MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  map0b Structured version   Visualization version   GIF version

Theorem map0b 8856
Description: Set exponentiation with an empty base is the empty set, provided the exponent is nonempty. Theorem 96 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
map0b (𝐴 ≠ ∅ → (∅ ↑m 𝐴) = ∅)

Proof of Theorem map0b
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 elmapi 8822 . . . 4 (𝑓 ∈ (∅ ↑m 𝐴) → 𝑓:𝐴⟶∅)
2 fdm 6697 . . . . 5 (𝑓:𝐴⟶∅ → dom 𝑓 = 𝐴)
3 frn 6695 . . . . . . 7 (𝑓:𝐴⟶∅ → ran 𝑓 ⊆ ∅)
4 ss0 4365 . . . . . . 7 (ran 𝑓 ⊆ ∅ → ran 𝑓 = ∅)
53, 4syl 17 . . . . . 6 (𝑓:𝐴⟶∅ → ran 𝑓 = ∅)
6 dm0rn0 5888 . . . . . 6 (dom 𝑓 = ∅ ↔ ran 𝑓 = ∅)
75, 6sylibr 234 . . . . 5 (𝑓:𝐴⟶∅ → dom 𝑓 = ∅)
82, 7eqtr3d 2766 . . . 4 (𝑓:𝐴⟶∅ → 𝐴 = ∅)
91, 8syl 17 . . 3 (𝑓 ∈ (∅ ↑m 𝐴) → 𝐴 = ∅)
109necon3ai 2950 . 2 (𝐴 ≠ ∅ → ¬ 𝑓 ∈ (∅ ↑m 𝐴))
1110eq0rdv 4370 1 (𝐴 ≠ ∅ → (∅ ↑m 𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  wss 3914  c0 4296  dom cdm 5638  ran crn 5639  wf 6507  (class class class)co 7387  m cmap 8799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801
This theorem is referenced by:  map0g  8857  mapdom2  9112  ply1plusgfvi  22126  satf0  35359  prv0  35417
  Copyright terms: Public domain W3C validator