐶↑(𝑁 − 1)) − 1) ↔ ((od𝑃)‘𝐶) ∥ (𝑁 − 1)))
11544, 45, 96, 73, 114syl31anc 1369 . . . . . 6 (𝜑 → (𝑃 ∥ ((𝐶↑(𝑁 − 1)) − 1) ↔ ((od𝑃)‘𝐶) ∥ (𝑁 − 1)))
116113, 115mpbid 234 . . . . 5 (𝜑 → ((od𝑃)‘𝐶) ∥ (𝑁 − 1))
11733nncnd 11653 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ ℂ)
11823nncnd 11653 . . . . . 6 (𝜑 → (𝑄↑(𝑄 pCnt 𝐴)) ∈ ℂ)
119117, 118, 38divcan1d 11416 . . . . 5 (𝜑 → (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑(𝑄 pCnt 𝐴))) = (𝑁 − 1))
120116, 119breqtrrd 5093 . . . 4 (𝜑 → ((od𝑃)‘𝐶) ∥ (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑(𝑄 pCnt 𝐴))))
121 nprmdvds1 16049 . . . . . 6 (𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1)
12242, 121syl 17 . . . . 5 (𝜑 → ¬ 𝑃 ∥ 1)
12320nnzd 12085 . . . . . . . . . . . . . 14 (𝜑𝑄 ∈ ℤ)
124 iddvdsexp 15632 . . . . . . . . . . . . . 14 ((𝑄 ∈ ℤ ∧ (𝑄 pCnt 𝐴) ∈ ℕ) → 𝑄 ∥ (𝑄↑(𝑄 pCnt 𝐴)))
125123, 21, 124syl2anc 586 . . . . . . . . . . . . 13 (𝜑𝑄 ∥ (𝑄↑(𝑄 pCnt 𝐴)))
126 dvdstr 15645 . . . . . . . . . . . . . 14 ((𝑄 ∈ ℤ ∧ (𝑄↑(𝑄 pCnt 𝐴)) ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → ((𝑄 ∥ (𝑄↑(𝑄 pCnt 𝐴)) ∧ (𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑁 − 1)) → 𝑄 ∥ (𝑁 − 1)))
127123, 24, 34, 126syl3anc 1367 . . . . . . . . . . . . 13 (𝜑 → ((𝑄 ∥ (𝑄↑(𝑄 pCnt 𝐴)) ∧ (𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑁 − 1)) → 𝑄 ∥ (𝑁 − 1)))
128125, 37, 127mp2and 697 . . . . . . . . . . . 12 (𝜑𝑄 ∥ (𝑁 − 1))
12920nnne0d 11686 . . . . . . . . . . . . 13 (𝜑𝑄 ≠ 0)
130 dvdsval2 15609 . . . . . . . . . . . . 13 ((𝑄 ∈ ℤ ∧ 𝑄 ≠ 0 ∧ (𝑁 − 1) ∈ ℤ) → (𝑄 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 𝑄) ∈ ℤ))
131123, 129, 34, 130syl3anc 1367 . . . . . . . . . . . 12 (𝜑 → (𝑄 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 𝑄) ∈ ℤ))
132128, 131mpbid 234 . . . . . . . . . . 11 (𝜑 → ((𝑁 − 1) / 𝑄) ∈ ℤ)
13373nn0ge0d 11957 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝑁 − 1))
13433nnred 11652 . . . . . . . . . . . . 13 (𝜑 → (𝑁 − 1) ∈ ℝ)
13520nnred 11652 . . . . . . . . . . . . 13 (𝜑𝑄 ∈ ℝ)
13620nngt0d 11685 . . . . . . . . . . . . 13 (𝜑 → 0 < 𝑄)
137 ge0div 11506 . . . . . . . . . . . . 13 (((𝑁 − 1) ∈ ℝ ∧ 𝑄 ∈ ℝ ∧ 0 < 𝑄) → (0 ≤ (𝑁 − 1) ↔ 0 ≤ ((𝑁 − 1) / 𝑄)))
138134, 135, 136, 137syl3anc 1367 . . . . . . . . . . . 12 (𝜑 → (0 ≤ (𝑁 − 1) ↔ 0 ≤ ((𝑁 − 1) / 𝑄)))
139133, 138mpbid 234 . . . . . . . . . . 11 (𝜑 → 0 ≤ ((𝑁 − 1) / 𝑄))
140 elnn0z 11993 . . . . . . . . . . 11 (((𝑁 − 1) / 𝑄) ∈ ℕ0 ↔ (((𝑁 − 1) / 𝑄) ∈ ℤ ∧ 0 ≤ ((𝑁 − 1) / 𝑄)))
141132, 139, 140sylanbrc 585 . . . . . . . . . 10 (𝜑 → ((𝑁 − 1) / 𝑄) ∈ ℕ0)
142 zexpcl 13443 . . . . . . . . . 10 ((𝐶 ∈ ℤ ∧ ((𝑁 − 1) / 𝑄) ∈ ℕ0) → (𝐶↑((𝑁 − 1) / 𝑄)) ∈ ℤ)
14345, 141, 142syl2anc 586 . . . . . . . . 9 (𝜑 → (𝐶↑((𝑁 − 1) / 𝑄)) ∈ ℤ)
144 peano2zm 12024 . . . . . . . . 9 ((𝐶↑((𝑁 − 1) / 𝑄)) ∈ ℤ → ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) ∈ ℤ)
