MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2cnlem1 Structured version   Visualization version   GIF version

Theorem itg2cnlem1 25816
Description: Lemma for itgcn 25900. (Contributed by Mario Carneiro, 30-Aug-2014.)
Hypotheses
Ref Expression
itg2cn.1 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2cn.2 (𝜑𝐹 ∈ MblFn)
itg2cn.3 (𝜑 → (∫2𝐹) ∈ ℝ)
Assertion
Ref Expression
itg2cnlem1 (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ) = (∫2𝐹))
Distinct variable groups:   𝑥,𝑛,𝐹   𝜑,𝑛,𝑥

Proof of Theorem itg2cnlem1
Dummy variables 𝑚 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6933 . . . . . . . . . 10 (𝐹𝑥) ∈ V
2 c0ex 11284 . . . . . . . . . 10 0 ∈ V
31, 2ifex 4598 . . . . . . . . 9 if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ V
4 eqid 2740 . . . . . . . . . 10 (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))
54fvmpt2 7040 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ V) → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥) = if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))
63, 5mpan2 690 . . . . . . . 8 (𝑥 ∈ ℝ → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥) = if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))
76mpteq2dv 5268 . . . . . . 7 (𝑥 ∈ ℝ → (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)) = (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
87rneqd 5963 . . . . . 6 (𝑥 ∈ ℝ → ran (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)) = ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
98supeq1d 9515 . . . . 5 (𝑥 ∈ ℝ → sup(ran (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)), ℝ, < ) = sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ))
109mpteq2ia 5269 . . . 4 (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)), ℝ, < )) = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ))
11 nfcv 2908 . . . . 5 𝑦sup(ran (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)), ℝ, < )
12 nfcv 2908 . . . . . . . 8 𝑥
13 nfmpt1 5274 . . . . . . . . . . 11 𝑥(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))
1412, 13nfmpt 5273 . . . . . . . . . 10 𝑥(𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
15 nfcv 2908 . . . . . . . . . 10 𝑥𝑚
1614, 15nffv 6930 . . . . . . . . 9 𝑥((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)
17 nfcv 2908 . . . . . . . . 9 𝑥𝑦
1816, 17nffv 6930 . . . . . . . 8 𝑥(((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦)
1912, 18nfmpt 5273 . . . . . . 7 𝑥(𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦))
2019nfrn 5977 . . . . . 6 𝑥ran (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦))
21 nfcv 2908 . . . . . 6 𝑥
22 nfcv 2908 . . . . . 6 𝑥 <
2320, 21, 22nfsup 9520 . . . . 5 𝑥sup(ran (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦)), ℝ, < )
24 fveq2 6920 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥) = ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑦))
2524mpteq2dv 5268 . . . . . . . 8 (𝑥 = 𝑦 → (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑦)))
26 breq2 5170 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → ((𝐹𝑥) ≤ 𝑛 ↔ (𝐹𝑥) ≤ 𝑚))
2726ifbid 4571 . . . . . . . . . . . 12 (𝑛 = 𝑚 → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) = if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))
2827mpteq2dv 5268 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)))
2928fveq1d 6922 . . . . . . . . . 10 (𝑛 = 𝑚 → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦))
3029cbvmptv 5279 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑦)) = (𝑚 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦))
31 eqid 2740 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))) = (𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
32 reex 11275 . . . . . . . . . . . . 13 ℝ ∈ V
3332mptex 7260 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) ∈ V
3428, 31, 33fvmpt 7029 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)))
3534fveq1d 6922 . . . . . . . . . 10 (𝑚 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦))
3635mpteq2ia 5269 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦)) = (𝑚 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦))
3730, 36eqtr4i 2771 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑦)) = (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦))
3825, 37eqtrdi 2796 . . . . . . 7 (𝑥 = 𝑦 → (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)) = (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦)))
3938rneqd 5963 . . . . . 6 (𝑥 = 𝑦 → ran (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)) = ran (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦)))
4039supeq1d 9515 . . . . 5 (𝑥 = 𝑦 → sup(ran (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)), ℝ, < ) = sup(ran (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦)), ℝ, < ))
