![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > map0b | Structured version Visualization version GIF version |
Description: Set exponentiation with an empty base is the empty set, provided the exponent is nonempty. Theorem 96 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
map0b | β’ (π΄ β β β (β βm π΄) = β ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8839 | . . . 4 β’ (π β (β βm π΄) β π:π΄βΆβ ) | |
2 | fdm 6723 | . . . . 5 β’ (π:π΄βΆβ β dom π = π΄) | |
3 | frn 6721 | . . . . . . 7 β’ (π:π΄βΆβ β ran π β β ) | |
4 | ss0 4397 | . . . . . . 7 β’ (ran π β β β ran π = β ) | |
5 | 3, 4 | syl 17 | . . . . . 6 β’ (π:π΄βΆβ β ran π = β ) |
6 | dm0rn0 5922 | . . . . . 6 β’ (dom π = β β ran π = β ) | |
7 | 5, 6 | sylibr 233 | . . . . 5 β’ (π:π΄βΆβ β dom π = β ) |
8 | 2, 7 | eqtr3d 2774 | . . . 4 β’ (π:π΄βΆβ β π΄ = β ) |
9 | 1, 8 | syl 17 | . . 3 β’ (π β (β βm π΄) β π΄ = β ) |
10 | 9 | necon3ai 2965 | . 2 β’ (π΄ β β β Β¬ π β (β βm π΄)) |
11 | 10 | eq0rdv 4403 | 1 β’ (π΄ β β β (β βm π΄) = β ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 β wne 2940 β wss 3947 β c0 4321 dom cdm 5675 ran crn 5676 βΆwf 6536 (class class class)co 7405 βm cmap 8816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-map 8818 |
This theorem is referenced by: map0g 8874 mapdom2 9144 ply1plusgfvi 21755 satf0 34351 prv0 34409 |
Copyright terms: Public domain | W3C validator |