MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2cnlem1 Structured version   Visualization version   GIF version

Theorem itg2cnlem1 25733
Description: Lemma for itgcn 25817. (Contributed by Mario Carneiro, 30-Aug-2014.)
Hypotheses
Ref Expression
itg2cn.1 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2cn.2 (𝜑𝐹 ∈ MblFn)
itg2cn.3 (𝜑 → (∫2𝐹) ∈ ℝ)
Assertion
Ref Expression
itg2cnlem1 (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ) = (∫2𝐹))
Distinct variable groups:   𝑥,𝑛,𝐹   𝜑,𝑛,𝑥

Proof of Theorem itg2cnlem1
Dummy variables 𝑚 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6899 . . . . . . . . . 10 (𝐹𝑥) ∈ V
2 c0ex 11237 . . . . . . . . . 10 0 ∈ V
31, 2ifex 4556 . . . . . . . . 9 if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ V
4 eqid 2734 . . . . . . . . . 10 (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))
54fvmpt2 7007 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ V) → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥) = if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))
63, 5mpan2 691 . . . . . . . 8 (𝑥 ∈ ℝ → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥) = if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))
76mpteq2dv 5224 . . . . . . 7 (𝑥 ∈ ℝ → (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)) = (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
87rneqd 5929 . . . . . 6 (𝑥 ∈ ℝ → ran (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)) = ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
98supeq1d 9468 . . . . 5 (𝑥 ∈ ℝ → sup(ran (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)), ℝ, < ) = sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ))
109mpteq2ia 5225 . . . 4 (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)), ℝ, < )) = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ))
11 nfcv 2897 . . . . 5 𝑦sup(ran (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)), ℝ, < )
12 nfcv 2897 . . . . . . . 8 𝑥
13 nfmpt1 5230 . . . . . . . . . . 11 𝑥(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))
1412, 13nfmpt 5229 . . . . . . . . . 10 𝑥(𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
15 nfcv 2897 . . . . . . . . . 10 𝑥𝑚
1614, 15nffv 6896 . . . . . . . . 9 𝑥((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)
17 nfcv 2897 . . . . . . . . 9 𝑥𝑦
1816, 17nffv 6896 . . . . . . . 8 𝑥(((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦)
1912, 18nfmpt 5229 . . . . . . 7 𝑥(𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦))
2019nfrn 5943 . . . . . 6 𝑥ran (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦))
21 nfcv 2897 . . . . . 6 𝑥
22 nfcv 2897 . . . . . 6 𝑥 <
2320, 21, 22nfsup 9473 . . . . 5 𝑥sup(ran (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦)), ℝ, < )
24 fveq2 6886 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥) = ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑦))
2524mpteq2dv 5224 . . . . . . . 8 (𝑥 = 𝑦 → (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑦)))
26 breq2 5127 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → ((𝐹𝑥) ≤ 𝑛 ↔ (𝐹𝑥) ≤ 𝑚))
2726ifbid 4529 . . . . . . . . . . . 12 (𝑛 = 𝑚 → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) = if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))
2827mpteq2dv 5224 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)))
2928fveq1d 6888 . . . . . . . . . 10 (𝑛 = 𝑚 → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦))
3029cbvmptv 5235 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑦)) = (𝑚 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦))
31 eqid 2734 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))) = (𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
32 reex 11228 . . . . . . . . . . . . 13 ℝ ∈ V
3332mptex 7225 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) ∈ V
3428, 31, 33fvmpt 6996 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)))
3534fveq1d 6888 . . . . . . . . . 10 (𝑚 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦))
3635mpteq2ia 5225 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦)) = (𝑚 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦))
3730, 36eqtr4i 2760 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑦)) = (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦))
3825, 37eqtrdi 2785 . . . . . . 7 (𝑥 = 𝑦 → (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)) = (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦)))
3938rneqd 5929 . . . . . 6 (𝑥 = 𝑦 → ran (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)) = ran (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦)))
4039supeq1d 9468 . . . . 5 (𝑥 = 𝑦 → sup(ran (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)), ℝ, < ) = sup(ran (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦)), ℝ, < ))