4111, 23, 40cbvmpt 5277 . . . 4 (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)), ℝ, < )) = (𝑦 ∈ ℝ ↦ sup(ran (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦)), ℝ, < ))
4210, 41eqtr3i 2770 . . 3 (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < )) = (𝑦 ∈ ℝ ↦ sup(ran (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦)), ℝ, < ))
43 fveq2 6920 . . . . . . . 8 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
4443breq1d 5176 . . . . . . 7 (𝑥 = 𝑦 → ((𝐹𝑥) ≤ 𝑚 ↔ (𝐹𝑦) ≤ 𝑚))
4544, 43ifbieq1d 4572 . . . . . 6 (𝑥 = 𝑦 → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) = if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0))
4645cbvmptv 5279 . . . . 5 (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) = (𝑦 ∈ ℝ ↦ if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0))
4734adantl 481 . . . . 5 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)))
48 nnre 12300 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
4948ad2antlr 726 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → 𝑚 ∈ ℝ)
5049rexrd 11340 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → 𝑚 ∈ ℝ*)
51 elioopnf 13503 . . . . . . . . . . 11 (𝑚 ∈ ℝ* → ((𝐹𝑦) ∈ (𝑚(,)+∞) ↔ ((𝐹𝑦) ∈ ℝ ∧ 𝑚 < (𝐹𝑦))))
5250, 51syl 17 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝐹𝑦) ∈ (𝑚(,)+∞) ↔ ((𝐹𝑦) ∈ ℝ ∧ 𝑚 < (𝐹𝑦))))
53 simpr 484 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
54 itg2cn.1 . . . . . . . . . . . . . 14 (𝜑𝐹:ℝ⟶(0[,)+∞))
5554ffnd 6748 . . . . . . . . . . . . 13 (𝜑𝐹 Fn ℝ)
5655ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → 𝐹 Fn ℝ)
57 elpreima 7091 . . . . . . . . . . . 12 (𝐹 Fn ℝ → (𝑦 ∈ (𝐹 “ (𝑚(,)+∞)) ↔ (𝑦 ∈ ℝ ∧ (𝐹𝑦) ∈ (𝑚(,)+∞))))
5856, 57syl 17 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑦 ∈ (𝐹 “ (𝑚(,)+∞)) ↔ (𝑦 ∈ ℝ ∧ (𝐹𝑦) ∈ (𝑚(,)+∞))))
5953, 58mpbirand 706 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑦 ∈ (𝐹 “ (𝑚(,)+∞)) ↔ (𝐹𝑦) ∈ (𝑚(,)+∞)))
60 rge0ssre 13516 . . . . . . . . . . . . . 14 (0[,)+∞) ⊆ ℝ
61 fss 6763 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ)
6254, 60, 61sylancl 585 . . . . . . . . . . . . 13 (𝜑𝐹:ℝ⟶ℝ)
6362adantr 480 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
6463ffvelcdmda 7118 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℝ)
6564biantrurd 532 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑚 < (𝐹𝑦) ↔ ((𝐹𝑦) ∈ ℝ ∧ 𝑚 < (𝐹𝑦))))
6652, 59, 653bitr4d 311 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑦 ∈ (𝐹 “ (𝑚(,)+∞)) ↔ 𝑚 < (𝐹𝑦)))
6766notbid 318 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (¬ 𝑦 ∈ (𝐹 “ (𝑚(,)+∞)) ↔ ¬ 𝑚 < (𝐹𝑦)))
68 eldif 3986 . . . . . . . . . 10 (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↔ (𝑦 ∈ ℝ ∧ ¬ 𝑦 ∈ (𝐹 “ (𝑚(,)+∞))))
6968baib 535 . . . . . . . . 9 (𝑦 ∈ ℝ → (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↔ ¬ 𝑦 ∈ (𝐹 “ (𝑚(,)+∞))))
7069adantl 481 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↔ ¬ 𝑦 ∈ (𝐹 “ (𝑚(,)+∞))))
7164, 49lenltd 11436 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝐹𝑦) ≤ 𝑚 ↔ ¬ 𝑚 < (𝐹𝑦)))
7267, 70, 713bitr4d 311 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↔ (𝐹𝑦) ≤ 𝑚))
7372ifbid 4571 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0) = if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0))
7473mpteq2dva 5266 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0)) = (𝑦 ∈ ℝ ↦ if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0)))
7546, 47, 743eqtr4a 2806 . . . 4 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚) = (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0)))
76 difss 4159 . . . . . 6 (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ⊆ ℝ
7776a1i 11 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ⊆ ℝ)
78 rembl 25594 . . . . . 6 ℝ ∈ dom vol
7978a1i 11 . . . . 5 ((𝜑𝑚 ∈ ℕ) → ℝ ∈ dom vol)
80 fvex 6933 . . . . . . 7 (𝐹𝑦) ∈ V
8180, 2ifex 4598 . . . . . 6 if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0) ∈ V
8281a1i 11 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞)))) → if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0) ∈ V)
83 eldifn 4155 . . . . . . 7 (𝑦 ∈ (ℝ ∖ (ℝ ∖ (𝐹 “ (𝑚(,)+∞)))) → ¬ 𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))))
8483adantl 481 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ (ℝ ∖ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))))) → ¬ 𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))))
8584iffalsed 4559 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ (ℝ ∖ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))))) → if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0) = 0)
86 iftrue 4554 . . . . . . . . 9 (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) → if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0) = (𝐹𝑦))