145143, 144syl 17 . . . . . . . 8 (𝜑 → ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) ∈ ℤ)
146 dvdsgcd 15891 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑃 ∥ ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) ∧ 𝑃𝑁) → 𝑃 ∥ (((𝐶↑((𝑁 − 1) / 𝑄)) − 1) gcd 𝑁)))
14746, 145, 60, 146syl3anc 1367 . . . . . . 7 (𝜑 → ((𝑃 ∥ ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) ∧ 𝑃𝑁) → 𝑃 ∥ (((𝐶↑((𝑁 − 1) / 𝑄)) − 1) gcd 𝑁)))
14851, 147mpan2d 692 . . . . . 6 (𝜑 → (𝑃 ∥ ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) → 𝑃 ∥ (((𝐶↑((𝑁 − 1) / 𝑄)) − 1) gcd 𝑁)))
149 odzdvds 16131 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ 𝐶 ∈ ℤ ∧ (𝐶 gcd 𝑃) = 1) ∧ ((𝑁 − 1) / 𝑄) ∈ ℕ0) → (𝑃 ∥ ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) ↔ ((od𝑃)‘𝐶) ∥ ((𝑁 − 1) / 𝑄)))
15044, 45, 96, 141, 149syl31anc 1369 . . . . . . 7 (𝜑 → (𝑃 ∥ ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) ↔ ((od𝑃)‘𝐶) ∥ ((𝑁 − 1) / 𝑄)))
15120nncnd 11653 . . . . . . . . . . 11 (𝜑𝑄 ∈ ℂ)
15221nnzd 12085 . . . . . . . . . . 11 (𝜑 → (𝑄 pCnt 𝐴) ∈ ℤ)
153151, 129, 152expm1d 13519 . . . . . . . . . 10 (𝜑 → (𝑄↑((𝑄 pCnt 𝐴) − 1)) = ((𝑄↑(𝑄 pCnt 𝐴)) / 𝑄))
154153oveq2d 7171 . . . . . . . . 9 (𝜑 → (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑((𝑄 pCnt 𝐴) − 1))) = (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · ((𝑄↑(𝑄 pCnt 𝐴)) / 𝑄)))
155134, 23nndivred 11690 . . . . . . . . . . 11 (𝜑 → ((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) ∈ ℝ)
156155recnd 10668 . . . . . . . . . 10 (𝜑 → ((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) ∈ ℂ)
157156, 118, 151, 129divassd 11450 . . . . . . . . 9 (𝜑 → ((((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑(𝑄 pCnt 𝐴))) / 𝑄) = (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · ((𝑄↑(𝑄 pCnt 𝐴)) / 𝑄)))
158119oveq1d 7170 . . . . . . . . 9 (𝜑 → ((((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑(𝑄 pCnt 𝐴))) / 𝑄) = ((𝑁 − 1) / 𝑄))
159154, 157, 1583eqtr2d 2862 . . . . . . . 8 (𝜑 → (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑((𝑄 pCnt 𝐴) − 1))) = ((𝑁 − 1) / 𝑄))
160159breq2d 5077 . . . . . . 7 (𝜑 → (((od𝑃)‘𝐶) ∥ (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑((𝑄 pCnt 𝐴) − 1))) ↔ ((od𝑃)‘𝐶) ∥ ((𝑁 − 1) / 𝑄)))
161150, 160bitr4d 284 . . . . . 6 (𝜑 → (𝑃 ∥ ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) ↔ ((od𝑃)‘𝐶) ∥ (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑((𝑄 pCnt 𝐴) − 1)))))
162 pockthlem.11 . . . . . . 7 (𝜑 → (((𝐶↑((𝑁 − 1) / 𝑄)) − 1) gcd 𝑁) = 1)
163162breq2d 5077 . . . . . 6 (𝜑 → (𝑃 ∥ (((𝐶↑((𝑁 − 1) / 𝑄)) − 1) gcd 𝑁) ↔ 𝑃 ∥ 1))
164148, 161, 1633imtr3d 295 . . . . 5 (𝜑 → (((od𝑃)‘𝐶) ∥ (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑((𝑄 pCnt 𝐴) − 1))) → 𝑃 ∥ 1))
165122, 164mtod 200 . . . 4 (𝜑 → ¬ ((od𝑃)‘𝐶) ∥ (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑((𝑄 pCnt 𝐴) − 1))))
