Step | Hyp | Ref
| Expression |
1 | | fvex 6769 |
. . . . . . . . . 10
⊢ (𝐹‘𝑥) ∈ V |
2 | | c0ex 10900 |
. . . . . . . . . 10
⊢ 0 ∈
V |
3 | 1, 2 | ifex 4506 |
. . . . . . . . 9
⊢ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0) ∈ V |
4 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)) |
5 | 4 | fvmpt2 6868 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0) ∈ V) → ((𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))‘𝑥) = if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)) |
6 | 3, 5 | mpan2 687 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ → ((𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))‘𝑥) = if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)) |
7 | 6 | mpteq2dv 5172 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ → (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))‘𝑥)) = (𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))) |
8 | 7 | rneqd 5836 |
. . . . . 6
⊢ (𝑥 ∈ ℝ → ran
(𝑛 ∈ ℕ ↦
((𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))‘𝑥)) = ran (𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))) |
9 | 8 | supeq1d 9135 |
. . . . 5
⊢ (𝑥 ∈ ℝ → sup(ran
(𝑛 ∈ ℕ ↦
((𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))‘𝑥)), ℝ, < ) = sup(ran (𝑛 ∈ ℕ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)), ℝ, < )) |
10 | 9 | mpteq2ia 5173 |
. . . 4
⊢ (𝑥 ∈ ℝ ↦ sup(ran
(𝑛 ∈ ℕ ↦
((𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))‘𝑥)), ℝ, < )) = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)), ℝ, < )) |
11 | | nfcv 2906 |
. . . . 5
⊢
Ⅎ𝑦sup(ran (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))‘𝑥)), ℝ, < ) |
12 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑥ℕ |
13 | | nfmpt1 5178 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)) |
14 | 12, 13 | nfmpt 5177 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))) |
15 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝑚 |
16 | 14, 15 | nffv 6766 |
. . . . . . . . 9
⊢
Ⅎ𝑥((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))‘𝑚) |
17 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝑦 |
18 | 16, 17 | nffv 6766 |
. . . . . . . 8
⊢
Ⅎ𝑥(((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))‘𝑚)‘𝑦) |
19 | 12, 18 | nfmpt 5177 |
. . . . . . 7
⊢
Ⅎ𝑥(𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))‘𝑚)‘𝑦)) |
20 | 19 | nfrn 5850 |
. . . . . 6
⊢
Ⅎ𝑥ran
(𝑚 ∈ ℕ ↦
(((𝑛 ∈ ℕ ↦
(𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))‘𝑚)‘𝑦)) |
21 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑥ℝ |
22 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑥
< |
23 | 20, 21, 22 | nfsup 9140 |
. . . . 5
⊢
Ⅎ𝑥sup(ran (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))‘𝑚)‘𝑦)), ℝ, < ) |
24 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))‘𝑥) = ((𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))‘𝑦)) |
25 | 24 | mpteq2dv 5172 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))‘𝑦))) |
26 | | breq2 5074 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑚 → ((𝐹‘𝑥) ≤ 𝑛 ↔ (𝐹‘𝑥) ≤ 𝑚)) |
27 | 26 | ifbid 4479 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑚 → if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0) = if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0)) |
28 | 27 | mpteq2dv 5172 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑚 → (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))) |
29 | 28 | fveq1d 6758 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → ((𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))‘𝑦)) |
30 | 29 | cbvmptv 5183 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))‘𝑦)) = (𝑚 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))‘𝑦)) |
31 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))) = (𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))) |
32 | | reex 10893 |
. . . . . . . . . . . . 13
⊢ ℝ
∈ V |
33 | 32 | mptex 7081 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0)) ∈ V |
