MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem8 Structured version   Visualization version   GIF version

Theorem 2sqlem8 26001
Description: Lemma for 2sq 26005. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem7.2 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
2sqlem9.5 (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
2sqlem9.7 (𝜑𝑀𝑁)
2sqlem8.n (𝜑𝑁 ∈ ℕ)
2sqlem8.m (𝜑𝑀 ∈ (ℤ‘2))
2sqlem8.1 (𝜑𝐴 ∈ ℤ)
2sqlem8.2 (𝜑𝐵 ∈ ℤ)
2sqlem8.3 (𝜑 → (𝐴 gcd 𝐵) = 1)
2sqlem8.4 (𝜑𝑁 = ((𝐴↑2) + (𝐵↑2)))
2sqlem8.c 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
2sqlem8.d 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
2sqlem8.e 𝐸 = (𝐶 / (𝐶 gcd 𝐷))
2sqlem8.f 𝐹 = (𝐷 / (𝐶 gcd 𝐷))
Assertion
Ref Expression
2sqlem8 (𝜑𝑀𝑆)
Distinct variable groups:   𝑎,𝑏,𝑤,𝑥,𝑦,𝑧   𝐴,𝑎,𝑥,𝑦,𝑧   𝑥,𝐶   𝜑,𝑥,𝑦   𝐵,𝑎,𝑏,𝑥,𝑦   𝑀,𝑎,𝑏,𝑥,𝑦,𝑧   𝑆,𝑎,𝑏,𝑥,𝑦,𝑧   𝑥,𝐷   𝐸,𝑎,𝑥,𝑦,𝑧   𝑥,𝑁,𝑦,𝑧   𝑌,𝑎,𝑏,𝑥,𝑦   𝐹,𝑎,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑎,𝑏)   𝐴(𝑤,𝑏)   𝐵(𝑧,𝑤)   𝐶(𝑦,𝑧,𝑤,𝑎,𝑏)   𝐷(𝑦,𝑧,𝑤,𝑎,𝑏)   𝑆(𝑤)   𝐸(𝑤,𝑏)   𝐹(𝑤,𝑏)   𝑀(𝑤)   𝑁(𝑤,𝑎,𝑏)   𝑌(𝑧,𝑤)

Proof of Theorem 2sqlem8
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 2sq.1 . 2 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2 2sqlem8.m . . . 4 (𝜑𝑀 ∈ (ℤ‘2))
3 eluz2b3 12321 . . . 4 (𝑀 ∈ (ℤ‘2) ↔ (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1))
42, 3sylib 220 . . 3 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1))
54simpld 497 . 2 (𝜑𝑀 ∈ ℕ)
6 2sqlem9.7 . . . . . . 7 (𝜑𝑀𝑁)
7 eluzelz 12252 . . . . . . . . 9 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℤ)
82, 7syl 17 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
9 2sqlem8.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
109nnzd 12085 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
11 2sqlem8.1 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
12 2sqlem8.c . . . . . . . . . . . 12 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
1311, 5, 124sqlem5 16277 . . . . . . . . . . 11 (𝜑 → (𝐶 ∈ ℤ ∧ ((𝐴𝐶) / 𝑀) ∈ ℤ))
1413simpld 497 . . . . . . . . . 10 (𝜑𝐶 ∈ ℤ)
15 zsqcl 13493 . . . . . . . . . 10 (𝐶 ∈ ℤ → (𝐶↑2) ∈ ℤ)
1614, 15syl 17 . . . . . . . . 9 (𝜑 → (𝐶↑2) ∈ ℤ)
17 2sqlem8.2 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℤ)
18 2sqlem8.d . . . . . . . . . . . 12 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
1917, 5, 184sqlem5 16277 . . . . . . . . . . 11 (𝜑 → (𝐷 ∈ ℤ ∧ ((𝐵𝐷) / 𝑀) ∈ ℤ))
2019simpld 497 . . . . . . . . . 10 (𝜑𝐷 ∈ ℤ)
21 zsqcl 13493 . . . . . . . . . 10 (𝐷 ∈ ℤ → (𝐷↑2) ∈ ℤ)
2220, 21syl 17 . . . . . . . . 9 (𝜑 → (𝐷↑2) ∈ ℤ)
2316, 22zaddcld 12090 . . . . . . . 8 (𝜑 → ((𝐶↑2) + (𝐷↑2)) ∈ ℤ)
2411, 5, 124sqlem8 16280 . . . . . . . . . 10 (𝜑𝑀 ∥ ((𝐴↑2) − (𝐶↑2)))
2517, 5, 184sqlem8 16280 . . . . . . . . . 10 (𝜑𝑀 ∥ ((𝐵↑2) − (𝐷↑2)))
26 zsqcl 13493 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
2711, 26syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐴↑2) ∈ ℤ)
2827, 16zsubcld 12091 . . . . . . . . . . 11 (𝜑 → ((𝐴↑2) − (𝐶↑2)) ∈ ℤ)
29 zsqcl 13493 . . . . . . . . . . . . 13 (𝐵 ∈ ℤ → (𝐵↑2) ∈ ℤ)
3017, 29syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐵↑2) ∈ ℤ)
3130, 22zsubcld 12091 . . . . . . . . . . 11 (𝜑 → ((𝐵↑2) − (𝐷↑2)) ∈ ℤ)
32 dvds2add 15642 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ ((𝐴↑2) − (𝐶↑2)) ∈ ℤ ∧ ((𝐵↑2) − (𝐷↑2)) ∈ ℤ) → ((𝑀 ∥ ((𝐴↑2) − (𝐶↑2)) ∧ 𝑀 ∥ ((𝐵↑2) − (𝐷↑2))) → 𝑀 ∥ (((𝐴↑2) − (𝐶↑2)) + ((𝐵↑2) − (𝐷↑2)))))
338, 28, 31, 32syl3anc 1367 . . . . . . . . . 10 (𝜑 → ((𝑀 ∥ ((𝐴↑2) − (𝐶↑2)) ∧ 𝑀 ∥ ((𝐵↑2) − (𝐷↑2))) → 𝑀 ∥ (((𝐴↑2) − (𝐶↑2)) + ((𝐵↑2) − (𝐷↑2)))))
3424, 25, 33mp2and 697 . . . . . . . . 9 (𝜑𝑀 ∥ (((𝐴↑2) − (𝐶↑2)) + ((𝐵↑2) − (𝐷↑2))))
35 2sqlem8.4 . . . . . . . . . . 11 (𝜑𝑁 = ((𝐴↑2) + (𝐵↑2)))
3635oveq1d 7170 . . . . . . . . . 10 (𝜑 → (𝑁 − ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) − ((𝐶↑2) + (𝐷↑2))))
3727zcnd 12087 . . . . . . . . . . 11 (𝜑 → (𝐴↑2) ∈ ℂ)
