Step | Hyp | Ref
| Expression |
1 | | simprr 770 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ (¬
(𝐴 + 1) ∈ ℙ
∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) →
𝑥 ∈ ((2...(𝐴 + 1)) ∩
ℙ)) |
2 | 1 | elin2d 4133 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ (¬
(𝐴 + 1) ∈ ℙ
∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) →
𝑥 ∈
ℙ) |
3 | | simprl 768 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ (¬
(𝐴 + 1) ∈ ℙ
∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) →
¬ (𝐴 + 1) ∈
ℙ) |
4 | | nelne2 3042 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℙ ∧ ¬
(𝐴 + 1) ∈ ℙ)
→ 𝑥 ≠ (𝐴 + 1)) |
5 | 2, 3, 4 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ (¬
(𝐴 + 1) ∈ ℙ
∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) →
𝑥 ≠ (𝐴 + 1)) |
6 | | velsn 4577 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {(𝐴 + 1)} ↔ 𝑥 = (𝐴 + 1)) |
7 | 6 | necon3bbii 2991 |
. . . . . . . . 9
⊢ (¬
𝑥 ∈ {(𝐴 + 1)} ↔ 𝑥 ≠ (𝐴 + 1)) |
8 | 5, 7 | sylibr 233 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ (¬
(𝐴 + 1) ∈ ℙ
∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) →
¬ 𝑥 ∈ {(𝐴 + 1)}) |
9 | 1 | elin1d 4132 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ (¬
(𝐴 + 1) ∈ ℙ
∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) →
𝑥 ∈ (2...(𝐴 + 1))) |
10 | | 2z 12352 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℤ |
11 | | zcn 12324 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℂ) |
12 | 11 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℤ ∧ (¬
(𝐴 + 1) ∈ ℙ
∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) →
𝐴 ∈
ℂ) |
13 | | ax-1cn 10929 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℂ |
14 | | pncan 11227 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝐴 + 1)
− 1) = 𝐴) |
15 | 12, 13, 14 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℤ ∧ (¬
(𝐴 + 1) ∈ ℙ
∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) →
((𝐴 + 1) − 1) = 𝐴) |
16 | | elfzuz2 13261 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (2...(𝐴 + 1)) → (𝐴 + 1) ∈
(ℤ≥‘2)) |
17 | | uz2m1nn 12663 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 + 1) ∈
(ℤ≥‘2) → ((𝐴 + 1) − 1) ∈
ℕ) |
18 | 9, 16, 17 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℤ ∧ (¬
(𝐴 + 1) ∈ ℙ
∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) →
((𝐴 + 1) − 1) ∈
ℕ) |
19 | 15, 18 | eqeltrrd 2840 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℤ ∧ (¬
(𝐴 + 1) ∈ ℙ
∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) →
𝐴 ∈
ℕ) |
20 | | nnuz 12621 |
. . . . . . . . . . . . . 14
⊢ ℕ =
(ℤ≥‘1) |
21 | | 2m1e1 12099 |
. . . . . . . . . . . . . . 15
⊢ (2
− 1) = 1 |
22 | 21 | fveq2i 6777 |
. . . . . . . . . . . . . 14
⊢
(ℤ≥‘(2 − 1)) =
(ℤ≥‘1) |
23 | 20, 22 | eqtr4i 2769 |
. . . . . . . . . . . . 13
⊢ ℕ =
(ℤ≥‘(2 − 1)) |
24 | 19, 23 | eleqtrdi 2849 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ (¬
(𝐴 + 1) ∈ ℙ
∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) →
𝐴 ∈
(ℤ≥‘(2 − 1))) |
25 | | fzsuc2 13314 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℤ ∧ 𝐴
