| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > map0b | Structured version Visualization version GIF version | ||
| Description: Set exponentiation with an empty base is the empty set, provided the exponent is nonempty. Theorem 96 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| map0b | ⊢ (𝐴 ≠ ∅ → (∅ ↑m 𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 8773 | . . . 4 ⊢ (𝑓 ∈ (∅ ↑m 𝐴) → 𝑓:𝐴⟶∅) | |
| 2 | fdm 6660 | . . . . 5 ⊢ (𝑓:𝐴⟶∅ → dom 𝑓 = 𝐴) | |
| 3 | frn 6658 | . . . . . . 7 ⊢ (𝑓:𝐴⟶∅ → ran 𝑓 ⊆ ∅) | |
| 4 | ss0 4352 | . . . . . . 7 ⊢ (ran 𝑓 ⊆ ∅ → ran 𝑓 = ∅) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝑓:𝐴⟶∅ → ran 𝑓 = ∅) |
| 6 | dm0rn0 5864 | . . . . . 6 ⊢ (dom 𝑓 = ∅ ↔ ran 𝑓 = ∅) | |
| 7 | 5, 6 | sylibr 234 | . . . . 5 ⊢ (𝑓:𝐴⟶∅ → dom 𝑓 = ∅) |
| 8 | 2, 7 | eqtr3d 2768 | . . . 4 ⊢ (𝑓:𝐴⟶∅ → 𝐴 = ∅) |
| 9 | 1, 8 | syl 17 | . . 3 ⊢ (𝑓 ∈ (∅ ↑m 𝐴) → 𝐴 = ∅) |
| 10 | 9 | necon3ai 2953 | . 2 ⊢ (𝐴 ≠ ∅ → ¬ 𝑓 ∈ (∅ ↑m 𝐴)) |
| 11 | 10 | eq0rdv 4357 | 1 ⊢ (𝐴 ≠ ∅ → (∅ ↑m 𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ⊆ wss 3902 ∅c0 4283 dom cdm 5616 ran crn 5617 ⟶wf 6477 (class class class)co 7346 ↑m cmap 8750 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 |
| This theorem is referenced by: map0g 8808 mapdom2 9061 ply1plusgfvi 22155 satf0 35414 prv0 35472 |
| Copyright terms: Public domain | W3C validator |