3830zcnd 12087 . . . . . . . . . . 11 (𝜑 → (𝐵↑2) ∈ ℂ)
3916zcnd 12087 . . . . . . . . . . 11 (𝜑 → (𝐶↑2) ∈ ℂ)
4022zcnd 12087 . . . . . . . . . . 11 (𝜑 → (𝐷↑2) ∈ ℂ)
4137, 38, 39, 40addsub4d 11043 . . . . . . . . . 10 (𝜑 → (((𝐴↑2) + (𝐵↑2)) − ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) − (𝐶↑2)) + ((𝐵↑2) − (𝐷↑2))))
4236, 41eqtrd 2856 . . . . . . . . 9 (𝜑 → (𝑁 − ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) − (𝐶↑2)) + ((𝐵↑2) − (𝐷↑2))))
4334, 42breqtrrd 5093 . . . . . . . 8 (𝜑𝑀 ∥ (𝑁 − ((𝐶↑2) + (𝐷↑2))))
44 dvdssub2 15650 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((𝐶↑2) + (𝐷↑2)) ∈ ℤ) ∧ 𝑀 ∥ (𝑁 − ((𝐶↑2) + (𝐷↑2)))) → (𝑀𝑁𝑀 ∥ ((𝐶↑2) + (𝐷↑2))))
458, 10, 23, 43, 44syl31anc 1369 . . . . . . 7 (𝜑 → (𝑀𝑁𝑀 ∥ ((𝐶↑2) + (𝐷↑2))))
466, 45mpbid 234 . . . . . 6 (𝜑𝑀 ∥ ((𝐶↑2) + (𝐷↑2)))
47 2sqlem7.2 . . . . . . . . . . . 12 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
48 2sqlem9.5 . . . . . . . . . . . 12 (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
49 2sqlem8.3 . . . . . . . . . . . 12 (𝜑 → (𝐴 gcd 𝐵) = 1)
501, 47, 48, 6, 9, 2, 11, 17, 49, 35, 12, 182sqlem8a 26000 . . . . . . . . . . 11 (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ)
5150nnzd 12085 . . . . . . . . . 10 (𝜑 → (𝐶 gcd 𝐷) ∈ ℤ)
52 zsqcl2 13501 . . . . . . . . . 10 ((𝐶 gcd 𝐷) ∈ ℤ → ((𝐶 gcd 𝐷)↑2) ∈ ℕ0)
5351, 52syl 17 . . . . . . . . 9 (𝜑 → ((𝐶 gcd 𝐷)↑2) ∈ ℕ0)
5453nn0cnd 11956 . . . . . . . 8 (𝜑 → ((𝐶 gcd 𝐷)↑2) ∈ ℂ)
55 2sqlem8.e . . . . . . . . . . 11 𝐸 = (𝐶 / (𝐶 gcd 𝐷))
56 gcddvds 15851 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((𝐶 gcd 𝐷) ∥ 𝐶 ∧ (𝐶 gcd 𝐷) ∥ 𝐷))
5714, 20, 56syl2anc 586 . . . . . . . . . . . . 13 (𝜑 → ((𝐶 gcd 𝐷) ∥ 𝐶 ∧ (𝐶 gcd 𝐷) ∥ 𝐷))
5857simpld 497 . . . . . . . . . . . 12 (𝜑 → (𝐶 gcd 𝐷) ∥ 𝐶)
5950nnne0d 11686 . . . . . . . . . . . . 13 (𝜑 → (𝐶 gcd 𝐷) ≠ 0)
60 dvdsval2 15609 . . . . . . . . . . . . 13 (((𝐶 gcd 𝐷) ∈ ℤ ∧ (𝐶 gcd 𝐷) ≠ 0 ∧ 𝐶 ∈ ℤ) → ((𝐶 gcd 𝐷) ∥ 𝐶 ↔ (𝐶 / (𝐶 gcd 𝐷)) ∈ ℤ))
6151, 59, 14, 60syl3anc 1367 . . . . . . . . . . . 12 (𝜑 → ((𝐶 gcd 𝐷) ∥ 𝐶 ↔ (𝐶 / (𝐶 gcd 𝐷)) ∈ ℤ))
6258, 61mpbid 234 . . . . . . . . . . 11 (𝜑 → (𝐶 / (𝐶 gcd 𝐷)) ∈ ℤ)
6355, 62eqeltrid 2917 . . . . . . . . . 10 (𝜑𝐸 ∈ ℤ)
64 zsqcl2 13501 . . . . . . . . . 10 (𝐸 ∈ ℤ → (𝐸↑2) ∈ ℕ0)
6563, 64syl 17 . . . . . . . . 9 (𝜑 → (𝐸↑2) ∈ ℕ0)
6665nn0cnd 11956 . . . . . . . 8 (𝜑 → (𝐸↑2) ∈ ℂ)
67 2sqlem8.f . . . . . . . . . . 11 𝐹 = (𝐷 / (𝐶 gcd 𝐷))
6857simprd 498 . . . . . . . . . . . 12 (𝜑 → (𝐶 gcd 𝐷) ∥ 𝐷)
69 dvdsval2 15609 . . . . . . . . . . . . 13 (((𝐶 gcd 𝐷) ∈ ℤ ∧ (𝐶 gcd 𝐷) ≠ 0 ∧ 𝐷 ∈ ℤ) → ((𝐶 gcd 𝐷) ∥ 𝐷 ↔ (𝐷 / (𝐶 gcd 𝐷)) ∈ ℤ))
7051, 59, 20, 69syl3anc 1367 . . . . . . . . . . . 12 (𝜑 → ((𝐶 gcd 𝐷) ∥ 𝐷 ↔ (𝐷 / (𝐶 gcd 𝐷)) ∈ ℤ))
7168, 70mpbid 234 . . . . . . . . . . 11 (𝜑 → (𝐷 / (𝐶 gcd 𝐷)) ∈ ℤ)
7267, 71eqeltrid 2917 . . . . . . . . . 10 (𝜑𝐹 ∈ ℤ)
73 zsqcl2 13501 . . . . . . . . . 10 (𝐹 ∈ ℤ → (𝐹↑2) ∈ ℕ0)
7472, 73syl 17 . . . . . . . . 9 (𝜑 → (𝐹↑2) ∈ ℕ0)
7574nn0cnd 11956 . . . . . . . 8 (𝜑 → (𝐹↑2) ∈ ℂ)
7654, 66, 75adddid 10664 . . . . . . 7 (𝜑 → (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2))) = ((((𝐶 gcd 𝐷)↑2) · (𝐸↑2)) + (((𝐶 gcd 𝐷)↑2) · (𝐹↑2))))
7751zcnd 12087 . . . . . . . . . 10 (𝜑 → (𝐶 gcd 𝐷) ∈ ℂ)
7863zcnd 12087 . . . . . . . . . 10 (𝜑𝐸 ∈ ℂ)
7977, 78sqmuld 13521 . . . . . . . . 9 (𝜑 → (((𝐶 gcd 𝐷) · 𝐸)↑2) = (((𝐶 gcd 𝐷)↑2) · (𝐸↑2)))
8055oveq2i 7166 . . . . . . . . . . 11 ((𝐶 gcd 𝐷) · 𝐸) = ((𝐶 gcd 𝐷) · (𝐶 / (𝐶 gcd 𝐷)))
8114zcnd 12087 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℂ)
8281, 77, 59divcan2d 11417 . . . . . . . . . . 11 (𝜑 → ((𝐶 gcd 𝐷) · (𝐶 / (𝐶 gcd 𝐷))) = 𝐶)
8380, 82syl5eq 2868 . . . . . . . . . 10 (𝜑 → ((𝐶 gcd 𝐷) · 𝐸) = 𝐶)
8483oveq1d 7170 . . . . . . . . 9 (𝜑 → (((𝐶 gcd 𝐷) · 𝐸)↑2) = (𝐶↑2))
8579, 84eqtr3d 2858 . . . . . . . 8 (𝜑 → (((𝐶 gcd 𝐷)↑2) · (𝐸↑2)) = (𝐶↑2))
8672zcnd 12087 . . . . . . . . . 10 (𝜑𝐹 ∈ ℂ)
8777, 86sqmuld 13521 . . . . . . . . 9 (𝜑 → (((𝐶 gcd 𝐷) · 𝐹)↑2) = (((𝐶 gcd 𝐷)↑2) · (𝐹↑2)))