4111, 23, 40cbvmpt 5233 . . . 4 (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)), ℝ, < )) = (𝑦 ∈ ℝ ↦ sup(ran (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦)), ℝ, < ))
4210, 41eqtr3i 2759 . . 3 (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < )) = (𝑦 ∈ ℝ ↦ sup(ran (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦)), ℝ, < ))
43 fveq2 6886 . . . . . . . 8 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
4443breq1d 5133 . . . . . . 7 (𝑥 = 𝑦 → ((𝐹𝑥) ≤ 𝑚 ↔ (𝐹𝑦) ≤ 𝑚))
4544, 43ifbieq1d 4530 . . . . . 6 (𝑥 = 𝑦 → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) = if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0))
4645cbvmptv 5235 . . . . 5 (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) = (𝑦 ∈ ℝ ↦ if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0))
4734adantl 481 . . . . 5 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)))
48 nnre 12255 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
4948ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → 𝑚 ∈ ℝ)
5049rexrd 11293 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → 𝑚 ∈ ℝ*)
51 elioopnf 13465 . . . . . . . . . . 11 (𝑚 ∈ ℝ* → ((𝐹𝑦) ∈ (𝑚(,)+∞) ↔ ((𝐹𝑦) ∈ ℝ ∧ 𝑚 < (𝐹𝑦))))
5250, 51syl 17 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝐹𝑦) ∈ (𝑚(,)+∞) ↔ ((𝐹𝑦) ∈ ℝ ∧ 𝑚 < (𝐹𝑦))))
53 simpr 484 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
54 itg2cn.1 . . . . . . . . . . . . . 14 (𝜑𝐹:ℝ⟶(0[,)+∞))
5554ffnd 6717 . . . . . . . . . . . . 13 (𝜑𝐹 Fn ℝ)
5655ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → 𝐹 Fn ℝ)
57 elpreima 7058 . . . . . . . . . . . 12 (𝐹 Fn ℝ → (𝑦 ∈ (𝐹 “ (𝑚(,)+∞)) ↔ (𝑦 ∈ ℝ ∧ (𝐹𝑦) ∈ (𝑚(,)+∞))))
5856, 57syl 17 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑦 ∈ (𝐹 “ (𝑚(,)+∞)) ↔ (𝑦 ∈ ℝ ∧ (𝐹𝑦) ∈ (𝑚(,)+∞))))
5953, 58mpbirand 707 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑦 ∈ (𝐹 “ (𝑚(,)+∞)) ↔ (𝐹𝑦) ∈ (𝑚(,)+∞)))
60 rge0ssre 13478 . . . . . . . . . . . . . 14 (0[,)+∞) ⊆ ℝ
61 fss 6732 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ)
6254, 60, 61sylancl 586 . . . . . . . . . . . . 13 (𝜑𝐹:ℝ⟶ℝ)
6362adantr 480 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
6463ffvelcdmda 7084 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℝ)
6564biantrurd 532 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑚 < (𝐹𝑦) ↔ ((𝐹𝑦) ∈ ℝ ∧ 𝑚 < (𝐹𝑦))))
6652, 59, 653bitr4d 311 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑦 ∈ (𝐹 “ (𝑚(,)+∞)) ↔ 𝑚 < (𝐹𝑦)))
6766notbid 318 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (¬ 𝑦 ∈ (𝐹 “ (𝑚(,)+∞)) ↔ ¬ 𝑚 < (𝐹𝑦)))
68 eldif 3941 . . . . . . . . . 10 (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↔ (𝑦 ∈ ℝ ∧ ¬ 𝑦 ∈ (𝐹 “ (𝑚(,)+∞))))
6968baib 535 . . . . . . . . 9 (𝑦 ∈ ℝ → (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↔ ¬ 𝑦 ∈ (𝐹 “ (𝑚(,)+∞))))
7069adantl 481 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↔ ¬ 𝑦 ∈ (𝐹 “ (𝑚(,)+∞))))
7164, 49lenltd 11389 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝐹𝑦) ≤ 𝑚 ↔ ¬ 𝑚 < (𝐹𝑦)))
7267, 70, 713bitr4d 311 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↔ (𝐹𝑦) ≤ 𝑚))
7372ifbid 4529 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0) = if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0))
7473mpteq2dva 5222 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0)) = (𝑦 ∈ ℝ ↦ if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0)))
7546, 47, 743eqtr4a 2795 . . . 4 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚) = (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0)))
76 difss 4116 . . . . . 6 (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ⊆ ℝ
7776a1i 11 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ⊆ ℝ)
78 rembl 25512 . . . . . 6 ℝ ∈ dom vol
7978a1i 11 . . . . 5 ((𝜑𝑚 ∈ ℕ) → ℝ ∈ dom vol)
80 fvex 6899 . . . . . . 7 (𝐹𝑦) ∈ V
8180, 2ifex 4556 . . . . . 6 if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0) ∈ V
8281a1i 11 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞)))) → if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0) ∈ V)
83 eldifn 4112 . . . . . . 7 (𝑦 ∈ (ℝ ∖ (ℝ ∖ (𝐹 “ (𝑚(,)+∞)))) → ¬ 𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))))
8483adantl 481 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ (ℝ ∖ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))))) → ¬ 𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))))
8584iffalsed 4516 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ (ℝ ∖ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))))) → if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0) = 0)
86 iftrue 4511 . . . . . . . . 9 (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) → if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0) = (𝐹𝑦))
8786mpteq2ia 5225 . . . . . . . 8 (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↦ if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0)) = (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↦ (𝐹𝑦))
