MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppinprm Structured version   Visualization version   GIF version

Theorem ppinprm 27104
Description: The prime-counting function π at a non-prime. (Contributed by Mario Carneiro, 19-Sep-2014.)
Assertion
Ref Expression
ppinprm ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (π‘(𝐴 + 1)) = (π𝐴))

Proof of Theorem ppinprm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simprr 771 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))
21elin2d 4201 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ∈ ℙ)
3 simprl 769 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → ¬ (𝐴 + 1) ∈ ℙ)
4 nelne2 3037 . . . . . . . . . 10 ((𝑥 ∈ ℙ ∧ ¬ (𝐴 + 1) ∈ ℙ) → 𝑥 ≠ (𝐴 + 1))
52, 3, 4syl2anc 582 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ≠ (𝐴 + 1))
6 velsn 4648 . . . . . . . . . 10 (𝑥 ∈ {(𝐴 + 1)} ↔ 𝑥 = (𝐴 + 1))
76necon3bbii 2985 . . . . . . . . 9 𝑥 ∈ {(𝐴 + 1)} ↔ 𝑥 ≠ (𝐴 + 1))
85, 7sylibr 233 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → ¬ 𝑥 ∈ {(𝐴 + 1)})
91elin1d 4200 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ∈ (2...(𝐴 + 1)))
10 2z 12632 . . . . . . . . . . . 12 2 ∈ ℤ
11 zcn 12601 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
1211adantr 479 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝐴 ∈ ℂ)
13 ax-1cn 11204 . . . . . . . . . . . . . . 15 1 ∈ ℂ
14 pncan 11504 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
1512, 13, 14sylancl 584 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → ((𝐴 + 1) − 1) = 𝐴)
16 elfzuz2 13546 . . . . . . . . . . . . . . 15 (𝑥 ∈ (2...(𝐴 + 1)) → (𝐴 + 1) ∈ (ℤ‘2))
17 uz2m1nn 12945 . . . . . . . . . . . . . . 15 ((𝐴 + 1) ∈ (ℤ‘2) → ((𝐴 + 1) − 1) ∈ ℕ)
189, 16, 173syl 18 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → ((𝐴 + 1) − 1) ∈ ℕ)
1915, 18eqeltrrd 2830 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝐴 ∈ ℕ)
20 nnuz 12903 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
21 2m1e1 12376 . . . . . . . . . . . . . . 15 (2 − 1) = 1
2221fveq2i 6905 . . . . . . . . . . . . . 14 (ℤ‘(2 − 1)) = (ℤ‘1)
2320, 22eqtr4i 2759 . . . . . . . . . . . . 13 ℕ = (ℤ‘(2 − 1))
2419, 23eleqtrdi 2839 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝐴 ∈ (ℤ‘(2 − 1)))
25 fzsuc2 13599 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ 𝐴 ∈ (ℤ‘(2 − 1))) → (2...(𝐴 + 1)) = ((2...𝐴) ∪ {(𝐴 + 1)}))
2610, 24, 25sylancr 585 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → (2...(𝐴 + 1)) = ((2...𝐴) ∪ {(𝐴 + 1)}))
279, 26eleqtrd 2831 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ∈ ((2...𝐴) ∪ {(𝐴 + 1)}))
28 elun 4149 . . . . . . . . . 10 (𝑥 ∈ ((2...𝐴) ∪ {(𝐴 + 1)}) ↔ (𝑥 ∈ (2...𝐴) ∨ 𝑥 ∈ {(𝐴 + 1)}))
2927, 28sylib 217 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → (𝑥 ∈ (2...𝐴) ∨ 𝑥 ∈ {(𝐴 + 1)}))
3029ord 862 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → (¬ 𝑥 ∈ (2...𝐴) → 𝑥 ∈ {(𝐴 + 1)}))
318, 30mt3d 148 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ∈ (2...𝐴))
3231, 2elind 4196 . . . . . 6 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ∈ ((2...𝐴) ∩ ℙ))
3332expr 455 . . . . 5 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ) → 𝑥 ∈ ((2...𝐴) ∩ ℙ)))
3433ssrdv 3988 . . . 4 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) ⊆ ((2...𝐴) ∩ ℙ))
35 uzid 12875 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ (ℤ𝐴))
3635adantr 479 . . . . 5 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ (ℤ𝐴))
37 peano2uz 12923 . . . . 5 (𝐴 ∈ (ℤ𝐴) → (𝐴 + 1) ∈ (ℤ𝐴))
38 fzss2 13581 . . . . 5 ((𝐴 + 1) ∈ (ℤ𝐴) → (2...𝐴) ⊆ (2...(𝐴 + 1)))
39 ssrin 4236 . . . . 5 ((2...𝐴) ⊆ (2...(𝐴 + 1)) → ((2...𝐴) ∩ ℙ) ⊆ ((2...(𝐴 + 1)) ∩ ℙ))
4036, 37, 38, 394syl 19 . . . 4 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((2...𝐴) ∩ ℙ) ⊆ ((2...(𝐴 + 1)) ∩ ℙ))
4134, 40eqssd 3999 . . 3 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) = ((2...𝐴) ∩ ℙ))
4241fveq2d 6906 . 2 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (♯‘((2...(𝐴 + 1)) ∩ ℙ)) = (♯‘((2...𝐴) ∩ ℙ)))
43 peano2z 12641 . . . 4 (𝐴 ∈ ℤ → (𝐴 + 1) ∈ ℤ)
4443adantr 479 . . 3 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℤ)
45 ppival2 27080 . . 3 ((𝐴 + 1) ∈ ℤ → (π‘(𝐴 + 1)) = (♯‘((2...(𝐴 + 1)) ∩ ℙ)))
4644, 45syl 17 . 2 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (π‘(𝐴 + 1)) = (♯‘((2...(𝐴 + 1)) ∩ ℙ)))
47 ppival2 27080 . . 3 (𝐴 ∈ ℤ → (π𝐴) = (♯‘((2...𝐴) ∩ ℙ)))
4847adantr 479 . 2 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (π𝐴) = (♯‘((2...𝐴) ∩ ℙ)))
4942, 46, 483eqtr4d 2778 1 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (π‘(𝐴 + 1)) = (π𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wo 845   = wceq 1533  wcel 2098  wne 2937  cun 3947  cin 3948  wss 3949  {csn 4632  cfv 6553  (class class class)co 7426  cc 11144  1c1 11147   + caddc 11149  cmin 11482  cn 12250  2c2 12305  cz 12596  cuz 12860  ...cfz 13524  chash 14329  cprime 16649  πcppi 27046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-2o 8494  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-sup 9473  df-inf 9474  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-z 12597  df-uz 12861  df-rp 13015  df-icc 13371  df-fz 13525  df-fl 13797  df-seq 14007  df-exp 14067  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-dvds 16239  df-prm 16650  df-ppi 27052
This theorem is referenced by:  ppip1le  27113  ppi2i  27121  bposlem5  27241
  Copyright terms: Public domain W3C validator