MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem8 Structured version   Visualization version   GIF version

Theorem 2sqlem8 26774
Description: Lemma for 2sq 26778. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem7.2 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
2sqlem9.5 (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
2sqlem9.7 (𝜑𝑀𝑁)
2sqlem8.n (𝜑𝑁 ∈ ℕ)
2sqlem8.m (𝜑𝑀 ∈ (ℤ‘2))
2sqlem8.1 (𝜑𝐴 ∈ ℤ)
2sqlem8.2 (𝜑𝐵 ∈ ℤ)
2sqlem8.3 (𝜑 → (𝐴 gcd 𝐵) = 1)
2sqlem8.4 (𝜑𝑁 = ((𝐴↑2) + (𝐵↑2)))
2sqlem8.c 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
2sqlem8.d 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
2sqlem8.e 𝐸 = (𝐶 / (𝐶 gcd 𝐷))
2sqlem8.f 𝐹 = (𝐷 / (𝐶 gcd 𝐷))
Assertion
Ref Expression
2sqlem8 (𝜑𝑀𝑆)
Distinct variable groups:   𝑎,𝑏,𝑤,𝑥,𝑦,𝑧   𝐴,𝑎,𝑥,𝑦,𝑧   𝑥,𝐶   𝜑,𝑥,𝑦   𝐵,𝑎,𝑏,𝑥,𝑦   𝑀,𝑎,𝑏,𝑥,𝑦,𝑧   𝑆,𝑎,𝑏,𝑥,𝑦,𝑧   𝑥,𝐷   𝐸,𝑎,𝑥,𝑦,𝑧   𝑥,𝑁,𝑦,𝑧   𝑌,𝑎,𝑏,𝑥,𝑦   𝐹,𝑎,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑎,𝑏)   𝐴(𝑤,𝑏)   𝐵(𝑧,𝑤)   𝐶(𝑦,𝑧,𝑤,𝑎,𝑏)   𝐷(𝑦,𝑧,𝑤,𝑎,𝑏)   𝑆(𝑤)   𝐸(𝑤,𝑏)   𝐹(𝑤,𝑏)   𝑀(𝑤)   𝑁(𝑤,𝑎,𝑏)   𝑌(𝑧,𝑤)

Proof of Theorem 2sqlem8
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 2sq.1 . 2 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2 2sqlem8.m . . . 4 (𝜑𝑀 ∈ (ℤ‘2))
3 eluz2b3 12847 . . . 4 (𝑀 ∈ (ℤ‘2) ↔ (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1))
42, 3sylib 217 . . 3 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1))
54simpld 495 . 2 (𝜑𝑀 ∈ ℕ)
6 2sqlem9.7 . . . . . . 7 (𝜑𝑀𝑁)
7 eluzelz 12773 . . . . . . . . 9 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℤ)
82, 7syl 17 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
9 2sqlem8.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
109nnzd 12526 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
11 2sqlem8.1 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
12 2sqlem8.c . . . . . . . . . . . 12 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
1311, 5, 124sqlem5 16814 . . . . . . . . . . 11 (𝜑 → (𝐶 ∈ ℤ ∧ ((𝐴𝐶) / 𝑀) ∈ ℤ))
1413simpld 495 . . . . . . . . . 10 (𝜑𝐶 ∈ ℤ)
15 zsqcl 14034 . . . . . . . . . 10 (𝐶 ∈ ℤ → (𝐶↑2) ∈ ℤ)
1614, 15syl 17 . . . . . . . . 9 (𝜑 → (𝐶↑2) ∈ ℤ)
17 2sqlem8.2 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℤ)
18 2sqlem8.d . . . . . . . . . . . 12 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
1917, 5, 184sqlem5 16814 . . . . . . . . . . 11 (𝜑 → (𝐷 ∈ ℤ ∧ ((𝐵𝐷) / 𝑀) ∈ ℤ))
2019simpld 495 . . . . . . . . . 10 (𝜑𝐷 ∈ ℤ)
21 zsqcl 14034 . . . . . . . . . 10 (𝐷 ∈ ℤ → (𝐷↑2) ∈ ℤ)
2220, 21syl 17 . . . . . . . . 9 (𝜑 → (𝐷↑2) ∈ ℤ)
2316, 22zaddcld 12611 . . . . . . . 8 (𝜑 → ((𝐶↑2) + (𝐷↑2)) ∈ ℤ)
24 zsqcl 14034 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
2511, 24syl 17 . . . . . . . . . . 11 (𝜑 → (𝐴↑2) ∈ ℤ)
2625, 16zsubcld 12612 . . . . . . . . . 10 (𝜑 → ((𝐴↑2) − (𝐶↑2)) ∈ ℤ)
27 zsqcl 14034 . . . . . . . . . . . 12 (𝐵 ∈ ℤ → (𝐵↑2) ∈ ℤ)
2817, 27syl 17 . . . . . . . . . . 11 (𝜑 → (𝐵↑2) ∈ ℤ)
2928, 22zsubcld 12612 . . . . . . . . . 10 (𝜑 → ((𝐵↑2) − (𝐷↑2)) ∈ ℤ)
3011, 5, 124sqlem8 16817 . . . . . . . . . 10 (𝜑𝑀 ∥ ((𝐴↑2) − (𝐶↑2)))
3117, 5, 184sqlem8 16817 . . . . . . . . . 10 (𝜑𝑀 ∥ ((𝐵↑2) − (𝐷↑2)))
328, 26, 29, 30, 31dvds2addd 16174 . . . . . . . . 9 (𝜑𝑀 ∥ (((𝐴↑2) − (𝐶↑2)) + ((𝐵↑2) − (𝐷↑2))))
33 2sqlem8.4 . . . . . . . . . . 11 (𝜑𝑁 = ((𝐴↑2) + (𝐵↑2)))
3433oveq1d 7372 . . . . . . . . . 10 (𝜑 → (𝑁 − ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) − ((𝐶↑2) + (𝐷↑2))))
3525zcnd 12608 . . . . . . . . . . 11 (𝜑 → (𝐴↑2) ∈ ℂ)