34 | 28, 31, 33 | fvmpt 6857 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))‘𝑚) = (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))) |
35 | 34 | fveq1d 6758 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))‘𝑚)‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))‘𝑦)) |
36 | 35 | mpteq2ia 5173 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))‘𝑚)‘𝑦)) = (𝑚 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))‘𝑦)) |
37 | 30, 36 | eqtr4i 2769 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))‘𝑦)) = (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))‘𝑚)‘𝑦)) |
38 | 25, 37 | eqtrdi 2795 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))‘𝑥)) = (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))‘𝑚)‘𝑦))) |
39 | 38 | rneqd 5836 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ran (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))‘𝑥)) = ran (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))‘𝑚)‘𝑦))) |
40 | 39 | supeq1d 9135 |
. . . . 5
⊢ (𝑥 = 𝑦 → sup(ran (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))‘𝑥)), ℝ, < ) = sup(ran (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))‘𝑚)‘𝑦)), ℝ, < )) |
41 | 11, 23, 40 | cbvmpt 5181 |
. . . 4
⊢ (𝑥 ∈ ℝ ↦ sup(ran
(𝑛 ∈ ℕ ↦
((𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))‘𝑥)), ℝ, < )) = (𝑦 ∈ ℝ ↦ sup(ran (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))‘𝑚)‘𝑦)), ℝ, < )) |
42 | 10, 41 | eqtr3i 2768 |
. . 3
⊢ (𝑥 ∈ ℝ ↦ sup(ran
(𝑛 ∈ ℕ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)), ℝ, < )) = (𝑦 ∈ ℝ ↦ sup(ran
(𝑚 ∈ ℕ ↦
(((𝑛 ∈ ℕ ↦
(𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))‘𝑚)‘𝑦)), ℝ, < )) |
43 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
44 | 43 | breq1d 5080 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) ≤ 𝑚 ↔ (𝐹‘𝑦) ≤ 𝑚)) |
45 | 44, 43 | ifbieq1d 4480 |
. . . . . 6
⊢ (𝑥 = 𝑦 → if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0) = if((𝐹‘𝑦) ≤ 𝑚, (𝐹‘𝑦), 0)) |
46 | 45 | cbvmptv 5183 |
. . . . 5
⊢ (𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0)) = (𝑦 ∈ ℝ ↦ if((𝐹‘𝑦) ≤ 𝑚, (𝐹‘𝑦), 0)) |
47 | 34 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))‘𝑚) = (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))) |
48 | | nnre 11910 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℝ) |
49 | 48 | ad2antlr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → 𝑚 ∈ ℝ) |
50 | 49 | rexrd 10956 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → 𝑚 ∈ ℝ*) |
51 | | elioopnf 13104 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℝ*
→ ((𝐹‘𝑦) ∈ (𝑚(,)+∞) ↔ ((𝐹‘𝑦) ∈ ℝ ∧ 𝑚 < (𝐹‘𝑦)))) |
52 | 50, 51 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝐹‘𝑦) ∈ (𝑚(,)+∞) ↔ ((𝐹‘𝑦) ∈ ℝ ∧ 𝑚 < (𝐹‘𝑦)))) |
53 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) |
54 | | itg2cn.1 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
55 | 54 | ffnd 6585 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 Fn ℝ) |
56 | 55 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → 𝐹 Fn ℝ) |
57 | | elpreima 6917 |
. . . . . . . . . . . 12
⊢ (𝐹 Fn ℝ → (𝑦 ∈ (◡𝐹 “ (𝑚(,)+∞)) ↔ (𝑦 ∈ ℝ ∧ (𝐹‘𝑦) ∈ (𝑚(,)+∞)))) |
58 | 56, 57 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑦 ∈ (◡𝐹 “ (𝑚(,)+∞)) ↔ (𝑦 ∈ ℝ ∧ (𝐹‘𝑦) ∈ (𝑚(,)+∞)))) |
59 | 53, 58 | mpbirand 703 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑦 ∈ (◡𝐹 “ (𝑚(,)+∞)) ↔ (𝐹‘𝑦) ∈ (𝑚(,)+∞))) |
60 | | rge0ssre 13117 |
. . . . . . . . . . . . . 14
⊢
(0[,)+∞) ⊆ ℝ |
61 | | fss 6601 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:ℝ⟶(0[,)+∞)
∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ) |
62 | 54, 60, 61 | sylancl 585 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
63 | 62 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝐹:ℝ⟶ℝ) |
64 | 63 | ffvelrnda 6943 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) ∈ ℝ) |
65 | 64 | biantrurd 532 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑚 < (𝐹‘𝑦) ↔ ((𝐹‘𝑦) ∈ ℝ ∧ 𝑚 < (𝐹‘𝑦)))) |
