MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  map0b Structured version   Visualization version   GIF version

Theorem map0b 8629
Description: Set exponentiation with an empty base is the empty set, provided the exponent is nonempty. Theorem 96 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
map0b (𝐴 ≠ ∅ → (∅ ↑m 𝐴) = ∅)

Proof of Theorem map0b
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 elmapi 8595 . . . 4 (𝑓 ∈ (∅ ↑m 𝐴) → 𝑓:𝐴⟶∅)
2 fdm 6593 . . . . 5 (𝑓:𝐴⟶∅ → dom 𝑓 = 𝐴)
3 frn 6591 . . . . . . 7 (𝑓:𝐴⟶∅ → ran 𝑓 ⊆ ∅)
4 ss0 4329 . . . . . . 7 (ran 𝑓 ⊆ ∅ → ran 𝑓 = ∅)
53, 4syl 17 . . . . . 6 (𝑓:𝐴⟶∅ → ran 𝑓 = ∅)
6 dm0rn0 5823 . . . . . 6 (dom 𝑓 = ∅ ↔ ran 𝑓 = ∅)
75, 6sylibr 233 . . . . 5 (𝑓:𝐴⟶∅ → dom 𝑓 = ∅)
82, 7eqtr3d 2780 . . . 4 (𝑓:𝐴⟶∅ → 𝐴 = ∅)
91, 8syl 17 . . 3 (𝑓 ∈ (∅ ↑m 𝐴) → 𝐴 = ∅)
109necon3ai 2967 . 2 (𝐴 ≠ ∅ → ¬ 𝑓 ∈ (∅ ↑m 𝐴))
1110eq0rdv 4335 1 (𝐴 ≠ ∅ → (∅ ↑m 𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wne 2942  wss 3883  c0 4253  dom cdm 5580  ran crn 5581  wf 6414  (class class class)co 7255  m cmap 8573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575
This theorem is referenced by:  map0g  8630  mapdom2  8884  ply1plusgfvi  21323  satf0  33234  prv0  33292
  Copyright terms: Public domain W3C validator