Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdzeq Structured version   Visualization version   GIF version

Theorem gcdzeq 15912
 Description: A positive integer 𝐴 is equal to its gcd with an integer 𝐵 if and only if 𝐴 divides 𝐵. Generalization of gcdeq 15913. (Contributed by AV, 1-Jul-2020.)
Assertion
Ref Expression
gcdzeq ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 𝐴𝐴𝐵))

Proof of Theorem gcdzeq
StepHypRef Expression
1 nnz 12012 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
2 gcddvds 15862 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
31, 2sylan 583 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
43simprd 499 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∥ 𝐵)
5 breq1 5037 . . 3 ((𝐴 gcd 𝐵) = 𝐴 → ((𝐴 gcd 𝐵) ∥ 𝐵𝐴𝐵))
64, 5syl5ibcom 248 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 𝐴𝐴𝐵))
71adantr 484 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ)
8 iddvds 15635 . . . . . 6 (𝐴 ∈ ℤ → 𝐴𝐴)
97, 8syl 17 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐴𝐴)
10 simpr 488 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ)
11 nnne0 11677 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ≠ 0)
12 simpl 486 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0) → 𝐴 = 0)
1312necon3ai 3012 . . . . . . . 8 (𝐴 ≠ 0 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
1411, 13syl 17 . . . . . . 7 (𝐴 ∈ ℕ → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
1514adantr 484 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
16 dvdslegcd 15863 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴𝐴𝐴𝐵) → 𝐴 ≤ (𝐴 gcd 𝐵)))
177, 7, 10, 15, 16syl31anc 1370 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴𝐴𝐴𝐵) → 𝐴 ≤ (𝐴 gcd 𝐵)))
189, 17mpand 694 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵𝐴 ≤ (𝐴 gcd 𝐵)))
193simpld 498 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∥ 𝐴)
20 gcdcl 15865 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0)
211, 20sylan 583 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0)
2221nn0zd 12093 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℤ)
23 simpl 486 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℕ)
24 dvdsle 15672 . . . . . 6 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 → (𝐴 gcd 𝐵) ≤ 𝐴))
2522, 23, 24syl2anc 587 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 → (𝐴 gcd 𝐵) ≤ 𝐴))
2619, 25mpd 15 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ≤ 𝐴)
2718, 26jctild 529 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 → ((𝐴 gcd 𝐵) ≤ 𝐴𝐴 ≤ (𝐴 gcd 𝐵))))
2821nn0red 11964 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℝ)
29 nnre 11650 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
3029adantr 484 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℝ)
3128, 30letri3d 10789 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 𝐴 ↔ ((𝐴 gcd 𝐵) ≤ 𝐴𝐴 ≤ (𝐴 gcd 𝐵))))
3227, 31sylibrd 262 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 → (𝐴 gcd 𝐵) = 𝐴))
336, 32impbid 215 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 𝐴𝐴𝐵))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2987   class class class wbr 5034  (class class class)co 7145  ℝcr 10543  0cc0 10544   ≤ cle 10683  ℕcn 11643  ℕ0cn0 11903  ℤcz 11989   ∥ cdvds 15619   gcd cgcd 15853 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621  ax-pre-sup 10622 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-2nd 7685  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-er 8290  df-en 8511  df-dom 8512  df-sdom 8513  df-sup 8908  df-inf 8909  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-div 11305  df-nn 11644  df-2 11706  df-3 11707  df-n0 11904  df-z 11990  df-uz 12252  df-rp 12398  df-seq 13385  df-exp 13446  df-cj 14470  df-re 14471  df-im 14472  df-sqrt 14606  df-abs 14607  df-dvds 15620  df-gcd 15854 This theorem is referenced by:  gcdeq  15913  isevengcd2  16080  iseven5  44350
 Copyright terms: Public domain W3C validator