MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  map0b Structured version   Visualization version   GIF version

Theorem map0b 8815
Description: Set exponentiation with an empty base is the empty set, provided the exponent is nonempty. Theorem 96 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
map0b (𝐴 ≠ ∅ → (∅ ↑m 𝐴) = ∅)

Proof of Theorem map0b
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 elmapi 8781 . . . 4 (𝑓 ∈ (∅ ↑m 𝐴) → 𝑓:𝐴⟶∅)
2 fdm 6667 . . . . 5 (𝑓:𝐴⟶∅ → dom 𝑓 = 𝐴)
3 frn 6665 . . . . . . 7 (𝑓:𝐴⟶∅ → ran 𝑓 ⊆ ∅)
4 ss0 4351 . . . . . . 7 (ran 𝑓 ⊆ ∅ → ran 𝑓 = ∅)
53, 4syl 17 . . . . . 6 (𝑓:𝐴⟶∅ → ran 𝑓 = ∅)
6 dm0rn0 5870 . . . . . 6 (dom 𝑓 = ∅ ↔ ran 𝑓 = ∅)
75, 6sylibr 234 . . . . 5 (𝑓:𝐴⟶∅ → dom 𝑓 = ∅)
82, 7eqtr3d 2770 . . . 4 (𝑓:𝐴⟶∅ → 𝐴 = ∅)
91, 8syl 17 . . 3 (𝑓 ∈ (∅ ↑m 𝐴) → 𝐴 = ∅)
109necon3ai 2954 . 2 (𝐴 ≠ ∅ → ¬ 𝑓 ∈ (∅ ↑m 𝐴))
1110eq0rdv 4356 1 (𝐴 ≠ ∅ → (∅ ↑m 𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wne 2929  wss 3898  c0 4282  dom cdm 5621  ran crn 5622  wf 6484  (class class class)co 7354  m cmap 8758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-fv 6496  df-ov 7357  df-oprab 7358  df-mpo 7359  df-1st 7929  df-2nd 7930  df-map 8760
This theorem is referenced by:  map0g  8816  mapdom2  9070  ply1plusgfvi  22157  satf0  35439  prv0  35497
  Copyright terms: Public domain W3C validator