8867oveq2i 7166 . . . . . . . . . . 11 ((𝐶 gcd 𝐷) · 𝐹) = ((𝐶 gcd 𝐷) · (𝐷 / (𝐶 gcd 𝐷)))
8920zcnd 12087 . . . . . . . . . . . 12 (𝜑𝐷 ∈ ℂ)
9089, 77, 59divcan2d 11417 . . . . . . . . . . 11 (𝜑 → ((𝐶 gcd 𝐷) · (𝐷 / (𝐶 gcd 𝐷))) = 𝐷)
9188, 90syl5eq 2868 . . . . . . . . . 10 (𝜑 → ((𝐶 gcd 𝐷) · 𝐹) = 𝐷)
9291oveq1d 7170 . . . . . . . . 9 (𝜑 → (((𝐶 gcd 𝐷) · 𝐹)↑2) = (𝐷↑2))
9387, 92eqtr3d 2858 . . . . . . . 8 (𝜑 → (((𝐶 gcd 𝐷)↑2) · (𝐹↑2)) = (𝐷↑2))
9485, 93oveq12d 7173 . . . . . . 7 (𝜑 → ((((𝐶 gcd 𝐷)↑2) · (𝐸↑2)) + (((𝐶 gcd 𝐷)↑2) · (𝐹↑2))) = ((𝐶↑2) + (𝐷↑2)))
9576, 94eqtrd 2856 . . . . . 6 (𝜑 → (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2))) = ((𝐶↑2) + (𝐷↑2)))
9646, 95breqtrrd 5093 . . . . 5 (𝜑𝑀 ∥ (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2))))
97 zsqcl 13493 . . . . . . . 8 ((𝐶 gcd 𝐷) ∈ ℤ → ((𝐶 gcd 𝐷)↑2) ∈ ℤ)
9851, 97syl 17 . . . . . . 7 (𝜑 → ((𝐶 gcd 𝐷)↑2) ∈ ℤ)
99 gcdcom 15861 . . . . . . 7 ((𝑀 ∈ ℤ ∧ ((𝐶 gcd 𝐷)↑2) ∈ ℤ) → (𝑀 gcd ((𝐶 gcd 𝐷)↑2)) = (((𝐶 gcd 𝐷)↑2) gcd 𝑀))
1008, 98, 99syl2anc 586 . . . . . 6 (𝜑 → (𝑀 gcd ((𝐶 gcd 𝐷)↑2)) = (((𝐶 gcd 𝐷)↑2) gcd 𝑀))
101 gcddvds 15851 . . . . . . . . . . . . . 14 (((𝐶 gcd 𝐷) ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐶 gcd 𝐷) ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝑀))
10251, 8, 101syl2anc 586 . . . . . . . . . . . . 13 (𝜑 → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐶 gcd 𝐷) ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝑀))
103102simpld 497 . . . . . . . . . . . 12 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐶 gcd 𝐷))
10451, 8gcdcld 15856 . . . . . . . . . . . . . 14 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℕ0)
105104nn0zd 12084 . . . . . . . . . . . . 13 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ)
106 dvdstr 15645 . . . . . . . . . . . . 13 ((((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ ∧ (𝐶 gcd 𝐷) ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐶 gcd 𝐷) ∧ (𝐶 gcd 𝐷) ∥ 𝐶) → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐶))
107105, 51, 14, 106syl3anc 1367 . . . . . . . . . . . 12 (𝜑 → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐶 gcd 𝐷) ∧ (𝐶 gcd 𝐷) ∥ 𝐶) → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐶))
108103, 58, 107mp2and 697 . . . . . . . . . . 11 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐶)
109102simprd 498 . . . . . . . . . . . . 13 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝑀)
11013simprd 498 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴𝐶) / 𝑀) ∈ ℤ)
1115nnne0d 11686 . . . . . . . . . . . . . . 15 (𝜑𝑀 ≠ 0)
11211, 14zsubcld 12091 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝐶) ∈ ℤ)
113 dvdsval2 15609 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ (𝐴𝐶) ∈ ℤ) → (𝑀 ∥ (𝐴𝐶) ↔ ((𝐴𝐶) / 𝑀) ∈ ℤ))
1148, 111, 112, 113syl3anc 1367 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 ∥ (𝐴𝐶) ↔ ((𝐴𝐶) / 𝑀) ∈ ℤ))
115110, 114mpbird 259 . . . . . . . . . . . . 13 (𝜑𝑀 ∥ (𝐴𝐶))
116 dvdstr 15645 . . . . . . . . . . . . . 14 ((((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝐴𝐶) ∈ ℤ) → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝑀𝑀 ∥ (𝐴𝐶)) → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐴𝐶)))
117105, 8, 112, 116syl3anc 1367 . . . . . . . . . . . . 13 (𝜑 → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝑀𝑀 ∥ (𝐴𝐶)) → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐴𝐶)))
118109, 115, 117mp2and 697 . . . . . . . . . . . 12 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐴𝐶))
119 dvdssub2 15650 . . . . . . . . . . . 12 (((((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐴𝐶)) → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐴 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐶))