3628zcnd 12608 . . . . . . . . . . 11 (𝜑 → (𝐵↑2) ∈ ℂ)
3716zcnd 12608 . . . . . . . . . . 11 (𝜑 → (𝐶↑2) ∈ ℂ)
3822zcnd 12608 . . . . . . . . . . 11 (𝜑 → (𝐷↑2) ∈ ℂ)
3935, 36, 37, 38addsub4d 11559 . . . . . . . . . 10 (𝜑 → (((𝐴↑2) + (𝐵↑2)) − ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) − (𝐶↑2)) + ((𝐵↑2) − (𝐷↑2))))
4034, 39eqtrd 2776 . . . . . . . . 9 (𝜑 → (𝑁 − ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) − (𝐶↑2)) + ((𝐵↑2) − (𝐷↑2))))
4132, 40breqtrrd 5133 . . . . . . . 8 (𝜑𝑀 ∥ (𝑁 − ((𝐶↑2) + (𝐷↑2))))
42 dvdssub2 16183 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((𝐶↑2) + (𝐷↑2)) ∈ ℤ) ∧ 𝑀 ∥ (𝑁 − ((𝐶↑2) + (𝐷↑2)))) → (𝑀𝑁𝑀 ∥ ((𝐶↑2) + (𝐷↑2))))
438, 10, 23, 41, 42syl31anc 1373 . . . . . . 7 (𝜑 → (𝑀𝑁𝑀 ∥ ((𝐶↑2) + (𝐷↑2))))
446, 43mpbid 231 . . . . . 6 (𝜑𝑀 ∥ ((𝐶↑2) + (𝐷↑2)))
45 2sqlem7.2 . . . . . . . . . . . 12 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
46 2sqlem9.5 . . . . . . . . . . . 12 (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
47 2sqlem8.3 . . . . . . . . . . . 12 (𝜑 → (𝐴 gcd 𝐵) = 1)
481, 45, 46, 6, 9, 2, 11, 17, 47, 33, 12, 182sqlem8a 26773 . . . . . . . . . . 11 (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ)
4948nnzd 12526 . . . . . . . . . 10 (𝜑 → (𝐶 gcd 𝐷) ∈ ℤ)
50 zsqcl2 14043 . . . . . . . . . 10 ((𝐶 gcd 𝐷) ∈ ℤ → ((𝐶 gcd 𝐷)↑2) ∈ ℕ0)
5149, 50syl 17 . . . . . . . . 9 (𝜑 → ((𝐶 gcd 𝐷)↑2) ∈ ℕ0)
5251nn0cnd 12475 . . . . . . . 8 (𝜑 → ((𝐶 gcd 𝐷)↑2) ∈ ℂ)
53 2sqlem8.e . . . . . . . . . . 11 𝐸 = (𝐶 / (𝐶 gcd 𝐷))
54 gcddvds 16383 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((𝐶 gcd 𝐷) ∥ 𝐶 ∧ (𝐶 gcd 𝐷) ∥ 𝐷))
5514, 20, 54syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((𝐶 gcd 𝐷) ∥ 𝐶 ∧ (𝐶 gcd 𝐷) ∥ 𝐷))
5655simpld 495 . . . . . . . . . . . 12 (𝜑 → (𝐶 gcd 𝐷) ∥ 𝐶)
5748nnne0d 12203 . . . . . . . . . . . . 13 (𝜑 → (𝐶 gcd 𝐷) ≠ 0)
58 dvdsval2 16139 . . . . . . . . . . . . 13 (((𝐶 gcd 𝐷) ∈ ℤ ∧ (𝐶 gcd 𝐷) ≠ 0 ∧ 𝐶 ∈ ℤ) → ((𝐶 gcd 𝐷) ∥ 𝐶 ↔ (𝐶 / (𝐶 gcd 𝐷)) ∈ ℤ))
5949, 57, 14, 58syl3anc 1371 . . . . . . . . . . . 12 (𝜑 → ((𝐶 gcd 𝐷) ∥ 𝐶 ↔ (𝐶 / (𝐶 gcd 𝐷)) ∈ ℤ))
6056, 59mpbid 231 . . . . . . . . . . 11 (𝜑 → (𝐶 / (𝐶 gcd 𝐷)) ∈ ℤ)
6153, 60eqeltrid 2842 . . . . . . . . . 10 (𝜑𝐸 ∈ ℤ)
62 zsqcl2 14043 . . . . . . . . . 10 (𝐸 ∈ ℤ → (𝐸↑2) ∈ ℕ0)
6361, 62syl 17 . . . . . . . . 9 (𝜑 → (𝐸↑2) ∈ ℕ0)
6463nn0cnd 12475 . . . . . . . 8 (𝜑 → (𝐸↑2) ∈ ℂ)
65 2sqlem8.f . . . . . . . . . . 11 𝐹 = (𝐷 / (𝐶 gcd 𝐷))
6655simprd 496 . . . . . . . . . . . 12 (𝜑 → (𝐶 gcd 𝐷) ∥ 𝐷)
67 dvdsval2 16139 . . . . . . . . . . . . 13 (((𝐶 gcd 𝐷) ∈ ℤ ∧ (𝐶 gcd 𝐷) ≠ 0 ∧ 𝐷 ∈ ℤ) → ((𝐶 gcd 𝐷) ∥ 𝐷 ↔ (𝐷 / (𝐶 gcd 𝐷)) ∈ ℤ))
6849, 57, 20, 67syl3anc 1371 . . . . . . . . . . . 12 (𝜑 → ((𝐶 gcd 𝐷) ∥ 𝐷 ↔ (𝐷 / (𝐶 gcd 𝐷)) ∈ ℤ))
6966, 68mpbid 231 . . . . . . . . . . 11 (𝜑 → (𝐷 / (𝐶 gcd 𝐷)) ∈ ℤ)
7065, 69eqeltrid 2842 . . . . . . . . . 10 (𝜑𝐹 ∈ ℤ)
71 zsqcl2 14043 . . . . . . . . . 10 (𝐹 ∈ ℤ → (𝐹↑2) ∈ ℕ0)
7270, 71syl 17 . . . . . . . . 9 (𝜑 → (𝐹↑2) ∈ ℕ0)
7372nn0cnd 12475 . . . . . . . 8 (𝜑 → (𝐹↑2) ∈ ℂ)
7452, 64, 73adddid 11179 . . . . . . 7 (𝜑 → (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2))) = ((((𝐶 gcd 𝐷)↑2) · (𝐸↑2)) + (((𝐶 gcd 𝐷)↑2) · (𝐹↑2))))
7549zcnd 12608 . . . . . . . . . 10 (𝜑 → (𝐶 gcd 𝐷) ∈ ℂ)
7661zcnd 12608 . . . . . . . . . 10 (𝜑𝐸 ∈ ℂ)
7775, 76sqmuld 14063 . . . . . . . . 9 (𝜑 → (((𝐶 gcd 𝐷) · 𝐸)↑2) = (((𝐶 gcd 𝐷)↑2) · (𝐸↑2)))
7853oveq2i 7368 . . . . . . . . . . 11 ((𝐶 gcd 𝐷) · 𝐸) = ((𝐶 gcd 𝐷) · (𝐶 / (𝐶 gcd 𝐷)))
7914zcnd 12608 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℂ)
