Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gcdzeq | Structured version Visualization version GIF version |
Description: A positive integer 𝐴 is equal to its gcd with an integer 𝐵 if and only if 𝐴 divides 𝐵. Generalization of gcdeq 16115. (Contributed by AV, 1-Jul-2020.) |
Ref | Expression |
---|---|
gcdzeq | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 𝐴 ↔ 𝐴 ∥ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz 12199 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
2 | gcddvds 16062 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) | |
3 | 1, 2 | sylan 583 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) |
4 | 3 | simprd 499 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∥ 𝐵) |
5 | breq1 5056 | . . 3 ⊢ ((𝐴 gcd 𝐵) = 𝐴 → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ 𝐴 ∥ 𝐵)) | |
6 | 4, 5 | syl5ibcom 248 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 𝐴 → 𝐴 ∥ 𝐵)) |
7 | 1 | adantr 484 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ) |
8 | iddvds 15831 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → 𝐴 ∥ 𝐴) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐴 ∥ 𝐴) |
10 | simpr 488 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ) | |
11 | nnne0 11864 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | |
12 | simpl 486 | . . . . . . . . 9 ⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → 𝐴 = 0) | |
13 | 12 | necon3ai 2965 | . . . . . . . 8 ⊢ (𝐴 ≠ 0 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) |
14 | 11, 13 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) |
15 | 14 | adantr 484 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) |
16 | dvdslegcd 16063 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 ∥ 𝐴 ∧ 𝐴 ∥ 𝐵) → 𝐴 ≤ (𝐴 gcd 𝐵))) | |
17 | 7, 7, 10, 15, 16 | syl31anc 1375 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 ∥ 𝐴 ∧ 𝐴 ∥ 𝐵) → 𝐴 ≤ (𝐴 gcd 𝐵))) |
18 | 9, 17 | mpand 695 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 ∥ 𝐵 → 𝐴 ≤ (𝐴 gcd 𝐵))) |
19 | 3 | simpld 498 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∥ 𝐴) |
20 | gcdcl 16065 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0) | |
21 | 1, 20 | sylan 583 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0) |
22 | 21 | nn0zd 12280 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℤ) |
23 | simpl 486 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℕ) | |
24 | dvdsle 15871 | . . . . . 6 ⊢ (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 → (𝐴 gcd 𝐵) ≤ 𝐴)) | |
25 | 22, 23, 24 | syl2anc 587 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 → (𝐴 gcd 𝐵) ≤ 𝐴)) |
26 | 19, 25 | mpd 15 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ≤ 𝐴) |
27 | 18, 26 | jctild 529 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 ∥ 𝐵 → ((𝐴 gcd 𝐵) ≤ 𝐴 ∧ 𝐴 ≤ (𝐴 gcd 𝐵)))) |
28 | 21 | nn0red 12151 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℝ) |
29 | nnre 11837 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
30 | 29 | adantr 484 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℝ) |
31 | 28, 30 | letri3d 10974 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 𝐴 ↔ ((𝐴 gcd 𝐵) ≤ 𝐴 ∧ 𝐴 ≤ (𝐴 gcd 𝐵)))) |
32 | 27, 31 | sylibrd 262 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 ∥ 𝐵 → (𝐴 gcd 𝐵) = 𝐴)) |
33 | 6, 32 | impbid 215 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 𝐴 ↔ 𝐴 ∥ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 class class class wbr 5053 (class class class)co 7213 ℝcr 10728 0cc0 10729 ≤ cle 10868 ℕcn 11830 ℕ0cn0 12090 ℤcz 12176 ∥ cdvds 15815 gcd cgcd 16053 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-sup 9058 df-inf 9059 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-n0 12091 df-z 12177 df-uz 12439 df-rp 12587 df-seq 13575 df-exp 13636 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-dvds 15816 df-gcd 16054 |
This theorem is referenced by: gcdeq 16115 isevengcd2 16286 iseven5 44789 |
Copyright terms: Public domain | W3C validator |