∈ (ℤ≥‘(2 − 1))) → (2...(𝐴 + 1)) = ((2...𝐴) ∪ {(𝐴 + 1)})) |
26 | 10, 24, 25 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ (¬
(𝐴 + 1) ∈ ℙ
∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) →
(2...(𝐴 + 1)) = ((2...𝐴) ∪ {(𝐴 + 1)})) |
27 | 9, 26 | eleqtrd 2841 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ (¬
(𝐴 + 1) ∈ ℙ
∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) →
𝑥 ∈ ((2...𝐴) ∪ {(𝐴 + 1)})) |
28 | | elun 4083 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ((2...𝐴) ∪ {(𝐴 + 1)}) ↔ (𝑥 ∈ (2...𝐴) ∨ 𝑥 ∈ {(𝐴 + 1)})) |
29 | 27, 28 | sylib 217 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ (¬
(𝐴 + 1) ∈ ℙ
∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) →
(𝑥 ∈ (2...𝐴) ∨ 𝑥 ∈ {(𝐴 + 1)})) |
30 | 29 | ord 861 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ (¬
(𝐴 + 1) ∈ ℙ
∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) →
(¬ 𝑥 ∈ (2...𝐴) → 𝑥 ∈ {(𝐴 + 1)})) |
31 | 8, 30 | mt3d 148 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ (¬
(𝐴 + 1) ∈ ℙ
∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) →
𝑥 ∈ (2...𝐴)) |
32 | 31, 2 | elind 4128 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ (¬
(𝐴 + 1) ∈ ℙ
∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) →
𝑥 ∈ ((2...𝐴) ∩
ℙ)) |
33 | 32 | expr 457 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ¬
(𝐴 + 1) ∈ ℙ)
→ (𝑥 ∈
((2...(𝐴 + 1)) ∩
ℙ) → 𝑥 ∈
((2...𝐴) ∩
ℙ))) |
34 | 33 | ssrdv 3927 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ ¬
(𝐴 + 1) ∈ ℙ)
→ ((2...(𝐴 + 1)) ∩
ℙ) ⊆ ((2...𝐴)
∩ ℙ)) |
35 | | uzid 12597 |
. . . . . 6
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
(ℤ≥‘𝐴)) |
36 | 35 | adantr 481 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ¬
(𝐴 + 1) ∈ ℙ)
→ 𝐴 ∈
(ℤ≥‘𝐴)) |
37 | | peano2uz 12641 |
. . . . 5
⊢ (𝐴 ∈
(ℤ≥‘𝐴) → (𝐴 + 1) ∈
(ℤ≥‘𝐴)) |
38 | | fzss2 13296 |
. . . . 5
⊢ ((𝐴 + 1) ∈
(ℤ≥‘𝐴) → (2...𝐴) ⊆ (2...(𝐴 + 1))) |
39 | | ssrin 4167 |
. . . . 5
⊢
((2...𝐴) ⊆
(2...(𝐴 + 1)) →
((2...𝐴) ∩ ℙ)
⊆ ((2...(𝐴 + 1))
∩ ℙ)) |
40 | 36, 37, 38, 39 | 4syl 19 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ ¬
(𝐴 + 1) ∈ ℙ)
→ ((2...𝐴) ∩
ℙ) ⊆ ((2...(𝐴 +
1)) ∩ ℙ)) |
41 | 34, 40 | eqssd 3938 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ ¬
(𝐴 + 1) ∈ ℙ)
→ ((2...(𝐴 + 1)) ∩
ℙ) = ((2...𝐴) ∩
ℙ)) |
42 | 41 | fveq2d 6778 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ ¬
(𝐴 + 1) ∈ ℙ)
→ (♯‘((2...(𝐴 + 1)) ∩ ℙ)) =
(♯‘((2...𝐴)
∩ ℙ))) |
43 | | peano2z 12361 |
. . . 4
⊢ (𝐴 ∈ ℤ → (𝐴 + 1) ∈
ℤ) |
44 | 43 | adantr 481 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ ¬
(𝐴 + 1) ∈ ℙ)
→ (𝐴 + 1) ∈
ℤ) |
45 | | ppival2 26277 |
. . 3
⊢ ((𝐴 + 1) ∈ ℤ →
(π‘(𝐴 + 1))
= (♯‘((2...(𝐴 +
1)) ∩ ℙ))) |
46 | 44, 45 | syl 17 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ ¬
(𝐴 + 1) ∈ ℙ)
→ (π‘(𝐴 + 1)) = (♯‘((2...(𝐴 + 1)) ∩
ℙ))) |
47 | | ppival2 26277 |
. . 3
⊢ (𝐴 ∈ ℤ →
(π‘𝐴) =
(♯‘((2...𝐴)
∩ ℙ))) |
48 | 47 | adantr 481 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ ¬
(𝐴 + 1) ∈ ℙ)
→ (π‘𝐴) = (♯‘((2...𝐴) ∩ ℙ))) |
49 | 42, 46, 48 | 3eqtr4d 2788 |
1
⊢ ((𝐴 ∈ ℤ ∧ ¬
(𝐴 + 1) ∈ ℙ)
→ (π‘(𝐴 + 1)) = (π‘𝐴)) |