![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gcdzeq | Structured version Visualization version GIF version |
Description: A positive integer 𝐴 is equal to its gcd with an integer 𝐵 if and only if 𝐴 divides 𝐵. Generalization of gcdeq 16532. (Contributed by AV, 1-Jul-2020.) |
Ref | Expression |
---|---|
gcdzeq | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 𝐴 ↔ 𝐴 ∥ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz 12612 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
2 | gcddvds 16481 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) | |
3 | 1, 2 | sylan 578 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) |
4 | 3 | simprd 494 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∥ 𝐵) |
5 | breq1 5152 | . . 3 ⊢ ((𝐴 gcd 𝐵) = 𝐴 → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ 𝐴 ∥ 𝐵)) | |
6 | 4, 5 | syl5ibcom 244 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 𝐴 → 𝐴 ∥ 𝐵)) |
7 | 1 | adantr 479 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ) |
8 | iddvds 16250 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → 𝐴 ∥ 𝐴) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐴 ∥ 𝐴) |
10 | simpr 483 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ) | |
11 | nnne0 12279 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | |
12 | simpl 481 | . . . . . . . . 9 ⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → 𝐴 = 0) | |
13 | 12 | necon3ai 2954 | . . . . . . . 8 ⊢ (𝐴 ≠ 0 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) |
14 | 11, 13 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) |
15 | 14 | adantr 479 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) |
16 | dvdslegcd 16482 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 ∥ 𝐴 ∧ 𝐴 ∥ 𝐵) → 𝐴 ≤ (𝐴 gcd 𝐵))) | |
17 | 7, 7, 10, 15, 16 | syl31anc 1370 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 ∥ 𝐴 ∧ 𝐴 ∥ 𝐵) → 𝐴 ≤ (𝐴 gcd 𝐵))) |
18 | 9, 17 | mpand 693 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 ∥ 𝐵 → 𝐴 ≤ (𝐴 gcd 𝐵))) |
19 | 3 | simpld 493 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∥ 𝐴) |
20 | gcdcl 16484 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0) | |
21 | 1, 20 | sylan 578 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0) |
22 | 21 | nn0zd 12617 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℤ) |
23 | simpl 481 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℕ) | |
24 | dvdsle 16290 | . . . . . 6 ⊢ (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 → (𝐴 gcd 𝐵) ≤ 𝐴)) | |
25 | 22, 23, 24 | syl2anc 582 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 → (𝐴 gcd 𝐵) ≤ 𝐴)) |
26 | 19, 25 | mpd 15 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ≤ 𝐴) |
27 | 18, 26 | jctild 524 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 ∥ 𝐵 → ((𝐴 gcd 𝐵) ≤ 𝐴 ∧ 𝐴 ≤ (𝐴 gcd 𝐵)))) |
28 | 21 | nn0red 12566 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℝ) |
29 | nnre 12252 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
30 | 29 | adantr 479 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℝ) |
31 | 28, 30 | letri3d 11388 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 𝐴 ↔ ((𝐴 gcd 𝐵) ≤ 𝐴 ∧ 𝐴 ≤ (𝐴 gcd 𝐵)))) |
32 | 27, 31 | sylibrd 258 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 ∥ 𝐵 → (𝐴 gcd 𝐵) = 𝐴)) |
33 | 6, 32 | impbid 211 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 𝐴 ↔ 𝐴 ∥ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 class class class wbr 5149 (class class class)co 7419 ℝcr 11139 0cc0 11140 ≤ cle 11281 ℕcn 12245 ℕ0cn0 12505 ℤcz 12591 ∥ cdvds 16234 gcd cgcd 16472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9467 df-inf 9468 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-n0 12506 df-z 12592 df-uz 12856 df-rp 13010 df-seq 14003 df-exp 14063 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-dvds 16235 df-gcd 16473 |
This theorem is referenced by: gcdeq 16532 isevengcd2 16705 iseven5 47141 |
Copyright terms: Public domain | W3C validator |