| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > map0b | Structured version Visualization version GIF version | ||
| Description: Set exponentiation with an empty base is the empty set, provided the exponent is nonempty. Theorem 96 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| map0b | ⊢ (𝐴 ≠ ∅ → (∅ ↑m 𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 8783 | . . . 4 ⊢ (𝑓 ∈ (∅ ↑m 𝐴) → 𝑓:𝐴⟶∅) | |
| 2 | fdm 6665 | . . . . 5 ⊢ (𝑓:𝐴⟶∅ → dom 𝑓 = 𝐴) | |
| 3 | frn 6663 | . . . . . . 7 ⊢ (𝑓:𝐴⟶∅ → ran 𝑓 ⊆ ∅) | |
| 4 | ss0 4355 | . . . . . . 7 ⊢ (ran 𝑓 ⊆ ∅ → ran 𝑓 = ∅) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝑓:𝐴⟶∅ → ran 𝑓 = ∅) |
| 6 | dm0rn0 5871 | . . . . . 6 ⊢ (dom 𝑓 = ∅ ↔ ran 𝑓 = ∅) | |
| 7 | 5, 6 | sylibr 234 | . . . . 5 ⊢ (𝑓:𝐴⟶∅ → dom 𝑓 = ∅) |
| 8 | 2, 7 | eqtr3d 2766 | . . . 4 ⊢ (𝑓:𝐴⟶∅ → 𝐴 = ∅) |
| 9 | 1, 8 | syl 17 | . . 3 ⊢ (𝑓 ∈ (∅ ↑m 𝐴) → 𝐴 = ∅) |
| 10 | 9 | necon3ai 2950 | . 2 ⊢ (𝐴 ≠ ∅ → ¬ 𝑓 ∈ (∅ ↑m 𝐴)) |
| 11 | 10 | eq0rdv 4360 | 1 ⊢ (𝐴 ≠ ∅ → (∅ ↑m 𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3905 ∅c0 4286 dom cdm 5623 ran crn 5624 ⟶wf 6482 (class class class)co 7353 ↑m cmap 8760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-map 8762 |
| This theorem is referenced by: map0g 8818 mapdom2 9072 ply1plusgfvi 22142 satf0 35347 prv0 35405 |
| Copyright terms: Public domain | W3C validator |