8079, 75, 57divcan2d 11933 . . . . . . . . . . 11 (𝜑 → ((𝐶 gcd 𝐷) · (𝐶 / (𝐶 gcd 𝐷))) = 𝐶)
8178, 80eqtrid 2788 . . . . . . . . . 10 (𝜑 → ((𝐶 gcd 𝐷) · 𝐸) = 𝐶)
8281oveq1d 7372 . . . . . . . . 9 (𝜑 → (((𝐶 gcd 𝐷) · 𝐸)↑2) = (𝐶↑2))
8377, 82eqtr3d 2778 . . . . . . . 8 (𝜑 → (((𝐶 gcd 𝐷)↑2) · (𝐸↑2)) = (𝐶↑2))
8470zcnd 12608 . . . . . . . . . 10 (𝜑𝐹 ∈ ℂ)
8575, 84sqmuld 14063 . . . . . . . . 9 (𝜑 → (((𝐶 gcd 𝐷) · 𝐹)↑2) = (((𝐶 gcd 𝐷)↑2) · (𝐹↑2)))
8665oveq2i 7368 . . . . . . . . . . 11 ((𝐶 gcd 𝐷) · 𝐹) = ((𝐶 gcd 𝐷) · (𝐷 / (𝐶 gcd 𝐷)))
8720zcnd 12608 . . . . . . . . . . . 12 (𝜑𝐷 ∈ ℂ)
8887, 75, 57divcan2d 11933 . . . . . . . . . . 11 (𝜑 → ((𝐶 gcd 𝐷) · (𝐷 / (𝐶 gcd 𝐷))) = 𝐷)
8986, 88eqtrid 2788 . . . . . . . . . 10 (𝜑 → ((𝐶 gcd 𝐷) · 𝐹) = 𝐷)
9089oveq1d 7372 . . . . . . . . 9 (𝜑 → (((𝐶 gcd 𝐷) · 𝐹)↑2) = (𝐷↑2))
9185, 90eqtr3d 2778 . . . . . . . 8 (𝜑 → (((𝐶 gcd 𝐷)↑2) · (𝐹↑2)) = (𝐷↑2))
9283, 91oveq12d 7375 . . . . . . 7 (𝜑 → ((((𝐶 gcd 𝐷)↑2) · (𝐸↑2)) + (((𝐶 gcd 𝐷)↑2) · (𝐹↑2))) = ((𝐶↑2) + (𝐷↑2)))
9374, 92eqtrd 2776 . . . . . 6 (𝜑 → (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2))) = ((𝐶↑2) + (𝐷↑2)))
9444, 93breqtrrd 5133 . . . . 5 (𝜑𝑀 ∥ (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2))))
95 zsqcl 14034 . . . . . . . 8 ((𝐶 gcd 𝐷) ∈ ℤ → ((𝐶 gcd 𝐷)↑2) ∈ ℤ)
9649, 95syl 17 . . . . . . 7 (𝜑 → ((𝐶 gcd 𝐷)↑2) ∈ ℤ)
978, 96gcdcomd 16394 . . . . . 6 (𝜑 → (𝑀 gcd ((𝐶 gcd 𝐷)↑2)) = (((𝐶 gcd 𝐷)↑2) gcd 𝑀))
9849, 8gcdcld 16388 . . . . . . . . . . . . 13 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℕ0)
9998nn0zd 12525 . . . . . . . . . . . 12 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ)
100 gcddvds 16383 . . . . . . . . . . . . . 14 (((𝐶 gcd 𝐷) ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐶 gcd 𝐷) ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝑀))
10149, 8, 100syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐶 gcd 𝐷) ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝑀))
102101simpld 495 . . . . . . . . . . . 12 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐶 gcd 𝐷))
10399, 49, 14, 102, 56dvdstrd 16177 . . . . . . . . . . 11 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐶)
10411, 14zsubcld 12612 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐶) ∈ ℤ)
105101simprd 496 . . . . . . . . . . . . 13 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝑀)
10613simprd 496 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴𝐶) / 𝑀) ∈ ℤ)
1075nnne0d 12203 . . . . . . . . . . . . . . 15 (𝜑𝑀 ≠ 0)
108 dvdsval2 16139 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ (𝐴𝐶) ∈ ℤ) → (𝑀 ∥ (𝐴𝐶) ↔ ((𝐴𝐶) / 𝑀) ∈ ℤ))
1098, 107, 104, 108syl3anc 1371 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 ∥ (𝐴𝐶) ↔ ((𝐴𝐶) / 𝑀) ∈ ℤ))
110106, 109mpbird 256 . . . . . . . . . . . . 13 (𝜑𝑀 ∥ (𝐴𝐶))
11199, 8, 104, 105, 110dvdstrd 16177 . . . . . . . . . . . 12 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐴𝐶))
112 dvdssub2 16183 . . . . . . . . . . . 12 (((((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐴𝐶)) → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐴 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐶))
11399, 11, 14, 111, 112syl31anc 1373 . . . . . . . . . . 11 (𝜑 → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐴 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐶))
114103, 113mpbird 256 . . . . . . . . . 10 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐴)