66 | 52, 59, 65 | 3bitr4d 310 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑦 ∈ (◡𝐹 “ (𝑚(,)+∞)) ↔ 𝑚 < (𝐹‘𝑦))) |
67 | 66 | notbid 317 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (¬ 𝑦 ∈ (◡𝐹 “ (𝑚(,)+∞)) ↔ ¬ 𝑚 < (𝐹‘𝑦))) |
68 | | eldif 3893 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (ℝ ∖ (◡𝐹 “ (𝑚(,)+∞))) ↔ (𝑦 ∈ ℝ ∧ ¬ 𝑦 ∈ (◡𝐹 “ (𝑚(,)+∞)))) |
69 | 68 | baib 535 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℝ → (𝑦 ∈ (ℝ ∖ (◡𝐹 “ (𝑚(,)+∞))) ↔ ¬ 𝑦 ∈ (◡𝐹 “ (𝑚(,)+∞)))) |
70 | 69 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑦 ∈ (ℝ ∖ (◡𝐹 “ (𝑚(,)+∞))) ↔ ¬ 𝑦 ∈ (◡𝐹 “ (𝑚(,)+∞)))) |
71 | 64, 49 | lenltd 11051 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝐹‘𝑦) ≤ 𝑚 ↔ ¬ 𝑚 < (𝐹‘𝑦))) |
72 | 67, 70, 71 | 3bitr4d 310 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑦 ∈ (ℝ ∖ (◡𝐹 “ (𝑚(,)+∞))) ↔ (𝐹‘𝑦) ≤ 𝑚)) |
73 | 72 | ifbid 4479 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → if(𝑦 ∈ (ℝ ∖ (◡𝐹 “ (𝑚(,)+∞))), (𝐹‘𝑦), 0) = if((𝐹‘𝑦) ≤ 𝑚, (𝐹‘𝑦), 0)) |
74 | 73 | mpteq2dva 5170 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (ℝ ∖ (◡𝐹 “ (𝑚(,)+∞))), (𝐹‘𝑦), 0)) = (𝑦 ∈ ℝ ↦ if((𝐹‘𝑦) ≤ 𝑚, (𝐹‘𝑦), 0))) |
75 | 46, 47, 74 | 3eqtr4a 2805 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))‘𝑚) = (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (ℝ ∖ (◡𝐹 “ (𝑚(,)+∞))), (𝐹‘𝑦), 0))) |
76 | | difss 4062 |
. . . . . 6
⊢ (ℝ
∖ (◡𝐹 “ (𝑚(,)+∞))) ⊆
ℝ |
77 | 76 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (ℝ ∖
(◡𝐹 “ (𝑚(,)+∞))) ⊆
ℝ) |
78 | | rembl 24609 |
. . . . . 6
⊢ ℝ
∈ dom vol |
79 | 78 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ℝ ∈ dom
vol) |
80 | | fvex 6769 |
. . . . . . 7
⊢ (𝐹‘𝑦) ∈ V |
81 | 80, 2 | ifex 4506 |
. . . . . 6
⊢ if(𝑦 ∈ (ℝ ∖ (◡𝐹 “ (𝑚(,)+∞))), (𝐹‘𝑦), 0) ∈ V |
82 | 81 | a1i 11 |
. . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ (ℝ ∖ (◡𝐹 “ (𝑚(,)+∞)))) → if(𝑦 ∈ (ℝ ∖ (◡𝐹 “ (𝑚(,)+∞))), (𝐹‘𝑦), 0) ∈ V) |
83 | | eldifn 4058 |
. . . . . . 7
⊢ (𝑦 ∈ (ℝ ∖
(ℝ ∖ (◡𝐹 “ (𝑚(,)+∞)))) → ¬ 𝑦 ∈ (ℝ ∖ (◡𝐹 “ (𝑚(,)+∞)))) |
84 | 83 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ (ℝ ∖ (ℝ ∖
(◡𝐹 “ (𝑚(,)+∞))))) → ¬ 𝑦 ∈ (ℝ ∖ (◡𝐹 “ (𝑚(,)+∞)))) |
85 | 84 | iffalsed 4467 |
. . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ (ℝ ∖ (ℝ ∖
(◡𝐹 “ (𝑚(,)+∞))))) → if(𝑦 ∈ (ℝ ∖ (◡𝐹 “ (𝑚(,)+∞))), (𝐹‘𝑦), 0) = 0) |
86 | | iftrue 4462 |
. . . . . . . . 9
⊢ (𝑦 ∈ (ℝ ∖ (◡𝐹 “ (𝑚(,)+∞))) → if(𝑦 ∈ (ℝ ∖ (◡𝐹 “ (𝑚(,)+∞))), (𝐹‘𝑦), 0) = (𝐹‘𝑦)) |
87 | 86 | mpteq2ia 5173 |
. . . . . . . 8
⊢ (𝑦 ∈ (ℝ ∖ (◡𝐹 “ (𝑚(,)+∞))) ↦ if(𝑦 ∈ (ℝ ∖ (◡𝐹 “ (𝑚(,)+∞))), (𝐹‘𝑦), 0)) = (𝑦 ∈ (ℝ ∖ (◡𝐹 “ (𝑚(,)+∞))) ↦ (𝐹‘𝑦)) |
88 | | resmpt 5934 |
. . . . . . . . 9
⊢ ((ℝ
∖ (◡𝐹 “ (𝑚(,)+∞))) ⊆ ℝ → ((𝑦 ∈ ℝ ↦ (𝐹‘𝑦)) ↾ (ℝ ∖ (◡𝐹 “ (𝑚(,)+∞)))) = (𝑦 ∈ (ℝ ∖ (◡𝐹 “ (𝑚(,)+∞))) ↦ (𝐹‘𝑦))) |
89 | 76, 88 | ax-mp 5 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℝ ↦ (𝐹‘𝑦)) ↾ (ℝ ∖ (◡𝐹 “ (𝑚(,)+∞)))) = (𝑦 ∈ (ℝ ∖ (◡𝐹 “ (𝑚(,)+∞))) ↦ (𝐹‘𝑦)) |
90 | 87, 89 | eqtr4i 2769 |
. . . . . . 7
⊢ (𝑦 ∈ (ℝ ∖ (◡𝐹 “ (𝑚(,)+∞))) ↦ if(𝑦 ∈ (ℝ ∖ (◡𝐹 “ (𝑚(,)+∞))), (𝐹‘𝑦), 0)) = ((𝑦 ∈ ℝ ↦ (𝐹‘𝑦)) ↾ (ℝ ∖ (◡𝐹 “ (𝑚(,)+∞)))) |
91 | 54 | feqmptd 6819 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 = (𝑦 ∈ ℝ ↦ (𝐹‘𝑦))) |
92 | | itg2cn.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ MblFn) |
93 | 91, 92 | eqeltrrd 2840 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ ℝ ↦ (𝐹‘𝑦)) ∈ MblFn) |
94 | | mbfima 24699 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) →
(◡𝐹 “ (𝑚(,)+∞)) ∈ dom
vol) |
95 | 92, 62, 94 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → (◡𝐹 “ (𝑚(,)+∞)) ∈ dom
vol) |
96 | | cmmbl 24603 |
. . . . . . . . 9
⊢ ((◡𝐹 “ (𝑚(,)+∞)) ∈ dom vol → (ℝ
∖ (◡𝐹 “ (𝑚(,)+∞))) ∈ dom
vol) |
97 | 95, 96 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (ℝ ∖ (◡𝐹 “ (𝑚(,)+∞))) ∈ dom
vol) |
98 | | mbfres 24713 |
. . . . . . . 8
⊢ (((𝑦 ∈ ℝ ↦ (𝐹‘𝑦)) ∈ MblFn ∧ (ℝ ∖ (◡𝐹 “ (𝑚(,)+∞))) ∈ dom vol) → ((𝑦 ∈ ℝ ↦ (𝐹‘𝑦)) ↾ (ℝ ∖ (◡𝐹 “ (𝑚(,)+∞)))) ∈
MblFn) |
99 | 93, 97, 98 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → ((𝑦 ∈ ℝ ↦ (𝐹‘𝑦)) ↾ (ℝ ∖ (◡𝐹 “ (𝑚(,)+∞)))) ∈