8786mpteq2ia 5269 . . . . . . . 8 (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↦ if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0)) = (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↦ (𝐹𝑦))
88 resmpt 6066 . . . . . . . . 9 ((ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ⊆ ℝ → ((𝑦 ∈ ℝ ↦ (𝐹𝑦)) ↾ (ℝ ∖ (𝐹 “ (𝑚(,)+∞)))) = (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↦ (𝐹𝑦)))
8976, 88ax-mp 5 . . . . . . . 8 ((𝑦 ∈ ℝ ↦ (𝐹𝑦)) ↾ (ℝ ∖ (𝐹 “ (𝑚(,)+∞)))) = (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↦ (𝐹𝑦))
9087, 89eqtr4i 2771 . . . . . . 7 (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↦ if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0)) = ((𝑦 ∈ ℝ ↦ (𝐹𝑦)) ↾ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))))
9154feqmptd 6990 . . . . . . . . 9 (𝜑𝐹 = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
92 itg2cn.2 . . . . . . . . 9 (𝜑𝐹 ∈ MblFn)
9391, 92eqeltrrd 2845 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℝ ↦ (𝐹𝑦)) ∈ MblFn)
94 mbfima 25684 . . . . . . . . . 10 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) → (𝐹 “ (𝑚(,)+∞)) ∈ dom vol)
9592, 62, 94syl2anc 583 . . . . . . . . 9 (𝜑 → (𝐹 “ (𝑚(,)+∞)) ∈ dom vol)
96 cmmbl 25588 . . . . . . . . 9 ((𝐹 “ (𝑚(,)+∞)) ∈ dom vol → (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ∈ dom vol)
9795, 96syl 17 . . . . . . . 8 (𝜑 → (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ∈ dom vol)
98 mbfres 25698 . . . . . . . 8 (((𝑦 ∈ ℝ ↦ (𝐹𝑦)) ∈ MblFn ∧ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ∈ dom vol) → ((𝑦 ∈ ℝ ↦ (𝐹𝑦)) ↾ (ℝ ∖ (𝐹 “ (𝑚(,)+∞)))) ∈ MblFn)
9993, 97, 98syl2anc 583 . . . . . . 7 (𝜑 → ((𝑦 ∈ ℝ ↦ (𝐹𝑦)) ↾ (ℝ ∖ (𝐹 “ (𝑚(,)+∞)))) ∈ MblFn)
10090, 99eqeltrid 2848 . . . . . 6 (𝜑 → (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↦ if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0)) ∈ MblFn)
101100adantr 480 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↦ if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0)) ∈ MblFn)
10277, 79, 82, 85, 101mbfss 25700 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0)) ∈ MblFn)
10375, 102eqeltrd 2844 . . 3 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚) ∈ MblFn)
10454ffvelcdmda 7118 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
105 0e0icopnf 13518 . . . . . 6 0 ∈ (0[,)+∞)
106 ifcl 4593 . . . . . 6 (((𝐹𝑥) ∈ (0[,)+∞) ∧ 0 ∈ (0[,)+∞)) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ∈ (0[,)+∞))
107104, 105, 106sylancl 585 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ∈ (0[,)+∞))
108107adantlr 714 . . . 4 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ∈ (0[,)+∞))
10947, 108fmpt3d 7150 . . 3 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚):ℝ⟶(0[,)+∞))
110 elrege0 13514 . . . . . . . . . . . . 13 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
111104, 110sylib 218 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
112111simpld 494 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
113112adantlr 714 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
114113adantr 480 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → (𝐹𝑥) ∈ ℝ)
115114leidd 11856 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → (𝐹𝑥) ≤ (𝐹𝑥))
116 iftrue 4554 . . . . . . . . 9 ((𝐹𝑥) ≤ 𝑚 → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) = (𝐹𝑥))
117116adantl 481 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) = (𝐹𝑥))
11848ad3antlr 730 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → 𝑚 ∈ ℝ)
119 peano2re 11463 . . . . . . . . . . 11 (𝑚 ∈ ℝ → (𝑚 + 1) ∈ ℝ)
120118, 119syl 17 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → (𝑚 + 1) ∈ ℝ)
121 simpr 484 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → (𝐹𝑥) ≤ 𝑚)
122118lep1d 12226 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → 𝑚 ≤ (𝑚 + 1))
123114, 118, 120, 121, 122letrd 11447 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → (𝐹𝑥) ≤ (𝑚 + 1))
124123iftrued 4556 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0) = (𝐹𝑥))
125115, 117, 1243brtr4d 5198 . . . . . . 7 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
126 iffalse 4557 . . . . . . . . 9 (¬ (𝐹𝑥) ≤ 𝑚 → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) = 0)
127126adantl 481 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝐹𝑥) ≤ 𝑚) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) = 0)
128111simprd 495 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (𝐹𝑥))
129 0le0 12394 . . . . . . . . . . 11 0 ≤ 0
130 breq2 5170 . . . . . . . . . . . 12 ((𝐹𝑥) = if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0) → (0 ≤ (𝐹𝑥) ↔ 0 ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)))