11599, 49, 20, 102, 66dvdstrd 16177 . . . . . . . . . . 11 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐷)
11617, 20zsubcld 12612 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝐷) ∈ ℤ)
11719simprd 496 . . . . . . . . . . . . . 14 (𝜑 → ((𝐵𝐷) / 𝑀) ∈ ℤ)
118 dvdsval2 16139 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ (𝐵𝐷) ∈ ℤ) → (𝑀 ∥ (𝐵𝐷) ↔ ((𝐵𝐷) / 𝑀) ∈ ℤ))
1198, 107, 116, 118syl3anc 1371 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 ∥ (𝐵𝐷) ↔ ((𝐵𝐷) / 𝑀) ∈ ℤ))
120117, 119mpbird 256 . . . . . . . . . . . . 13 (𝜑𝑀 ∥ (𝐵𝐷))
12199, 8, 116, 105, 120dvdstrd 16177 . . . . . . . . . . . 12 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐵𝐷))
122 dvdssub2 16183 . . . . . . . . . . . 12 (((((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐵𝐷)) → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐵 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐷))
12399, 17, 20, 121, 122syl31anc 1373 . . . . . . . . . . 11 (𝜑 → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐵 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐷))
124115, 123mpbird 256 . . . . . . . . . 10 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐵)
125 ax-1ne0 11120 . . . . . . . . . . . . . . 15 1 ≠ 0
126125a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 1 ≠ 0)
12747, 126eqnetrd 3011 . . . . . . . . . . . . 13 (𝜑 → (𝐴 gcd 𝐵) ≠ 0)
128127neneqd 2948 . . . . . . . . . . . 12 (𝜑 → ¬ (𝐴 gcd 𝐵) = 0)
129 gcdeq0 16397 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
13011, 17, 129syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
131128, 130mtbid 323 . . . . . . . . . . 11 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
132 dvdslegcd 16384 . . . . . . . . . . 11 (((((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐴 ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐵) → ((𝐶 gcd 𝐷) gcd 𝑀) ≤ (𝐴 gcd 𝐵)))
13399, 11, 17, 131, 132syl31anc 1373 . . . . . . . . . 10 (𝜑 → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐴 ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐵) → ((𝐶 gcd 𝐷) gcd 𝑀) ≤ (𝐴 gcd 𝐵)))
134114, 124, 133mp2and 697 . . . . . . . . 9 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ≤ (𝐴 gcd 𝐵))
135134, 47breqtrd 5131 . . . . . . . 8 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ≤ 1)
136 simpr 485 . . . . . . . . . . . 12 (((𝐶 gcd 𝐷) = 0 ∧ 𝑀 = 0) → 𝑀 = 0)
137136necon3ai 2968 . . . . . . . . . . 11 (𝑀 ≠ 0 → ¬ ((𝐶 gcd 𝐷) = 0 ∧ 𝑀 = 0))
138107, 137syl 17 . . . . . . . . . 10 (𝜑 → ¬ ((𝐶 gcd 𝐷) = 0 ∧ 𝑀 = 0))
139 gcdn0cl 16382 . . . . . . . . . 10 ((((𝐶 gcd 𝐷) ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ¬ ((𝐶 gcd 𝐷) = 0 ∧ 𝑀 = 0)) → ((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℕ)
14049, 8, 138, 139syl21anc 836 . . . . . . . . 9 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℕ)
141 nnle1eq1 12183 . . . . . . . . 9 (((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℕ → (((𝐶 gcd 𝐷) gcd 𝑀) ≤ 1 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) = 1))
142140, 141syl 17 . . . . . . . 8 (𝜑 → (((𝐶 gcd 𝐷) gcd 𝑀) ≤ 1 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) = 1))
143135, 142mpbid 231 . . . . . . 7 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) = 1)
144 2nn 12226 . . . . . . . . 9 2 ∈ ℕ
145144a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℕ)
146 rplpwr 16438 . . . . . . . 8 (((𝐶 gcd 𝐷) ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 2 ∈ ℕ) → (((𝐶 gcd 𝐷) gcd 𝑀) = 1 → (((𝐶 gcd 𝐷)↑2) gcd 𝑀) = 1))