MblFn) |
100 | 90, 99 | eqeltrid 2843 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ (ℝ ∖ (◡𝐹 “ (𝑚(,)+∞))) ↦ if(𝑦 ∈ (ℝ ∖ (◡𝐹 “ (𝑚(,)+∞))), (𝐹‘𝑦), 0)) ∈ MblFn) |
101 | 100 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑦 ∈ (ℝ ∖ (◡𝐹 “ (𝑚(,)+∞))) ↦ if(𝑦 ∈ (ℝ ∖ (◡𝐹 “ (𝑚(,)+∞))), (𝐹‘𝑦), 0)) ∈ MblFn) |
102 | 77, 79, 82, 85, 101 | mbfss 24715 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (ℝ ∖ (◡𝐹 “ (𝑚(,)+∞))), (𝐹‘𝑦), 0)) ∈ MblFn) |
103 | 75, 102 | eqeltrd 2839 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))‘𝑚) ∈ MblFn) |
104 | 54 | ffvelrnda 6943 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ (0[,)+∞)) |
105 | | 0e0icopnf 13119 |
. . . . . 6
⊢ 0 ∈
(0[,)+∞) |
106 | | ifcl 4501 |
. . . . . 6
⊢ (((𝐹‘𝑥) ∈ (0[,)+∞) ∧ 0 ∈
(0[,)+∞)) → if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0) ∈ (0[,)+∞)) |
107 | 104, 105,
106 | sylancl 585 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0) ∈ (0[,)+∞)) |
108 | 107 | adantlr 711 |
. . . 4
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0) ∈ (0[,)+∞)) |
109 | 47, 108 | fmpt3d 6972 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))‘𝑚):ℝ⟶(0[,)+∞)) |
110 | | elrege0 13115 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑥) ∈ (0[,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥))) |
111 | 104, 110 | sylib 217 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥))) |
112 | 111 | simpld 494 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) |
113 | 112 | adantlr 711 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) |
114 | 113 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) ≤ 𝑚) → (𝐹‘𝑥) ∈ ℝ) |
115 | 114 | leidd 11471 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) ≤ 𝑚) → (𝐹‘𝑥) ≤ (𝐹‘𝑥)) |
116 | | iftrue 4462 |
. . . . . . . . 9
⊢ ((𝐹‘𝑥) ≤ 𝑚 → if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0) = (𝐹‘𝑥)) |
117 | 116 | adantl 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) ≤ 𝑚) → if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0) = (𝐹‘𝑥)) |
118 | 48 | ad3antlr 727 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) ≤ 𝑚) → 𝑚 ∈ ℝ) |
119 | | peano2re 11078 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℝ → (𝑚 + 1) ∈
ℝ) |
120 | 118, 119 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) ≤ 𝑚) → (𝑚 + 1) ∈ ℝ) |
121 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) ≤ 𝑚) → (𝐹‘𝑥) ≤ 𝑚) |
122 | 118 | lep1d 11836 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) ≤ 𝑚) → 𝑚 ≤ (𝑚 + 1)) |
123 | 114, 118,
120, 121, 122 | letrd 11062 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) ≤ 𝑚) → (𝐹‘𝑥) ≤ (𝑚 + 1)) |
124 | 123 | iftrued 4464 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) ≤ 𝑚) → if((𝐹‘𝑥) ≤ (𝑚 + 1), (𝐹‘𝑥), 0) = (𝐹‘𝑥)) |
125 | 115, 117,
124 | 3brtr4d 5102 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) ≤ 𝑚) → if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0) ≤ if((𝐹‘𝑥) ≤ (𝑚 + 1), (𝐹‘𝑥), 0)) |
126 | | iffalse 4465 |
. . . . . . . . 9
⊢ (¬
(𝐹‘𝑥) ≤ 𝑚 → if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0) = 0) |
127 | 126 | adantl 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝐹‘𝑥) ≤ 𝑚) → if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0) = 0) |
128 | 111 | simprd 495 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 0 ≤ (𝐹‘𝑥)) |
129 | | 0le0 12004 |
. . . . . . . . . . 11
⊢ 0 ≤
0 |
130 | | breq2 5074 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑥) = if((𝐹‘𝑥) ≤ (𝑚 + 1), (𝐹‘𝑥), 0) → (0 ≤ (𝐹‘𝑥) ↔ 0 ≤ if((𝐹‘𝑥) ≤ (𝑚 + 1), (𝐹‘𝑥), 0))) |
131 | | breq2 5074 |
. . . . . . . . . . . 12
⊢ (0 =
if((𝐹‘𝑥) ≤ (𝑚 + 1), (𝐹‘𝑥), 0) → (0 ≤ 0 ↔ 0 ≤
if((𝐹‘𝑥) ≤ (𝑚 + 1), (𝐹‘𝑥), 0))) |
132 | 130, 131 | ifboth 4495 |
. . . . . . . . . . 11
⊢ ((0 ≤
(𝐹‘𝑥) ∧ 0 ≤ 0) → 0 ≤ if((𝐹‘𝑥) ≤ (𝑚 + 1), (𝐹‘𝑥), 0)) |
133 | 128, 129,
132 | sylancl 585 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 0 ≤ if((𝐹‘𝑥) ≤ (𝑚 + 1), (𝐹‘𝑥), 0)) |
134 | 133 | adantlr 711 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ if((𝐹‘𝑥) ≤ (𝑚 + 1), (𝐹‘𝑥), 0)) |