131 breq2 5170 . . . . . . . . . . . 12 (0 = if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0) → (0 ≤ 0 ↔ 0 ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)))
132130, 131ifboth 4587 . . . . . . . . . . 11 ((0 ≤ (𝐹𝑥) ∧ 0 ≤ 0) → 0 ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
133128, 129, 132sylancl 585 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → 0 ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
134133adantlr 714 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
135134adantr 480 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝐹𝑥) ≤ 𝑚) → 0 ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
136127, 135eqbrtrd 5188 . . . . . . 7 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝐹𝑥) ≤ 𝑚) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
137125, 136pm2.61dan 812 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
138137ralrimiva 3152 . . . . 5 ((𝜑𝑚 ∈ ℕ) → ∀𝑥 ∈ ℝ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
1391, 2ifex 4598 . . . . . . 7 if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0) ∈ V
140139a1i 11 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0) ∈ V)
141 eqidd 2741 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)))
142 eqidd 2741 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)))
14379, 108, 140, 141, 142ofrfval2 7735 . . . . 5 ((𝜑𝑚 ∈ ℕ) → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)) ↔ ∀𝑥 ∈ ℝ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)))
144138, 143mpbird 257 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)))
145 peano2nn 12305 . . . . . 6 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
146145adantl 481 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
147 breq2 5170 . . . . . . . 8 (𝑛 = (𝑚 + 1) → ((𝐹𝑥) ≤ 𝑛 ↔ (𝐹𝑥) ≤ (𝑚 + 1)))
148147ifbid 4571 . . . . . . 7 (𝑛 = (𝑚 + 1) → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) = if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
149148mpteq2dv 5268 . . . . . 6 (𝑛 = (𝑚 + 1) → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)))
15032mptex 7260 . . . . . 6 (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)) ∈ V
151149, 31, 150fvmpt 7029 . . . . 5 ((𝑚 + 1) ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘(𝑚 + 1)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)))
152146, 151syl 17 . . . 4 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘(𝑚 + 1)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)))
153144, 47, 1523brtr4d 5198 . . 3 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚) ∘r ≤ ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘(𝑚 + 1)))
15462ffvelcdmda 7118 . . . 4 ((𝜑𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℝ)
15534adantl 481 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)))
156155fveq1d 6922 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦))
157112leidd 11856 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ≤ (𝐹𝑥))
158 breq1 5169 . . . . . . . . . . . . . 14 ((𝐹𝑥) = if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) → ((𝐹𝑥) ≤ (𝐹𝑥) ↔ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ (𝐹𝑥)))
159 breq1 5169 . . . . . . . . . . . . . 14 (0 = if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) → (0 ≤ (𝐹𝑥) ↔ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ (𝐹𝑥)))
160158, 159ifboth 4587 . . . . . . . . . . . . 13 (((𝐹𝑥) ≤ (𝐹𝑥) ∧ 0 ≤ (𝐹𝑥)) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ (𝐹𝑥))
161157, 128, 160syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ (𝐹𝑥))
162161adantlr 714 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ (𝐹𝑥))
163162ralrimiva 3152 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ∀𝑥 ∈ ℝ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ (𝐹𝑥))
16432a1i 11 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → ℝ ∈ V)
1651, 2ifex 4598 . . . . . . . . . . . 12 if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ∈ V
166165a1i 11 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ∈ V)
16754feqmptd 6990 . . . . . . . . . . . 12 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
168167adantr 480 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → 𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
169164, 166, 113, 141, 168ofrfval2 7735 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) ∘r𝐹 ↔ ∀𝑥 ∈ ℝ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ (𝐹𝑥)))
170163, 169mpbird 257 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) ∘r𝐹)
171166fmpttd 7149 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)):ℝ⟶V)
172171ffnd 6748 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) Fn ℝ)
17355adantr 480 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → 𝐹 Fn ℝ)
174 inidm 4248 . . . . . . . . . 10 (ℝ ∩ ℝ) = ℝ