14748, 5, 145, 146syl3anc 1371 . . . . . . 7 (𝜑 → (((𝐶 gcd 𝐷) gcd 𝑀) = 1 → (((𝐶 gcd 𝐷)↑2) gcd 𝑀) = 1))
148143, 147mpd 15 . . . . . 6 (𝜑 → (((𝐶 gcd 𝐷)↑2) gcd 𝑀) = 1)
14997, 148eqtrd 2776 . . . . 5 (𝜑 → (𝑀 gcd ((𝐶 gcd 𝐷)↑2)) = 1)
15063, 72nn0addcld 12477 . . . . . . 7 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℕ0)
151150nn0zd 12525 . . . . . 6 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℤ)
152 coprmdvds 16529 . . . . . 6 ((𝑀 ∈ ℤ ∧ ((𝐶 gcd 𝐷)↑2) ∈ ℤ ∧ ((𝐸↑2) + (𝐹↑2)) ∈ ℤ) → ((𝑀 ∥ (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2))) ∧ (𝑀 gcd ((𝐶 gcd 𝐷)↑2)) = 1) → 𝑀 ∥ ((𝐸↑2) + (𝐹↑2))))
1538, 96, 151, 152syl3anc 1371 . . . . 5 (𝜑 → ((𝑀 ∥ (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2))) ∧ (𝑀 gcd ((𝐶 gcd 𝐷)↑2)) = 1) → 𝑀 ∥ ((𝐸↑2) + (𝐹↑2))))
15494, 149, 153mp2and 697 . . . 4 (𝜑𝑀 ∥ ((𝐸↑2) + (𝐹↑2)))
155 dvdsval2 16139 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ ((𝐸↑2) + (𝐹↑2)) ∈ ℤ) → (𝑀 ∥ ((𝐸↑2) + (𝐹↑2)) ↔ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ))
1568, 107, 151, 155syl3anc 1371 . . . 4 (𝜑 → (𝑀 ∥ ((𝐸↑2) + (𝐹↑2)) ↔ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ))
157154, 156mpbid 231 . . 3 (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ)
15863nn0red 12474 . . . . 5 (𝜑 → (𝐸↑2) ∈ ℝ)
15972nn0red 12474 . . . . 5 (𝜑 → (𝐹↑2) ∈ ℝ)
160158, 159readdcld 11184 . . . 4 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℝ)
1615nnred 12168 . . . 4 (𝜑𝑀 ∈ ℝ)
1621, 452sqlem7 26772 . . . . . . 7 𝑌 ⊆ (𝑆 ∩ ℕ)
163 inss2 4189 . . . . . . 7 (𝑆 ∩ ℕ) ⊆ ℕ
164162, 163sstri 3953 . . . . . 6 𝑌 ⊆ ℕ
16561, 70gcdcld 16388 . . . . . . . . . 10 (𝜑 → (𝐸 gcd 𝐹) ∈ ℕ0)
166165nn0cnd 12475 . . . . . . . . 9 (𝜑 → (𝐸 gcd 𝐹) ∈ ℂ)
167 1cnd 11150 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
16875mulid1d 11172 . . . . . . . . . 10 (𝜑 → ((𝐶 gcd 𝐷) · 1) = (𝐶 gcd 𝐷))
16981, 89oveq12d 7375 . . . . . . . . . 10 (𝜑 → (((𝐶 gcd 𝐷) · 𝐸) gcd ((𝐶 gcd 𝐷) · 𝐹)) = (𝐶 gcd 𝐷))
17014, 20gcdcld 16388 . . . . . . . . . . 11 (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ0)
171 mulgcd 16429 . . . . . . . . . . 11 (((𝐶 gcd 𝐷) ∈ ℕ0𝐸 ∈ ℤ ∧ 𝐹 ∈ ℤ) → (((𝐶 gcd 𝐷) · 𝐸) gcd ((𝐶 gcd 𝐷) · 𝐹)) = ((𝐶 gcd 𝐷) · (𝐸 gcd 𝐹)))
172170, 61, 70, 171syl3anc 1371 . . . . . . . . . 10 (𝜑 → (((𝐶 gcd 𝐷) · 𝐸) gcd ((𝐶 gcd 𝐷) · 𝐹)) = ((𝐶 gcd 𝐷) · (𝐸 gcd 𝐹)))
173168, 169, 1723eqtr2rd 2783 . . . . . . . . 9 (𝜑 → ((𝐶 gcd 𝐷) · (𝐸 gcd 𝐹)) = ((𝐶 gcd 𝐷) · 1))
174166, 167, 75, 57, 173mulcanad 11790 . . . . . . . 8 (𝜑 → (𝐸 gcd 𝐹) = 1)
175 eqidd 2737 . . . . . . . 8 (𝜑 → ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝐹↑2)))
176 oveq1 7364 . . . . . . . . . . 11 (𝑥 = 𝐸 → (𝑥 gcd 𝑦) = (𝐸 gcd 𝑦))
177176eqeq1d 2738 . . . . . . . . . 10 (𝑥 = 𝐸 → ((𝑥 gcd 𝑦) = 1 ↔ (𝐸 gcd 𝑦) = 1))
178 oveq1 7364 . . . . . . . . . . . 12 (𝑥 = 𝐸 → (𝑥↑2) = (𝐸↑2))
179178oveq1d 7372 . . . . . . . . . . 11 (𝑥 = 𝐸 → ((𝑥↑2) + (𝑦↑2)) = ((𝐸↑2) + (𝑦↑2)))
180179eqeq2d 2747 . . . . . . . . . 10 (𝑥 = 𝐸 → (((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝑦↑2))))
181177, 180anbi12d 631 . . . . . . . . 9 (𝑥 = 𝐸 → (((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ ((𝐸 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝑦↑2)))))
182 oveq2 7365 . . . . . . . . . . 11 (𝑦 = 𝐹 → (𝐸 gcd 𝑦) = (𝐸 gcd 𝐹))
183182eqeq1d 2738 . . . . . . . . . 10 (𝑦 = 𝐹 → ((𝐸 gcd 𝑦) = 1 ↔ (𝐸 gcd 𝐹) = 1))
184 oveq1 7364 . . . . . . . . . . . 12 (𝑦 = 𝐹 → (𝑦↑2) = (𝐹↑2))
185184oveq2d 7373 . . . . . . . . . . 11 (𝑦 = 𝐹 → ((𝐸↑2) + (𝑦↑2)) = ((𝐸↑2) + (𝐹↑2)))