135 | 134 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝐹‘𝑥) ≤ 𝑚) → 0 ≤ if((𝐹‘𝑥) ≤ (𝑚 + 1), (𝐹‘𝑥), 0)) |
136 | 127, 135 | eqbrtrd 5092 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝐹‘𝑥) ≤ 𝑚) → if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0) ≤ if((𝐹‘𝑥) ≤ (𝑚 + 1), (𝐹‘𝑥), 0)) |
137 | 125, 136 | pm2.61dan 809 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0) ≤ if((𝐹‘𝑥) ≤ (𝑚 + 1), (𝐹‘𝑥), 0)) |
138 | 137 | ralrimiva 3107 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ∀𝑥 ∈ ℝ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0) ≤ if((𝐹‘𝑥) ≤ (𝑚 + 1), (𝐹‘𝑥), 0)) |
139 | 1, 2 | ifex 4506 |
. . . . . . 7
⊢ if((𝐹‘𝑥) ≤ (𝑚 + 1), (𝐹‘𝑥), 0) ∈ V |
140 | 139 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐹‘𝑥) ≤ (𝑚 + 1), (𝐹‘𝑥), 0) ∈ V) |
141 | | eqidd 2739 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))) |
142 | | eqidd 2739 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ (𝑚 + 1), (𝐹‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ (𝑚 + 1), (𝐹‘𝑥), 0))) |
143 | 79, 108, 140, 141, 142 | ofrfval2 7532 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ (𝑚 + 1), (𝐹‘𝑥), 0)) ↔ ∀𝑥 ∈ ℝ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0) ≤ if((𝐹‘𝑥) ≤ (𝑚 + 1), (𝐹‘𝑥), 0))) |
144 | 138, 143 | mpbird 256 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ (𝑚 + 1), (𝐹‘𝑥), 0))) |
145 | | peano2nn 11915 |
. . . . . 6
⊢ (𝑚 ∈ ℕ → (𝑚 + 1) ∈
ℕ) |
146 | 145 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ) |
147 | | breq2 5074 |
. . . . . . . 8
⊢ (𝑛 = (𝑚 + 1) → ((𝐹‘𝑥) ≤ 𝑛 ↔ (𝐹‘𝑥) ≤ (𝑚 + 1))) |
148 | 147 | ifbid 4479 |
. . . . . . 7
⊢ (𝑛 = (𝑚 + 1) → if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0) = if((𝐹‘𝑥) ≤ (𝑚 + 1), (𝐹‘𝑥), 0)) |
149 | 148 | mpteq2dv 5172 |
. . . . . 6
⊢ (𝑛 = (𝑚 + 1) → (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ (𝑚 + 1), (𝐹‘𝑥), 0))) |
150 | 32 | mptex 7081 |
. . . . . 6
⊢ (𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ (𝑚 + 1), (𝐹‘𝑥), 0)) ∈ V |
151 | 149, 31, 150 | fvmpt 6857 |
. . . . 5
⊢ ((𝑚 + 1) ∈ ℕ →
((𝑛 ∈ ℕ ↦
(𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))‘(𝑚 + 1)) = (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ (𝑚 + 1), (𝐹‘𝑥), 0))) |
152 | 146, 151 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))‘(𝑚 + 1)) = (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ (𝑚 + 1), (𝐹‘𝑥), 0))) |
153 | 144, 47, 152 | 3brtr4d 5102 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))‘𝑚) ∘r ≤ ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))‘(𝑚 + 1))) |
154 | 62 | ffvelrnda 6943 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) ∈ ℝ) |
155 | 34 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))‘𝑚) = (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))) |
156 | 155 | fveq1d 6758 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))‘𝑚)‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))‘𝑦)) |
157 | 112 | leidd 11471 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ≤ (𝐹‘𝑥)) |
158 | | breq1 5073 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑥) = if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0) → ((𝐹‘𝑥) ≤ (𝐹‘𝑥) ↔ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0) ≤ (𝐹‘𝑥))) |
159 | | breq1 5073 |
. . . . . . . . . . . . . 14
⊢ (0 =
if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0) → (0 ≤ (𝐹‘𝑥) ↔ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0) ≤ (𝐹‘𝑥))) |
160 | 158, 159 | ifboth 4495 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑥) ≤ (𝐹‘𝑥) ∧ 0 ≤ (𝐹‘𝑥)) → if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0) ≤ (𝐹‘𝑥)) |
161 | 157, 128,
160 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0) ≤ (𝐹‘𝑥)) |
162 | 161 | adantlr 711 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0) ≤ (𝐹‘𝑥)) |
163 | 162 | ralrimiva 3107 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ∀𝑥 ∈ ℝ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0) ≤ (𝐹‘𝑥)) |
