| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > map0b | Structured version Visualization version GIF version | ||
| Description: Set exponentiation with an empty base is the empty set, provided the exponent is nonempty. Theorem 96 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| map0b | ⊢ (𝐴 ≠ ∅ → (∅ ↑m 𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 8822 | . . . 4 ⊢ (𝑓 ∈ (∅ ↑m 𝐴) → 𝑓:𝐴⟶∅) | |
| 2 | fdm 6697 | . . . . 5 ⊢ (𝑓:𝐴⟶∅ → dom 𝑓 = 𝐴) | |
| 3 | frn 6695 | . . . . . . 7 ⊢ (𝑓:𝐴⟶∅ → ran 𝑓 ⊆ ∅) | |
| 4 | ss0 4365 | . . . . . . 7 ⊢ (ran 𝑓 ⊆ ∅ → ran 𝑓 = ∅) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝑓:𝐴⟶∅ → ran 𝑓 = ∅) |
| 6 | dm0rn0 5888 | . . . . . 6 ⊢ (dom 𝑓 = ∅ ↔ ran 𝑓 = ∅) | |
| 7 | 5, 6 | sylibr 234 | . . . . 5 ⊢ (𝑓:𝐴⟶∅ → dom 𝑓 = ∅) |
| 8 | 2, 7 | eqtr3d 2766 | . . . 4 ⊢ (𝑓:𝐴⟶∅ → 𝐴 = ∅) |
| 9 | 1, 8 | syl 17 | . . 3 ⊢ (𝑓 ∈ (∅ ↑m 𝐴) → 𝐴 = ∅) |
| 10 | 9 | necon3ai 2950 | . 2 ⊢ (𝐴 ≠ ∅ → ¬ 𝑓 ∈ (∅ ↑m 𝐴)) |
| 11 | 10 | eq0rdv 4370 | 1 ⊢ (𝐴 ≠ ∅ → (∅ ↑m 𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3914 ∅c0 4296 dom cdm 5638 ran crn 5639 ⟶wf 6507 (class class class)co 7387 ↑m cmap 8799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-map 8801 |
| This theorem is referenced by: map0g 8857 mapdom2 9112 ply1plusgfvi 22126 satf0 35359 prv0 35417 |
| Copyright terms: Public domain | W3C validator |