120105, 11, 14, 118, 119syl31anc 1369 . . . . . . . . . . 11 (𝜑 → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐴 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐶))
121108, 120mpbird 259 . . . . . . . . . 10 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐴)
122 dvdstr 15645 . . . . . . . . . . . . 13 ((((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ ∧ (𝐶 gcd 𝐷) ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐶 gcd 𝐷) ∧ (𝐶 gcd 𝐷) ∥ 𝐷) → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐷))
123105, 51, 20, 122syl3anc 1367 . . . . . . . . . . . 12 (𝜑 → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐶 gcd 𝐷) ∧ (𝐶 gcd 𝐷) ∥ 𝐷) → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐷))
124103, 68, 123mp2and 697 . . . . . . . . . . 11 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐷)
12519simprd 498 . . . . . . . . . . . . . 14 (𝜑 → ((𝐵𝐷) / 𝑀) ∈ ℤ)
12617, 20zsubcld 12091 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵𝐷) ∈ ℤ)
127 dvdsval2 15609 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ (𝐵𝐷) ∈ ℤ) → (𝑀 ∥ (𝐵𝐷) ↔ ((𝐵𝐷) / 𝑀) ∈ ℤ))
1288, 111, 126, 127syl3anc 1367 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 ∥ (𝐵𝐷) ↔ ((𝐵𝐷) / 𝑀) ∈ ℤ))
129125, 128mpbird 259 . . . . . . . . . . . . 13 (𝜑𝑀 ∥ (𝐵𝐷))
130 dvdstr 15645 . . . . . . . . . . . . . 14 ((((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝐵𝐷) ∈ ℤ) → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝑀𝑀 ∥ (𝐵𝐷)) → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐵𝐷)))
131105, 8, 126, 130syl3anc 1367 . . . . . . . . . . . . 13 (𝜑 → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝑀𝑀 ∥ (𝐵𝐷)) → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐵𝐷)))
132109, 129, 131mp2and 697 . . . . . . . . . . . 12 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐵𝐷))
133 dvdssub2 15650 . . . . . . . . . . . 12 (((((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐵𝐷)) → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐵 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐷))
134105, 17, 20, 132, 133syl31anc 1369 . . . . . . . . . . 11 (𝜑 → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐵 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐷))
135124, 134mpbird 259 . . . . . . . . . 10 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐵)
136 ax-1ne0 10605 . . . . . . . . . . . . . . 15 1 ≠ 0
137136a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 1 ≠ 0)
13849, 137eqnetrd 3083 . . . . . . . . . . . . 13 (𝜑 → (𝐴 gcd 𝐵) ≠ 0)
139138neneqd 3021 . . . . . . . . . . . 12 (𝜑 → ¬ (𝐴 gcd 𝐵) = 0)
140 gcdeq0 15864 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
14111, 17, 140syl2anc 586 . . . . . . . . . . . 12 (𝜑 → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
142139, 141mtbid 326 . . . . . . . . . . 11 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
143 dvdslegcd 15852 . . . . . . . . . . 11 (((((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐴 ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐵) → ((𝐶 gcd 𝐷) gcd 𝑀) ≤ (𝐴 gcd 𝐵)))
144105, 11, 17, 142, 143syl31anc 1369 . . . . . . . . . 10 (𝜑 → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐴 ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐵) → ((𝐶 gcd 𝐷) gcd 𝑀) ≤ (𝐴 gcd 𝐵)))
145121, 135, 144mp2and 697 . . . . . . . . 9 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ≤ (𝐴 gcd 𝐵))
146145, 49breqtrd 5091 . . . . . . . 8 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ≤ 1)
147 simpr 487 . . . . . . . . . . . 12 (((𝐶 gcd 𝐷) = 0 ∧ 𝑀 = 0) → 𝑀 = 0)
148147necon3ai 3041 . . . . . . . . . . 11 (𝑀 ≠ 0 → ¬ ((𝐶 gcd 𝐷) = 0 ∧ 𝑀 = 0))
149111, 148syl 17 . . . . . . . . . 10 (𝜑 → ¬ ((𝐶 gcd 𝐷) = 0 ∧ 𝑀 = 0))
150 gcdn0cl 15850 . . . . . . . . . 10 ((((𝐶 gcd 𝐷) ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ¬ ((𝐶 gcd 𝐷) = 0 ∧ 𝑀 = 0)) → ((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℕ)