164 | 32 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ℝ ∈
V) |
165 | 1, 2 | ifex 4506 |
. . . . . . . . . . . 12
⊢ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0) ∈ V |
166 | 165 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0) ∈ V) |
167 | 54 | feqmptd 6819 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℝ ↦ (𝐹‘𝑥))) |
168 | 167 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝐹 = (𝑥 ∈ ℝ ↦ (𝐹‘𝑥))) |
169 | 164, 166,
113, 141, 168 | ofrfval2 7532 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0)) ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ ℝ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0) ≤ (𝐹‘𝑥))) |
170 | 163, 169 | mpbird 256 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0)) ∘r ≤ 𝐹) |
171 | 166 | fmpttd 6971 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0)):ℝ⟶V) |
172 | 171 | ffnd 6585 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0)) Fn ℝ) |
173 | 55 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝐹 Fn ℝ) |
174 | | inidm 4149 |
. . . . . . . . . 10
⊢ (ℝ
∩ ℝ) = ℝ |
175 | | eqidd 2739 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))‘𝑦)) |
176 | | eqidd 2739 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) = (𝐹‘𝑦)) |
177 | 172, 173,
164, 164, 174, 175, 176 | ofrfval 7521 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0)) ∘r ≤ 𝐹 ↔ ∀𝑦 ∈ ℝ ((𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))‘𝑦) ≤ (𝐹‘𝑦))) |
178 | 170, 177 | mpbid 231 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ∀𝑦 ∈ ℝ ((𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))‘𝑦) ≤ (𝐹‘𝑦)) |
179 | 178 | r19.21bi 3132 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))‘𝑦) ≤ (𝐹‘𝑦)) |
180 | 179 | an32s 648 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))‘𝑦) ≤ (𝐹‘𝑦)) |
181 | 156, 180 | eqbrtrd 5092 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))‘𝑚)‘𝑦) ≤ (𝐹‘𝑦)) |
182 | 181 | ralrimiva 3107 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ∀𝑚 ∈ ℕ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))‘𝑚)‘𝑦) ≤ (𝐹‘𝑦)) |
183 | | brralrspcev 5130 |
. . . 4
⊢ (((𝐹‘𝑦) ∈ ℝ ∧ ∀𝑚 ∈ ℕ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))‘𝑚)‘𝑦) ≤ (𝐹‘𝑦)) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))‘𝑚)‘𝑦) ≤ 𝑧) |
184 | 154, 182,
183 | syl2anc 583 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))‘𝑚)‘𝑦) ≤ 𝑧) |
185 | 28 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → (∫2‘(𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))) = (∫2‘(𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0)))) |
186 | 185 | cbvmptv 5183 |
. . . . . 6
⊢ (𝑛 ∈ ℕ ↦
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))) = (𝑚 ∈ ℕ ↦
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0)))) |
187 | 34 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑚 ∈ ℕ →
(∫2‘((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))‘𝑚)) = (∫2‘(𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0)))) |
188 | 187 | mpteq2ia 5173 |
. . . . . 6
⊢ (𝑚 ∈ ℕ ↦
(∫2‘((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))‘𝑚))) = (𝑚 ∈ ℕ ↦
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0)))) |
189 | 186, 188 | eqtr4i 2769 |
. . . . 5
⊢ (𝑛 ∈ ℕ ↦
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))) = (𝑚 ∈ ℕ ↦
(∫2‘((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))‘𝑚))) |
190 | 189 | rneqi 5835 |
. . . 4
⊢ ran
(𝑛 ∈ ℕ ↦
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))) = ran (𝑚 ∈ ℕ ↦
(∫2‘((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))‘𝑚))) |
191 | 190 | supeq1i 9136 |
. . 3
⊢ sup(ran
(𝑛 ∈ ℕ ↦
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))), ℝ*, < ) =
sup(ran (𝑚 ∈ ℕ
↦ (∫2‘((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))‘𝑚))), ℝ*, <
) |
192 | 42, 103, 109, 153, 184, 191 | itg2mono 24823 |
. 2
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)), ℝ, < ))) = sup(ran (𝑛 ∈ ℕ ↦
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))), ℝ*, <
)) |