166 prmpwdvds 16239 . . . 4 (((((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) ∈ ℤ ∧ ((od𝑃)‘𝐶) ∈ ℤ) ∧ (𝑄 ∈ ℙ ∧ (𝑄 pCnt 𝐴) ∈ ℕ) ∧ (((od𝑃)‘𝐶) ∥ (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑(𝑄 pCnt 𝐴))) ∧ ¬ ((od𝑃)‘𝐶) ∥ (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑((𝑄 pCnt 𝐴) − 1))))) → (𝑄↑(𝑄 pCnt 𝐴)) ∥ ((od𝑃)‘𝐶))
16741, 99, 1, 21, 120, 165, 166syl222anc 1382 . . 3 (𝜑 → (𝑄↑(𝑄 pCnt 𝐴)) ∥ ((od𝑃)‘𝐶))
168 odzphi 16132 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝐶 ∈ ℤ ∧ (𝐶 gcd 𝑃) = 1) → ((od𝑃)‘𝐶) ∥ (ϕ‘𝑃))
16944, 45, 96, 168syl3anc 1367 . . . 4 (𝜑 → ((od𝑃)‘𝐶) ∥ (ϕ‘𝑃))
170 phiprm 16113 . . . . 5 (𝑃 ∈ ℙ → (ϕ‘𝑃) = (𝑃 − 1))
17142, 170syl 17 . . . 4 (𝜑 → (ϕ‘𝑃) = (𝑃 − 1))
172169, 171breqtrd 5091 . . 3 (𝜑 → ((od𝑃)‘𝐶) ∥ (𝑃 − 1))
173 prmuz2 16039 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
17442, 173syl 17 . . . . . . . 8 (𝜑𝑃 ∈ (ℤ‘2))
175174, 55eleqtrdi 2923 . . . . . . 7 (𝜑𝑃 ∈ (ℤ‘(1 + 1)))
176 eluzp1m1 12267 . . . . . . 7 ((1 ∈ ℤ ∧ 𝑃 ∈ (ℤ‘(1 + 1))) → (𝑃 − 1) ∈ (ℤ‘1))
17725, 175, 176sylancr 589 . . . . . 6 (𝜑 → (𝑃 − 1) ∈ (ℤ‘1))
178177, 26eleqtrrdi 2924 . . . . 5 (𝜑 → (𝑃 − 1) ∈ ℕ)
179178nnzd 12085 . . . 4 (𝜑 → (𝑃 − 1) ∈ ℤ)
180 dvdstr 15645 . . . 4 (((𝑄↑(𝑄 pCnt 𝐴)) ∈ ℤ ∧ ((od𝑃)‘𝐶) ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ) → (((𝑄↑(𝑄 pCnt 𝐴)) ∥ ((od𝑃)‘𝐶) ∧ ((od𝑃)‘𝐶) ∥ (𝑃 − 1)) → (𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑃 − 1)))
18124, 99, 179, 180syl3anc 1367 . . 3 (𝜑 → (((𝑄↑(𝑄 pCnt 𝐴)) ∥ ((od𝑃)‘𝐶) ∧ ((od𝑃)‘𝐶) ∥ (𝑃 − 1)) → (𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑃 − 1)))
182167, 172, 181mp2and 697 . 2 (𝜑 → (𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑃 − 1))
183 pcdvdsb 16204 . . 3 ((𝑄 ∈ ℙ ∧ (𝑃 − 1) ∈ ℤ ∧ (𝑄 pCnt 𝐴) ∈ ℕ0) → ((𝑄 pCnt 𝐴) ≤ (𝑄 pCnt (𝑃 − 1)) ↔ (𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑃 − 1)))
1841, 179, 22, 183syl3anc 1367 . 2 (𝜑 → ((𝑄 pCnt 𝐴) ≤ (𝑄 pCnt (𝑃 − 1)) ↔ (𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑃 − 1)))
185182, 184mpbird 259 1 (𝜑 → (𝑄 pCnt 𝐴) ≤ (𝑄 pCnt (𝑃 − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016   class class class wbr 5065  cfv 6354  (class class class)co 7155  cc 10534  cr 10535  0cc0 10536  1c1 10537   + caddc 10539   · cmul 10541   < clt 10674  cle 10675  cmin 10869   / cdiv 11296  cn 11637  2c2 11691  0cn0 11896  cz 11980  cuz 12242   mod cmo 13236  cexp 13428  cdvds 15606   gcd cgcd 15842  cprime 16014  odcodz 16099  ϕcphi 16100   pCnt cpc 16172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-inf 8906  df-dju 9329  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-xnn0 11967  df-z 11981  df-uz 12243  df-q 12348  df-rp 12389  df-fz 12892  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-dvds 15607  df-gcd 15843  df-prm 16015  df-odz 16101  df-phi 16102  df-pc 16173
This theorem is referenced by:  pockthg  16241
  Copyright terms: Public domain W3C validator