175 eqidd 2741 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦))
176 eqidd 2741 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) = (𝐹𝑦))
177172, 173, 164, 164, 174, 175, 176ofrfval 7724 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) ∘r𝐹 ↔ ∀𝑦 ∈ ℝ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦) ≤ (𝐹𝑦)))
178170, 177mpbid 232 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ∀𝑦 ∈ ℝ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦) ≤ (𝐹𝑦))
179178r19.21bi 3257 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦) ≤ (𝐹𝑦))
180179an32s 651 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦) ≤ (𝐹𝑦))
181156, 180eqbrtrd 5188 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦) ≤ (𝐹𝑦))
182181ralrimiva 3152 . . . 4 ((𝜑𝑦 ∈ ℝ) → ∀𝑚 ∈ ℕ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦) ≤ (𝐹𝑦))
183 brralrspcev 5226 . . . 4 (((𝐹𝑦) ∈ ℝ ∧ ∀𝑚 ∈ ℕ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦) ≤ (𝐹𝑦)) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦) ≤ 𝑧)
184154, 182, 183syl2anc 583 . . 3 ((𝜑𝑦 ∈ ℝ) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦) ≤ 𝑧)
18528fveq2d 6924 . . . . . . 7 (𝑛 = 𝑚 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))))
186185cbvmptv 5279 . . . . . 6 (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) = (𝑚 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))))
18734fveq2d 6924 . . . . . . 7 (𝑚 ∈ ℕ → (∫2‘((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))))
188187mpteq2ia 5269 . . . . . 6 (𝑚 ∈ ℕ ↦ (∫2‘((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚))) = (𝑚 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))))
189186, 188eqtr4i 2771 . . . . 5 (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) = (𝑚 ∈ ℕ ↦ (∫2‘((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)))
190189rneqi 5962 . . . 4 ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) = ran (𝑚 ∈ ℕ ↦ (∫2‘((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)))
191190supeq1i 9516 . . 3 sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ) = sup(ran (𝑚 ∈ ℕ ↦ (∫2‘((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚))), ℝ*, < )
19242, 103, 109, 153, 184, 191itg2mono 25808 . 2 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ))) = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ))
193 eqid 2740 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))
19427, 193, 165fvmpt 7029 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) = if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))
195194adantl 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) = if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))
196161adantr 480 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ (𝐹𝑥))
197195, 196eqbrtrd 5188 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) ≤ (𝐹𝑥))
198197ralrimiva 3152 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) ≤ (𝐹𝑥))
1993a1i 11 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ V)
200199fmpttd 7149 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)):ℕ⟶V)
201200ffnd 6748 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) Fn ℕ)
202 breq1 5169 . . . . . . . . . 10 (𝑤 = ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) → (𝑤 ≤ (𝐹𝑥) ↔ ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) ≤ (𝐹𝑥)))
203202ralrn 7122 . . . . . . . . 9 ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) Fn ℕ → (∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤 ≤ (𝐹𝑥) ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) ≤ (𝐹𝑥)))
204201, 203syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤 ≤ (𝐹𝑥) ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) ≤ (𝐹𝑥)))
205198, 204mpbird 257 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤 ≤ (𝐹𝑥))
206112adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (𝐹𝑥) ∈ ℝ)
207 0re 11292 . . . . . . . . . . 11 0 ∈ ℝ
208 ifcl 4593 . . . . . . . . . . 11 (((𝐹𝑥) ∈ ℝ ∧ 0 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ ℝ)
209206, 207, 208sylancl 585 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ ℝ)
210209fmpttd 7149 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)):ℕ⟶ℝ)
211210frnd 6755 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) ⊆ ℝ)
212 1nn 12304 . . . . . . . . . 10 1 ∈ ℕ
213193, 209dmmptd 6725 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → dom (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = ℕ)
214212, 213eleqtrrid 2851 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → 1 ∈ dom (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
215 n0i 4363 . . . . . . . . . 10 (1 ∈ dom (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) → ¬ dom (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = ∅)