15151, 8, 149, 150syl21anc 835 . . . . . . . . 9 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℕ)
152 nnle1eq1 11666 . . . . . . . . 9 (((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℕ → (((𝐶 gcd 𝐷) gcd 𝑀) ≤ 1 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) = 1))
153151, 152syl 17 . . . . . . . 8 (𝜑 → (((𝐶 gcd 𝐷) gcd 𝑀) ≤ 1 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) = 1))
154146, 153mpbid 234 . . . . . . 7 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) = 1)
155 2nn 11709 . . . . . . . . 9 2 ∈ ℕ
156155a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℕ)
157 rplpwr 15906 . . . . . . . 8 (((𝐶 gcd 𝐷) ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 2 ∈ ℕ) → (((𝐶 gcd 𝐷) gcd 𝑀) = 1 → (((𝐶 gcd 𝐷)↑2) gcd 𝑀) = 1))
15850, 5, 156, 157syl3anc 1367 . . . . . . 7 (𝜑 → (((𝐶 gcd 𝐷) gcd 𝑀) = 1 → (((𝐶 gcd 𝐷)↑2) gcd 𝑀) = 1))
159154, 158mpd 15 . . . . . 6 (𝜑 → (((𝐶 gcd 𝐷)↑2) gcd 𝑀) = 1)
160100, 159eqtrd 2856 . . . . 5 (𝜑 → (𝑀 gcd ((𝐶 gcd 𝐷)↑2)) = 1)
16165, 74nn0addcld 11958 . . . . . . 7 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℕ0)
162161nn0zd 12084 . . . . . 6 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℤ)
163 coprmdvds 15996 . . . . . 6 ((𝑀 ∈ ℤ ∧ ((𝐶 gcd 𝐷)↑2) ∈ ℤ ∧ ((𝐸↑2) + (𝐹↑2)) ∈ ℤ) → ((𝑀 ∥ (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2))) ∧ (𝑀 gcd ((𝐶 gcd 𝐷)↑2)) = 1) → 𝑀 ∥ ((𝐸↑2) + (𝐹↑2))))
1648, 98, 162, 163syl3anc 1367 . . . . 5 (𝜑 → ((𝑀 ∥ (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2))) ∧ (𝑀 gcd ((𝐶 gcd 𝐷)↑2)) = 1) → 𝑀 ∥ ((𝐸↑2) + (𝐹↑2))))
16596, 160, 164mp2and 697 . . . 4 (𝜑𝑀 ∥ ((𝐸↑2) + (𝐹↑2)))
166 dvdsval2 15609 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ ((𝐸↑2) + (𝐹↑2)) ∈ ℤ) → (𝑀 ∥ ((𝐸↑2) + (𝐹↑2)) ↔ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ))
1678, 111, 162, 166syl3anc 1367 . . . 4 (𝜑 → (𝑀 ∥ ((𝐸↑2) + (𝐹↑2)) ↔ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ))
168165, 167mpbid 234 . . 3 (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ)
16965nn0red 11955 . . . . 5 (𝜑 → (𝐸↑2) ∈ ℝ)
17074nn0red 11955 . . . . 5 (𝜑 → (𝐹↑2) ∈ ℝ)
171169, 170readdcld 10669 . . . 4 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℝ)
1725nnred 11652 . . . 4 (𝜑𝑀 ∈ ℝ)
1731, 472sqlem7 25999 . . . . . . 7 𝑌 ⊆ (𝑆 ∩ ℕ)
174 inss2 4205 . . . . . . 7 (𝑆 ∩ ℕ) ⊆ ℕ
175173, 174sstri 3975 . . . . . 6 𝑌 ⊆ ℕ
17663, 72gcdcld 15856 . . . . . . . . . 10 (𝜑 → (𝐸 gcd 𝐹) ∈ ℕ0)
177176nn0cnd 11956 . . . . . . . . 9 (𝜑 → (𝐸 gcd 𝐹) ∈ ℂ)
178 1cnd 10635 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
17977mulid1d 10657 . . . . . . . . . 10 (𝜑 → ((𝐶 gcd 𝐷) · 1) = (𝐶 gcd 𝐷))
18083, 91oveq12d 7173 . . . . . . . . . 10 (𝜑 → (((𝐶 gcd 𝐷) · 𝐸) gcd ((𝐶 gcd 𝐷) · 𝐹)) = (𝐶 gcd 𝐷))
18114, 20gcdcld 15856 . . . . . . . . . . 11 (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ0)
182 mulgcd 15895 . . . . . . . . . . 11 (((𝐶 gcd 𝐷) ∈ ℕ0𝐸 ∈ ℤ ∧ 𝐹 ∈ ℤ) → (((𝐶 gcd 𝐷) · 𝐸) gcd ((𝐶 gcd 𝐷) · 𝐹)) = ((𝐶 gcd 𝐷) · (𝐸 gcd 𝐹)))
183181, 63, 72, 182syl3anc 1367 . . . . . . . . . 10 (𝜑 → (((𝐶 gcd 𝐷) · 𝐸) gcd ((𝐶 gcd 𝐷) · 𝐹)) = ((𝐶 gcd 𝐷) · (𝐸 gcd 𝐹)))
184179, 180, 1833eqtr2rd 2863 . . . . . . . . 9 (𝜑 → ((𝐶 gcd 𝐷) · (𝐸 gcd 𝐹)) = ((𝐶 gcd 𝐷) · 1))
185177, 178, 77, 59, 184mulcanad 11274 . . . . . . . 8 (𝜑 → (𝐸 gcd 𝐹) = 1)
186 eqidd 2822 . . . . . . . 8 (𝜑 → ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝐹↑2)))
187 oveq1 7162 . . . . . . . . . . 11 (𝑥 = 𝐸 → (𝑥 gcd 𝑦) = (𝐸 gcd 𝑦))
188187eqeq1d 2823 . . . . . . . . . 10 (𝑥 = 𝐸 → ((𝑥 gcd 𝑦) = 1 ↔ (𝐸 gcd 𝑦) = 1))
189 oveq1 7162 . . . . . . . . . . . 12 (𝑥 = 𝐸 → (𝑥↑2) = (𝐸↑2))
190189oveq1d 7170 . . . . . . . . . . 11 (𝑥 = 𝐸 → ((𝑥↑2) + (𝑦↑2)) = ((𝐸↑2) + (𝑦↑2)))
191190eqeq2d 2832 . . . . . . . . . 10 (𝑥 = 𝐸 → (((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝑦↑2))))
192188, 191anbi12d 632 . . . . . . . . 9 (𝑥 = 𝐸 → (((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ ((𝐸 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝑦↑2)))))