193 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)) = (𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)) |
194 | 27, 193, 165 | fvmpt 6857 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))‘𝑚) = if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0)) |
195 | 194 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))‘𝑚) = if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0)) |
196 | 161 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0) ≤ (𝐹‘𝑥)) |
197 | 195, 196 | eqbrtrd 5092 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))‘𝑚) ≤ (𝐹‘𝑥)) |
198 | 197 | ralrimiva 3107 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))‘𝑚) ≤ (𝐹‘𝑥)) |
199 | 3 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0) ∈ V) |
200 | 199 | fmpttd 6971 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)):ℕ⟶V) |
201 | 200 | ffnd 6585 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)) Fn ℕ) |
202 | | breq1 5073 |
. . . . . . . . . 10
⊢ (𝑤 = ((𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))‘𝑚) → (𝑤 ≤ (𝐹‘𝑥) ↔ ((𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))‘𝑚) ≤ (𝐹‘𝑥))) |
203 | 202 | ralrn 6946 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)) Fn ℕ → (∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))𝑤 ≤ (𝐹‘𝑥) ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))‘𝑚) ≤ (𝐹‘𝑥))) |
204 | 201, 203 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))𝑤 ≤ (𝐹‘𝑥) ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))‘𝑚) ≤ (𝐹‘𝑥))) |
205 | 198, 204 | mpbird 256 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))𝑤 ≤ (𝐹‘𝑥)) |
206 | 112 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑥) ∈ ℝ) |
207 | | 0re 10908 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
208 | | ifcl 4501 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑥) ∈ ℝ ∧ 0 ∈ ℝ)
→ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0) ∈ ℝ) |
209 | 206, 207,
208 | sylancl 585 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0) ∈ ℝ) |
210 | 209 | fmpttd 6971 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥),
0)):ℕ⟶ℝ) |
211 | 210 | frnd 6592 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ran (𝑛 ∈ ℕ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)) ⊆ ℝ) |
212 | | 1nn 11914 |
. . . . . . . . . 10
⊢ 1 ∈
ℕ |
213 | 193, 209 | dmmptd 6562 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → dom (𝑛 ∈ ℕ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)) = ℕ) |
214 | 212, 213 | eleqtrrid 2846 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 1 ∈ dom (𝑛 ∈ ℕ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))) |
215 | | n0i 4264 |
. . . . . . . . . 10
⊢ (1 ∈
dom (𝑛 ∈ ℕ
↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)) → ¬ dom (𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)) = ∅) |
216 | | dm0rn0 5823 |
. . . . . . . . . . 11
⊢ (dom
(𝑛 ∈ ℕ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)) = ∅ ↔ ran (𝑛 ∈ ℕ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)) = ∅) |
217 | 216 | necon3bbii 2990 |
. . . . . . . . . 10
⊢ (¬
dom (𝑛 ∈ ℕ
↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)) = ∅ ↔ ran (𝑛 ∈ ℕ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)) ≠ ∅) |
218 | 215, 217 | sylib 217 |
. . . . . . . . 9
⊢ (1 ∈
dom (𝑛 ∈ ℕ
↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)) → ran (𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)) ≠ ∅) |
219 | 214, 218 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ran (𝑛 ∈ ℕ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)) ≠ ∅) |
220 | | brralrspcev 5130 |
. . . . . . . . 9
⊢ (((𝐹‘𝑥) ∈ ℝ ∧ ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))𝑤 ≤ (𝐹‘𝑥)) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))𝑤 ≤ 𝑧) |
221 | 112, 205,
220 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))𝑤 ≤ 𝑧) |
222 | | suprleub 11871 |
. . . . . . . 8
⊢ (((ran