186185eqeq2d 2747 . . . . . . . . . 10 (𝑦 = 𝐹 → (((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝑦↑2)) ↔ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝐹↑2))))
187183, 186anbi12d 631 . . . . . . . . 9 (𝑦 = 𝐹 → (((𝐸 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝑦↑2))) ↔ ((𝐸 gcd 𝐹) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝐹↑2)))))
188181, 187rspc2ev 3592 . . . . . . . 8 ((𝐸 ∈ ℤ ∧ 𝐹 ∈ ℤ ∧ ((𝐸 gcd 𝐹) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝐹↑2)))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2))))
18961, 70, 174, 175, 188syl112anc 1374 . . . . . . 7 (𝜑 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2))))
190 ovex 7390 . . . . . . . 8 ((𝐸↑2) + (𝐹↑2)) ∈ V
191 eqeq1 2740 . . . . . . . . . 10 (𝑧 = ((𝐸↑2) + (𝐹↑2)) → (𝑧 = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2))))
192191anbi2d 629 . . . . . . . . 9 (𝑧 = ((𝐸↑2) + (𝐹↑2)) → (((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) ↔ ((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2)))))
1931922rexbidv 3213 . . . . . . . 8 (𝑧 = ((𝐸↑2) + (𝐹↑2)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2)))))
194190, 193, 45elab2 3634 . . . . . . 7 (((𝐸↑2) + (𝐹↑2)) ∈ 𝑌 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2))))
195189, 194sylibr 233 . . . . . 6 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ 𝑌)
196164, 195sselid 3942 . . . . 5 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℕ)
197196nngt0d 12202 . . . 4 (𝜑 → 0 < ((𝐸↑2) + (𝐹↑2)))
1985nngt0d 12202 . . . 4 (𝜑 → 0 < 𝑀)
199160, 161, 197, 198divgt0d 12090 . . 3 (𝜑 → 0 < (((𝐸↑2) + (𝐹↑2)) / 𝑀))
200 elnnz 12509 . . 3 ((((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℕ ↔ ((((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ ∧ 0 < (((𝐸↑2) + (𝐹↑2)) / 𝑀)))
201157, 199, 200sylanbrc 583 . 2 (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℕ)
202 prmnn 16550 . . . . . . . 8 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
203202ad2antrl 726 . . . . . . 7 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∈ ℕ)
204203nnred 12168 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∈ ℝ)
205157adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ)
206205zred 12607 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℝ)
207 peano2zm 12546 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
2088, 207syl 17 . . . . . . . . . 10 (𝜑 → (𝑀 − 1) ∈ ℤ)
209208zred 12607 . . . . . . . . 9 (𝜑 → (𝑀 − 1) ∈ ℝ)
210209adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (𝑀 − 1) ∈ ℝ)
211 simprr 771 . . . . . . . . 9 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))
212 prmz 16551 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
213212ad2antrl 726 . . . . . . . . . 10 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∈ ℤ)
214201adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℕ)
215 dvdsle 16192 . . . . . . . . . 10 ((𝑝 ∈ ℤ ∧ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℕ) → (𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀) → 𝑝 ≤ (((𝐸↑2) + (𝐹↑2)) / 𝑀)))
216213, 214, 215syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀) → 𝑝 ≤ (((𝐸↑2) + (𝐹↑2)) / 𝑀)))
217211, 216mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ≤ (((𝐸↑2) + (𝐹↑2)) / 𝑀))
218 zsqcl 14034 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → (𝑀↑2) ∈ ℤ)
2198, 218syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀↑2) ∈ ℤ)
220219zred 12607 . . . . . . . . . . . . . 14 (𝜑 → (𝑀↑2) ∈ ℝ)
