MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdzeq Structured version   Visualization version   GIF version

Theorem gcdzeq 16522
Description: A positive integer 𝐴 is equal to its gcd with an integer 𝐵 if and only if 𝐴 divides 𝐵. Generalization of gcdeq 16523. (Contributed by AV, 1-Jul-2020.)
Assertion
Ref Expression
gcdzeq ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 𝐴𝐴𝐵))

Proof of Theorem gcdzeq
StepHypRef Expression
1 nnz 12550 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
2 gcddvds 16473 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
31, 2sylan 580 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
43simprd 495 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∥ 𝐵)
5 breq1 5110 . . 3 ((𝐴 gcd 𝐵) = 𝐴 → ((𝐴 gcd 𝐵) ∥ 𝐵𝐴𝐵))
64, 5syl5ibcom 245 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 𝐴𝐴𝐵))
71adantr 480 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ)
8 iddvds 16239 . . . . . 6 (𝐴 ∈ ℤ → 𝐴𝐴)
97, 8syl 17 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐴𝐴)
10 simpr 484 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ)
11 nnne0 12220 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ≠ 0)
12 simpl 482 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0) → 𝐴 = 0)
1312necon3ai 2950 . . . . . . . 8 (𝐴 ≠ 0 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
1411, 13syl 17 . . . . . . 7 (𝐴 ∈ ℕ → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
1514adantr 480 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
16 dvdslegcd 16474 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴𝐴𝐴𝐵) → 𝐴 ≤ (𝐴 gcd 𝐵)))
177, 7, 10, 15, 16syl31anc 1375 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴𝐴𝐴𝐵) → 𝐴 ≤ (𝐴 gcd 𝐵)))
189, 17mpand 695 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵𝐴 ≤ (𝐴 gcd 𝐵)))
193simpld 494 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∥ 𝐴)
20 gcdcl 16476 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0)
211, 20sylan 580 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0)
2221nn0zd 12555 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℤ)
23 simpl 482 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℕ)
24 dvdsle 16280 . . . . . 6 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 → (𝐴 gcd 𝐵) ≤ 𝐴))
2522, 23, 24syl2anc 584 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 → (𝐴 gcd 𝐵) ≤ 𝐴))
2619, 25mpd 15 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ≤ 𝐴)
2718, 26jctild 525 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 → ((𝐴 gcd 𝐵) ≤ 𝐴𝐴 ≤ (𝐴 gcd 𝐵))))
2821nn0red 12504 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℝ)
29 nnre 12193 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
3029adantr 480 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℝ)
3128, 30letri3d 11316 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 𝐴 ↔ ((𝐴 gcd 𝐵) ≤ 𝐴𝐴 ≤ (𝐴 gcd 𝐵))))
3227, 31sylibrd 259 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 → (𝐴 gcd 𝐵) = 𝐴))
336, 32impbid 212 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 𝐴𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  (class class class)co 7387  cr 11067  0cc0 11068  cle 11209  cn 12186  0cn0 12442  cz 12529  cdvds 16222   gcd cgcd 16464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465
This theorem is referenced by:  gcdeq  16523  isevengcd2  16700  iseven5  47662
  Copyright terms: Public domain W3C validator