216 dm0rn0 5949 . . . . . . . . . . 11 (dom (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = ∅ ↔ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = ∅)
217216necon3bbii 2994 . . . . . . . . . 10 (¬ dom (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = ∅ ↔ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) ≠ ∅)
218215, 217sylib 218 . . . . . . . . 9 (1 ∈ dom (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) → ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) ≠ ∅)
219214, 218syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) ≠ ∅)
220 brralrspcev 5226 . . . . . . . . 9 (((𝐹𝑥) ∈ ℝ ∧ ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤 ≤ (𝐹𝑥)) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤𝑧)
221112, 205, 220syl2anc 583 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤𝑧)
222 suprleub 12261 . . . . . . . 8 (((ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) ⊆ ℝ ∧ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤𝑧) ∧ (𝐹𝑥) ∈ ℝ) → (sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ) ≤ (𝐹𝑥) ↔ ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤 ≤ (𝐹𝑥)))
223211, 219, 221, 112, 222syl31anc 1373 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ) ≤ (𝐹𝑥) ↔ ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤 ≤ (𝐹𝑥)))
224205, 223mpbird 257 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ) ≤ (𝐹𝑥))
225 arch 12550 . . . . . . . . 9 ((𝐹𝑥) ∈ ℝ → ∃𝑚 ∈ ℕ (𝐹𝑥) < 𝑚)
226112, 225syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ∃𝑚 ∈ ℕ (𝐹𝑥) < 𝑚)
227194ad2antrl 727 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹𝑥) < 𝑚)) → ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) = if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))
228 ltle 11378 . . . . . . . . . . . . 13 (((𝐹𝑥) ∈ ℝ ∧ 𝑚 ∈ ℝ) → ((𝐹𝑥) < 𝑚 → (𝐹𝑥) ≤ 𝑚))
229112, 48, 228syl2an 595 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝐹𝑥) < 𝑚 → (𝐹𝑥) ≤ 𝑚))
230229impr 454 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹𝑥) < 𝑚)) → (𝐹𝑥) ≤ 𝑚)
231230iftrued 4556 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹𝑥) < 𝑚)) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) = (𝐹𝑥))
232227, 231eqtrd 2780 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹𝑥) < 𝑚)) → ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) = (𝐹𝑥))
233201adantr 480 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹𝑥) < 𝑚)) → (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) Fn ℕ)
234 simprl 770 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹𝑥) < 𝑚)) → 𝑚 ∈ ℕ)
235 fnfvelrn 7114 . . . . . . . . . 10 (((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) Fn ℕ ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
236233, 234, 235syl2anc 583 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹𝑥) < 𝑚)) → ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
237232, 236eqeltrrd 2845 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹𝑥) < 𝑚)) → (𝐹𝑥) ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
238226, 237rexlimddv 3167 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
239211, 219, 221, 238suprubd 12257 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ≤ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ))
240211, 219, 221suprcld 12258 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ) ∈ ℝ)
241240, 112letri3d 11432 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ) = (𝐹𝑥) ↔ (sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ) ≤ (𝐹𝑥) ∧ (𝐹𝑥) ≤ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ))))
242224, 239, 241mpbir2and 712 . . . . 5 ((𝜑𝑥 ∈ ℝ) → sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ) = (𝐹𝑥))
243242mpteq2dva 5266 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < )) = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
244243, 167eqtr4d 2783 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < )) = 𝐹)
245244fveq2d 6924 . 2 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ))) = (∫2𝐹))
246192, 245eqtr3d 2782 1 (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ) = (∫2𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488  cdif 3973  wss 3976  c0 4352  ifcif 4548   class class class wbr 5166  cmpt 5249  ccnv 5699  dom cdm 5700  ran crn 5701  cres 5702  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  r cofr 7713  supcsup 9509  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  cn 12293  (,)cioo 13407  [,)cico 13409  volcvol 25517  MblFncmbf 25668  2citg2 25670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-rest 17482  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-bases 22974  df-cmp 23416  df-ovol 25518  df-vol 25519  df-mbf 25673  df-itg1 25674  df-itg2 25675
This theorem is referenced by:  itg2cn  25818
  Copyright terms: Public domain W3C validator