221220rehalfcld 12400 . . . . . . . . . . . . 13 (𝜑 → ((𝑀↑2) / 2) ∈ ℝ)
22216zred 12607 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶↑2) ∈ ℝ)
22322zred 12607 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷↑2) ∈ ℝ)
224222, 223readdcld 11184 . . . . . . . . . . . . . 14 (𝜑 → ((𝐶↑2) + (𝐷↑2)) ∈ ℝ)
225 1red 11156 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ)
22648nnsqcld 14147 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐶 gcd 𝐷)↑2) ∈ ℕ)
227226nnred 12168 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐶 gcd 𝐷)↑2) ∈ ℝ)
228150nn0ge0d 12476 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ ((𝐸↑2) + (𝐹↑2)))
229226nnge1d 12201 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ≤ ((𝐶 gcd 𝐷)↑2))
230225, 227, 160, 228, 229lemul1ad 12094 . . . . . . . . . . . . . . 15 (𝜑 → (1 · ((𝐸↑2) + (𝐹↑2))) ≤ (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2))))
231150nn0cnd 12475 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℂ)
232231mulid2d 11173 . . . . . . . . . . . . . . 15 (𝜑 → (1 · ((𝐸↑2) + (𝐹↑2))) = ((𝐸↑2) + (𝐹↑2)))
233230, 232, 933brtr3d 5136 . . . . . . . . . . . . . 14 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ≤ ((𝐶↑2) + (𝐷↑2)))
234221rehalfcld 12400 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑀↑2) / 2) / 2) ∈ ℝ)
23511, 5, 124sqlem7 16816 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶↑2) ≤ (((𝑀↑2) / 2) / 2))
23617, 5, 184sqlem7 16816 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐷↑2) ≤ (((𝑀↑2) / 2) / 2))
237222, 223, 234, 234, 235, 236le2addd 11774 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐶↑2) + (𝐷↑2)) ≤ ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)))
238221recnd 11183 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑀↑2) / 2) ∈ ℂ)
2392382halvesd 12399 . . . . . . . . . . . . . . 15 (𝜑 → ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) = ((𝑀↑2) / 2))
240237, 239breqtrd 5131 . . . . . . . . . . . . . 14 (𝜑 → ((𝐶↑2) + (𝐷↑2)) ≤ ((𝑀↑2) / 2))
241160, 224, 221, 233, 240letrd 11312 . . . . . . . . . . . . 13 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ≤ ((𝑀↑2) / 2))
2425nnsqcld 14147 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀↑2) ∈ ℕ)
243242nnrpd 12955 . . . . . . . . . . . . . 14 (𝜑 → (𝑀↑2) ∈ ℝ+)
244 rphalflt 12944 . . . . . . . . . . . . . 14 ((𝑀↑2) ∈ ℝ+ → ((𝑀↑2) / 2) < (𝑀↑2))
245243, 244syl 17 . . . . . . . . . . . . 13 (𝜑 → ((𝑀↑2) / 2) < (𝑀↑2))
246160, 221, 220, 241, 245lelttrd 11313 . . . . . . . . . . . 12 (𝜑 → ((𝐸↑2) + (𝐹↑2)) < (𝑀↑2))
2478zcnd 12608 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℂ)
248247sqvald 14048 . . . . . . . . . . . 12 (𝜑 → (𝑀↑2) = (𝑀 · 𝑀))
249246, 248breqtrd 5131 . . . . . . . . . . 11 (𝜑 → ((𝐸↑2) + (𝐹↑2)) < (𝑀 · 𝑀))
250 ltdivmul 12030 . . . . . . . . . . . 12 ((((𝐸↑2) + (𝐹↑2)) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → ((((𝐸↑2) + (𝐹↑2)) / 𝑀) < 𝑀 ↔ ((𝐸↑2) + (𝐹↑2)) < (𝑀 · 𝑀)))
251160, 161, 161, 198, 250syl112anc 1374 . . . . . . . . . . 11 (𝜑 → ((((𝐸↑2) + (𝐹↑2)) / 𝑀) < 𝑀 ↔ ((𝐸↑2) + (𝐹↑2)) < (𝑀 · 𝑀)))
252249, 251mpbird 256 . . . . . . . . . 10 (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) < 𝑀)
253 zltlem1 12556 . . . . . . . . . . 11 (((((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((𝐸↑2) + (𝐹↑2)) / 𝑀) < 𝑀 ↔ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ≤ (𝑀 − 1)))
254157, 8, 253syl2anc 584 . . . . . . . . . 10 (𝜑 → ((((𝐸↑2) + (𝐹↑2)) / 𝑀) < 𝑀 ↔ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ≤ (𝑀 − 1)))