193 oveq2 7163 . . . . . . . . . . 11 (𝑦 = 𝐹 → (𝐸 gcd 𝑦) = (𝐸 gcd 𝐹))
194193eqeq1d 2823 . . . . . . . . . 10 (𝑦 = 𝐹 → ((𝐸 gcd 𝑦) = 1 ↔ (𝐸 gcd 𝐹) = 1))
195 oveq1 7162 . . . . . . . . . . . 12 (𝑦 = 𝐹 → (𝑦↑2) = (𝐹↑2))
196195oveq2d 7171 . . . . . . . . . . 11 (𝑦 = 𝐹 → ((𝐸↑2) + (𝑦↑2)) = ((𝐸↑2) + (𝐹↑2)))
197196eqeq2d 2832 . . . . . . . . . 10 (𝑦 = 𝐹 → (((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝑦↑2)) ↔ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝐹↑2))))
198194, 197anbi12d 632 . . . . . . . . 9 (𝑦 = 𝐹 → (((𝐸 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝑦↑2))) ↔ ((𝐸 gcd 𝐹) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝐹↑2)))))
199192, 198rspc2ev 3634 . . . . . . . 8 ((𝐸 ∈ ℤ ∧ 𝐹 ∈ ℤ ∧ ((𝐸 gcd 𝐹) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝐹↑2)))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2))))
20063, 72, 185, 186, 199syl112anc 1370 . . . . . . 7 (𝜑 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2))))
201 ovex 7188 . . . . . . . 8 ((𝐸↑2) + (𝐹↑2)) ∈ V
202 eqeq1 2825 . . . . . . . . . 10 (𝑧 = ((𝐸↑2) + (𝐹↑2)) → (𝑧 = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2))))
203202anbi2d 630 . . . . . . . . 9 (𝑧 = ((𝐸↑2) + (𝐹↑2)) → (((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) ↔ ((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2)))))
2042032rexbidv 3300 . . . . . . . 8 (𝑧 = ((𝐸↑2) + (𝐹↑2)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2)))))
205201, 204, 47elab2 3669 . . . . . . 7 (((𝐸↑2) + (𝐹↑2)) ∈ 𝑌 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2))))
206200, 205sylibr 236 . . . . . 6 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ 𝑌)
207175, 206sseldi 3964 . . . . 5 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℕ)
208207nngt0d 11685 . . . 4 (𝜑 → 0 < ((𝐸↑2) + (𝐹↑2)))
2095nngt0d 11685 . . . 4 (𝜑 → 0 < 𝑀)
210171, 172, 208, 209divgt0d 11574 . . 3 (𝜑 → 0 < (((𝐸↑2) + (𝐹↑2)) / 𝑀))
211 elnnz 11990 . . 3 ((((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℕ ↔ ((((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ ∧ 0 < (((𝐸↑2) + (𝐹↑2)) / 𝑀)))
212168, 210, 211sylanbrc 585 . 2 (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℕ)
213 prmnn 16017 . . . . . . . 8 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
214213ad2antrl 726 . . . . . . 7 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∈ ℕ)
215214nnred 11652 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∈ ℝ)
216168adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ)
217216zred 12086 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℝ)
218 peano2zm 12024 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
2198, 218syl 17 . . . . . . . . . 10 (𝜑 → (𝑀 − 1) ∈ ℤ)
220219zred 12086 . . . . . . . . 9 (𝜑 → (𝑀 − 1) ∈ ℝ)
221220adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (𝑀 − 1) ∈ ℝ)
222 simprr 771 . . . . . . . . 9 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))
223 prmz 16018 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
224223ad2antrl 726 . . . . . . . . . 10 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∈ ℤ)
225212adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℕ)
226 dvdsle 15659 . . . . . . . . . 10 ((𝑝 ∈ ℤ ∧ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℕ) → (𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀) → 𝑝 ≤ (((𝐸↑2) + (𝐹↑2)) / 𝑀)))
227224, 225, 226syl2anc 586 . . . . . . . . 9 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀) → 𝑝 ≤ (((𝐸↑2) + (𝐹↑2)) / 𝑀)))
228222, 227mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ≤ (((𝐸↑2) + (𝐹↑2)) / 𝑀))
229 zsqcl 13493 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → (𝑀↑2) ∈ ℤ)
2308, 229syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀↑2) ∈ ℤ)
231230zred 12086 . . . . . . . . . . . . . 14 (𝜑 → (𝑀↑2) ∈ ℝ)