(𝑛 ∈ ℕ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)) ⊆ ℝ ∧ ran (𝑛 ∈ ℕ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))𝑤 ≤ 𝑧) ∧ (𝐹‘𝑥) ∈ ℝ) → (sup(ran (𝑛 ∈ ℕ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)), ℝ, < ) ≤ (𝐹‘𝑥) ↔ ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))𝑤 ≤ (𝐹‘𝑥))) |
223 | 211, 219,
221, 112, 222 | syl31anc 1371 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (sup(ran (𝑛 ∈ ℕ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)), ℝ, < ) ≤ (𝐹‘𝑥) ↔ ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))𝑤 ≤ (𝐹‘𝑥))) |
224 | 205, 223 | mpbird 256 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → sup(ran (𝑛 ∈ ℕ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)), ℝ, < ) ≤ (𝐹‘𝑥)) |
225 | | arch 12160 |
. . . . . . . . 9
⊢ ((𝐹‘𝑥) ∈ ℝ → ∃𝑚 ∈ ℕ (𝐹‘𝑥) < 𝑚) |
226 | 112, 225 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ∃𝑚 ∈ ℕ (𝐹‘𝑥) < 𝑚) |
227 | 194 | ad2antrl 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹‘𝑥) < 𝑚)) → ((𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))‘𝑚) = if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0)) |
228 | | ltle 10994 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑥) ∈ ℝ ∧ 𝑚 ∈ ℝ) → ((𝐹‘𝑥) < 𝑚 → (𝐹‘𝑥) ≤ 𝑚)) |
229 | 112, 48, 228 | syl2an 595 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝐹‘𝑥) < 𝑚 → (𝐹‘𝑥) ≤ 𝑚)) |
230 | 229 | impr 454 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹‘𝑥) < 𝑚)) → (𝐹‘𝑥) ≤ 𝑚) |
231 | 230 | iftrued 4464 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹‘𝑥) < 𝑚)) → if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0) = (𝐹‘𝑥)) |
232 | 227, 231 | eqtrd 2778 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹‘𝑥) < 𝑚)) → ((𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))‘𝑚) = (𝐹‘𝑥)) |
233 | 201 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹‘𝑥) < 𝑚)) → (𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)) Fn ℕ) |
234 | | simprl 767 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹‘𝑥) < 𝑚)) → 𝑚 ∈ ℕ) |
235 | | fnfvelrn 6940 |
. . . . . . . . . 10
⊢ (((𝑛 ∈ ℕ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)) Fn ℕ ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))‘𝑚) ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))) |
236 | 233, 234,
235 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹‘𝑥) < 𝑚)) → ((𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))‘𝑚) ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))) |
237 | 232, 236 | eqeltrrd 2840 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹‘𝑥) < 𝑚)) → (𝐹‘𝑥) ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))) |
238 | 226, 237 | rexlimddv 3219 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))) |
239 | 211, 219,
221, 238 | suprubd 11867 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ≤ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)), ℝ, < )) |
240 | 211, 219,
221 | suprcld 11868 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → sup(ran (𝑛 ∈ ℕ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)), ℝ, < ) ∈
ℝ) |
241 | 240, 112 | letri3d 11047 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (sup(ran (𝑛 ∈ ℕ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)), ℝ, < ) = (𝐹‘𝑥) ↔ (sup(ran (𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)), ℝ, < ) ≤ (𝐹‘𝑥) ∧ (𝐹‘𝑥) ≤ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)), ℝ, < )))) |
242 | 224, 239,
241 | mpbir2and 709 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → sup(ran (𝑛 ∈ ℕ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)), ℝ, < ) = (𝐹‘𝑥)) |
243 | 242 | mpteq2dva 5170 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)), ℝ, < )) = (𝑥 ∈ ℝ ↦ (𝐹‘𝑥))) |
244 | 243, 167 | eqtr4d 2781 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)), ℝ, < )) = 𝐹) |
245 | 244 | fveq2d 6760 |
. 2
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)), ℝ, < ))) =
(∫2‘𝐹)) |
246 | 192, 245 | eqtr3d 2780 |
1
⊢ (𝜑 → sup(ran (𝑛 ∈ ℕ ↦
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))), ℝ*, < ) =
(∫2‘𝐹)) |