255252, 254mpbid 231 . . . . . . . . 9 (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ≤ (𝑀 − 1))
256255adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ≤ (𝑀 − 1))
257204, 206, 210, 217, 256letrd 11312 . . . . . . 7 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ≤ (𝑀 − 1))
258208adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (𝑀 − 1) ∈ ℤ)
259 fznn 13509 . . . . . . . 8 ((𝑀 − 1) ∈ ℤ → (𝑝 ∈ (1...(𝑀 − 1)) ↔ (𝑝 ∈ ℕ ∧ 𝑝 ≤ (𝑀 − 1))))
260258, 259syl 17 . . . . . . 7 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (𝑝 ∈ (1...(𝑀 − 1)) ↔ (𝑝 ∈ ℕ ∧ 𝑝 ≤ (𝑀 − 1))))
261203, 257, 260mpbir2and 711 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∈ (1...(𝑀 − 1)))
262195adantr 481 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → ((𝐸↑2) + (𝐹↑2)) ∈ 𝑌)
263261, 262jca 512 . . . . 5 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (𝑝 ∈ (1...(𝑀 − 1)) ∧ ((𝐸↑2) + (𝐹↑2)) ∈ 𝑌))
26446adantr 481 . . . . 5 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
265151adantr 481 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → ((𝐸↑2) + (𝐹↑2)) ∈ ℤ)
266 dvdsmul2 16161 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∥ (𝑀 · (((𝐸↑2) + (𝐹↑2)) / 𝑀)))
2678, 157, 266syl2anc 584 . . . . . . . 8 (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∥ (𝑀 · (((𝐸↑2) + (𝐹↑2)) / 𝑀)))
268231, 247, 107divcan2d 11933 . . . . . . . 8 (𝜑 → (𝑀 · (((𝐸↑2) + (𝐹↑2)) / 𝑀)) = ((𝐸↑2) + (𝐹↑2)))
269267, 268breqtrd 5131 . . . . . . 7 (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∥ ((𝐸↑2) + (𝐹↑2)))
270269adantr 481 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∥ ((𝐸↑2) + (𝐹↑2)))
271213, 205, 265, 211, 270dvdstrd 16177 . . . . 5 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∥ ((𝐸↑2) + (𝐹↑2)))
272 breq1 5108 . . . . . . 7 (𝑏 = 𝑝 → (𝑏𝑎𝑝𝑎))
273 eleq1w 2820 . . . . . . 7 (𝑏 = 𝑝 → (𝑏𝑆𝑝𝑆))
274272, 273imbi12d 344 . . . . . 6 (𝑏 = 𝑝 → ((𝑏𝑎𝑏𝑆) ↔ (𝑝𝑎𝑝𝑆)))
275 breq2 5109 . . . . . . 7 (𝑎 = ((𝐸↑2) + (𝐹↑2)) → (𝑝𝑎𝑝 ∥ ((𝐸↑2) + (𝐹↑2))))
276275imbi1d 341 . . . . . 6 (𝑎 = ((𝐸↑2) + (𝐹↑2)) → ((𝑝𝑎𝑝𝑆) ↔ (𝑝 ∥ ((𝐸↑2) + (𝐹↑2)) → 𝑝𝑆)))
277274, 276rspc2v 3590 . . . . 5 ((𝑝 ∈ (1...(𝑀 − 1)) ∧ ((𝐸↑2) + (𝐹↑2)) ∈ 𝑌) → (∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆) → (𝑝 ∥ ((𝐸↑2) + (𝐹↑2)) → 𝑝𝑆)))
278263, 264, 271, 277syl3c 66 . . . 4 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝𝑆)
279278expr 457 . . 3 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀) → 𝑝𝑆))
280279ralrimiva 3143 . 2 (𝜑 → ∀𝑝 ∈ ℙ (𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀) → 𝑝𝑆))
281 inss1 4188 . . . . 5 (𝑆 ∩ ℕ) ⊆ 𝑆
282162, 281sstri 3953 . . . 4 𝑌𝑆
283282, 195sselid 3942 . . 3 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ 𝑆)
284268, 283eqeltrd 2838 . 2 (𝜑 → (𝑀 · (((𝐸↑2) + (𝐹↑2)) / 𝑀)) ∈ 𝑆)
2851, 5, 201, 280, 2842sqlem6 26771 1 (𝜑𝑀𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  {cab 2713  wne 2943  wral 3064  wrex 3073  cin 3909   class class class wbr 5105  cmpt 5188  ran crn 5634  cfv 6496  (class class class)co 7357  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  0cn0 12413  cz 12499  cuz 12763  +crp 12915  ...cfz 13424   mod cmo 13774  cexp 13967  abscabs 15119  cdvds 16136   gcd cgcd 16374  cprime 16547  ℤ[i]cgz 16801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137  df-gcd 16375  df-prm 16548  df-gz 16802
This theorem is referenced by:  2sqlem9  26775
  Copyright terms: Public domain W3C validator