232231rehalfcld 11883 . . . . . . . . . . . . 13 (𝜑 → ((𝑀↑2) / 2) ∈ ℝ)
23316zred 12086 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶↑2) ∈ ℝ)
23422zred 12086 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷↑2) ∈ ℝ)
235233, 234readdcld 10669 . . . . . . . . . . . . . 14 (𝜑 → ((𝐶↑2) + (𝐷↑2)) ∈ ℝ)
236 1red 10641 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ)
23750nnsqcld 13604 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐶 gcd 𝐷)↑2) ∈ ℕ)
238237nnred 11652 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐶 gcd 𝐷)↑2) ∈ ℝ)
239161nn0ge0d 11957 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ ((𝐸↑2) + (𝐹↑2)))
240237nnge1d 11684 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ≤ ((𝐶 gcd 𝐷)↑2))
241236, 238, 171, 239, 240lemul1ad 11578 . . . . . . . . . . . . . . 15 (𝜑 → (1 · ((𝐸↑2) + (𝐹↑2))) ≤ (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2))))
242161nn0cnd 11956 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℂ)
243242mulid2d 10658 . . . . . . . . . . . . . . 15 (𝜑 → (1 · ((𝐸↑2) + (𝐹↑2))) = ((𝐸↑2) + (𝐹↑2)))
244241, 243, 953brtr3d 5096 . . . . . . . . . . . . . 14 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ≤ ((𝐶↑2) + (𝐷↑2)))
245232rehalfcld 11883 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑀↑2) / 2) / 2) ∈ ℝ)
24611, 5, 124sqlem7 16279 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶↑2) ≤ (((𝑀↑2) / 2) / 2))
24717, 5, 184sqlem7 16279 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐷↑2) ≤ (((𝑀↑2) / 2) / 2))
248233, 234, 245, 245, 246, 247le2addd 11258 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐶↑2) + (𝐷↑2)) ≤ ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)))
249232recnd 10668 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑀↑2) / 2) ∈ ℂ)
2502492halvesd 11882 . . . . . . . . . . . . . . 15 (𝜑 → ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) = ((𝑀↑2) / 2))
251248, 250breqtrd 5091 . . . . . . . . . . . . . 14 (𝜑 → ((𝐶↑2) + (𝐷↑2)) ≤ ((𝑀↑2) / 2))
252171, 235, 232, 244, 251letrd 10796 . . . . . . . . . . . . 13 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ≤ ((𝑀↑2) / 2))
2535nnsqcld 13604 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀↑2) ∈ ℕ)
254253nnrpd 12428 . . . . . . . . . . . . . 14 (𝜑 → (𝑀↑2) ∈ ℝ+)
255 rphalflt 12417 . . . . . . . . . . . . . 14 ((𝑀↑2) ∈ ℝ+ → ((𝑀↑2) / 2) < (𝑀↑2))
256254, 255syl 17 . . . . . . . . . . . . 13 (𝜑 → ((𝑀↑2) / 2) < (𝑀↑2))
257171, 232, 231, 252, 256lelttrd 10797 . . . . . . . . . . . 12 (𝜑 → ((𝐸↑2) + (𝐹↑2)) < (𝑀↑2))
2588zcnd 12087 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℂ)
259258sqvald 13506 . . . . . . . . . . . 12 (𝜑 → (𝑀↑2) = (𝑀 · 𝑀))
260257, 259breqtrd 5091 . . . . . . . . . . 11 (𝜑 → ((𝐸↑2) + (𝐹↑2)) < (𝑀 · 𝑀))
261 ltdivmul 11514 . . . . . . . . . . . 12 ((((𝐸↑2) + (𝐹↑2)) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → ((((𝐸↑2) + (𝐹↑2)) / 𝑀) < 𝑀 ↔ ((𝐸↑2) + (𝐹↑2)) < (𝑀 · 𝑀)))
262171, 172, 172, 209, 261syl112anc 1370 . . . . . . . . . . 11 (𝜑 → ((((𝐸↑2) + (𝐹↑2)) / 𝑀) < 𝑀 ↔ ((𝐸↑2) + (𝐹↑2)) < (𝑀 · 𝑀)))
263260, 262mpbird 259 . . . . . . . . . 10 (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) < 𝑀)
264 zltlem1 12034 . . . . . . . . . . 11 (((((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((𝐸↑2) + (𝐹↑2)) / 𝑀) < 𝑀 ↔ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ≤ (𝑀 − 1)))
265168, 8, 264syl2anc 586 . . . . . . . . . 10 (𝜑 → ((((𝐸↑2) + (𝐹↑2)) / 𝑀) < 𝑀 ↔ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ≤ (𝑀 − 1)))
266263, 265mpbid 234 . . . . . . . . 9 (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ≤ (𝑀 − 1))
267266adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ≤ (𝑀 − 1))
268215, 217, 221, 228, 267letrd 10796 . . . . . . 7 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ≤ (𝑀 − 1))
269219adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (𝑀 − 1) ∈ ℤ)
270 fznn 12974 . . . . . . . 8 ((𝑀 − 1) ∈ ℤ → (𝑝 ∈ (1...(𝑀 − 1)) ↔ (𝑝 ∈ ℕ ∧ 𝑝 ≤ (𝑀 − 1))))
271269, 270syl 17 . . . . . . 7 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (𝑝 ∈ (1...(𝑀 − 1)) ↔ (𝑝 ∈ ℕ ∧ 𝑝 ≤ (𝑀 − 1))))
272214, 268, 271mpbir2and 711 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∈ (1...(𝑀 − 1)))
273206adantr 483 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → ((𝐸↑2) + (𝐹↑2)) ∈ 𝑌)
274272, 273jca 514 . . . . 5 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (𝑝 ∈ (1...(𝑀 − 1)) ∧ ((𝐸↑2) + (𝐹↑2)) ∈ 𝑌))
27548adantr 483 . . . . 5 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
276 dvdsmul2 15631 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∥ (𝑀 · (((𝐸↑2) + (𝐹↑2)) / 𝑀)))
2778, 168, 276syl2anc 586 . . . . . . . 8 (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∥ (𝑀 · (((𝐸↑2) + (𝐹↑2)) / 𝑀)))
278242, 258, 111divcan2d 11417 . . . . . . . 8 (𝜑 → (𝑀 · (((𝐸↑2) + (𝐹↑2)) / 𝑀)) = ((𝐸↑2) + (𝐹↑2)))
279277, 278breqtrd 5091 . . . . . . 7 (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∥ ((𝐸↑2) + (𝐹↑2)))
280279adantr 483 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∥ ((𝐸↑2) + (𝐹↑2)))
281162adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → ((𝐸↑2) + (𝐹↑2)) ∈ ℤ)
282 dvdstr 15645 . . . . . . 7 ((𝑝 ∈ ℤ ∧ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ ∧ ((𝐸↑2) + (𝐹↑2)) ∈ ℤ) → ((𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∧ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∥ ((𝐸↑2) + (𝐹↑2))) → 𝑝 ∥ ((𝐸↑2) + (𝐹↑2))))
283224, 216, 281, 282syl3anc 1367 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → ((𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∧ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∥ ((𝐸↑2) + (𝐹↑2))) → 𝑝 ∥ ((𝐸↑2) + (𝐹↑2))))
284222, 280, 283mp2and 697 . . . . 5 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∥ ((𝐸↑2) + (𝐹↑2)))
285 breq1 5068 . . . . . . 7 (𝑏 = 𝑝 → (𝑏𝑎𝑝𝑎))
286 eleq1w 2895 . . . . . . 7 (𝑏 = 𝑝 → (𝑏𝑆𝑝𝑆))
287285, 286imbi12d 347 . . . . . 6 (𝑏 = 𝑝 → ((𝑏𝑎𝑏𝑆) ↔ (𝑝𝑎𝑝𝑆)))
288 breq2 5069 . . . . . . 7 (𝑎 = ((𝐸↑2) + (𝐹↑2)) → (𝑝𝑎𝑝 ∥ ((𝐸↑2) + (𝐹↑2))))
289288imbi1d 344 . . . . . 6 (𝑎 = ((𝐸↑2) + (𝐹↑2)) → ((𝑝𝑎𝑝𝑆) ↔ (𝑝 ∥ ((𝐸↑2) + (𝐹↑2)) → 𝑝𝑆)))
290287, 289rspc2v 3632 . . . . 5 ((𝑝 ∈ (1...(𝑀 − 1)) ∧ ((𝐸↑2) + (𝐹↑2)) ∈ 𝑌) → (∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆) → (𝑝 ∥ ((𝐸↑2) + (𝐹↑2)) → 𝑝𝑆)))
291274, 275, 284, 290syl3c 66 . . . 4 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝𝑆)
292291expr 459 . . 3 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀) → 𝑝𝑆))
293292ralrimiva 3182 . 2 (𝜑 → ∀𝑝 ∈ ℙ (𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀) → 𝑝𝑆))
294 inss1 4204 . . . . 5 (𝑆 ∩ ℕ) ⊆ 𝑆
295173, 294sstri 3975 . . . 4 𝑌𝑆
296295, 206sseldi 3964 . . 3 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ 𝑆)
297278, 296eqeltrd 2913 . 2 (𝜑 → (𝑀 · (((𝐸↑2) + (𝐹↑2)) / 𝑀)) ∈ 𝑆)
2981, 5, 212, 293, 2972sqlem6 25998 1 (𝜑𝑀𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  {cab 2799  wne 3016  wral 3138  wrex 3139  cin 3934   class class class wbr 5065  cmpt 5145  ran crn 5555  cfv 6354  (class class class)co 7155  cr 10535  0cc0 10536  1c1 10537   + caddc 10539   · cmul 10541   < clt 10674  cle 10675  cmin 10869   / cdiv 11296  cn 11637  2c2 11691  0cn0 11896  cz 11980  cuz 12242  +crp 12388  ...cfz 12891   mod cmo 13236  cexp 13428  abscabs 14592  cdvds 15606   gcd cgcd 15842  cprime 16014  ℤ[i]cgz 16264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-inf 8906  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-fz 12892  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13429  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-dvds 15607  df-gcd 15843  df-prm 16015  df-gz 16265
This theorem is referenced by:  2sqlem9  26002
  Copyright terms: Public domain W3C validator