88 resmpt 6035 . . . . . . . . 9 ((ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ⊆ ℝ → ((𝑦 ∈ ℝ ↦ (𝐹𝑦)) ↾ (ℝ ∖ (𝐹 “ (𝑚(,)+∞)))) = (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↦ (𝐹𝑦)))
8976, 88ax-mp 5 . . . . . . . 8 ((𝑦 ∈ ℝ ↦ (𝐹𝑦)) ↾ (ℝ ∖ (𝐹 “ (𝑚(,)+∞)))) = (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↦ (𝐹𝑦))
9087, 89eqtr4i 2760 . . . . . . 7 (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↦ if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0)) = ((𝑦 ∈ ℝ ↦ (𝐹𝑦)) ↾ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))))
9154feqmptd 6957 . . . . . . . . 9 (𝜑𝐹 = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
92 itg2cn.2 . . . . . . . . 9 (𝜑𝐹 ∈ MblFn)
9391, 92eqeltrrd 2834 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℝ ↦ (𝐹𝑦)) ∈ MblFn)
94 mbfima 25602 . . . . . . . . . 10 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) → (𝐹 “ (𝑚(,)+∞)) ∈ dom vol)
9592, 62, 94syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐹 “ (𝑚(,)+∞)) ∈ dom vol)
96 cmmbl 25506 . . . . . . . . 9 ((𝐹 “ (𝑚(,)+∞)) ∈ dom vol → (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ∈ dom vol)
9795, 96syl 17 . . . . . . . 8 (𝜑 → (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ∈ dom vol)
98 mbfres 25616 . . . . . . . 8 (((𝑦 ∈ ℝ ↦ (𝐹𝑦)) ∈ MblFn ∧ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ∈ dom vol) → ((𝑦 ∈ ℝ ↦ (𝐹𝑦)) ↾ (ℝ ∖ (𝐹 “ (𝑚(,)+∞)))) ∈ MblFn)
9993, 97, 98syl2anc 584 . . . . . . 7 (𝜑 → ((𝑦 ∈ ℝ ↦ (𝐹𝑦)) ↾ (ℝ ∖ (𝐹 “ (𝑚(,)+∞)))) ∈ MblFn)
10090, 99eqeltrid 2837 . . . . . 6 (𝜑 → (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↦ if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0)) ∈ MblFn)
101100adantr 480 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↦ if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0)) ∈ MblFn)
10277, 79, 82, 85, 101mbfss 25618 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0)) ∈ MblFn)
10375, 102eqeltrd 2833 . . 3 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚) ∈ MblFn)
10454ffvelcdmda 7084 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
105 0e0icopnf 13480 . . . . . 6 0 ∈ (0[,)+∞)
106 ifcl 4551 . . . . . 6 (((𝐹𝑥) ∈ (0[,)+∞) ∧ 0 ∈ (0[,)+∞)) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ∈ (0[,)+∞))
107104, 105, 106sylancl 586 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ∈ (0[,)+∞))
108107adantlr 715 . . . 4 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ∈ (0[,)+∞))
10947, 108fmpt3d 7116 . . 3 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚):ℝ⟶(0[,)+∞))
110 elrege0 13476 . . . . . . . . . . . . 13 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
111104, 110sylib 218 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
112111simpld 494 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
113112adantlr 715 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
114113adantr 480 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → (𝐹𝑥) ∈ ℝ)
115114leidd 11811 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → (𝐹𝑥) ≤ (𝐹𝑥))
116 iftrue 4511 . . . . . . . . 9 ((𝐹𝑥) ≤ 𝑚 → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) = (𝐹𝑥))
117116adantl 481 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) = (𝐹𝑥))
11848ad3antlr 731 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → 𝑚 ∈ ℝ)
119 peano2re 11416 . . . . . . . . . . 11 (𝑚 ∈ ℝ → (𝑚 + 1) ∈ ℝ)
120118, 119syl 17 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → (𝑚 + 1) ∈ ℝ)
121 simpr 484 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → (𝐹𝑥) ≤ 𝑚)
122118lep1d 12181 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → 𝑚 ≤ (𝑚 + 1))
123114, 118, 120, 121, 122letrd 11400 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → (𝐹𝑥) ≤ (𝑚 + 1))
124123iftrued 4513 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0) = (𝐹𝑥))
125115, 117, 1243brtr4d 5155 . . . . . . 7 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
126 iffalse 4514 . . . . . . . . 9 (¬ (𝐹𝑥) ≤ 𝑚 → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) = 0)
127126adantl 481 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝐹𝑥) ≤ 𝑚) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) = 0)
128111simprd 495 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (𝐹𝑥))
129 0le0 12349 . . . . . . . . . . 11 0 ≤ 0
130 breq2 5127 . . . . . . . . . . . 12 ((𝐹𝑥) = if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0) → (0 ≤ (𝐹𝑥) ↔ 0 ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)))
131 breq2 5127 . . . . . . . . . . . 12 (0 = if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0) → (0 ≤ 0 ↔ 0 ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)))
132130, 131ifboth 4545 . . . . . . . . . . 11 ((0 ≤ (𝐹𝑥) ∧ 0 ≤ 0) → 0 ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
133128, 129, 132sylancl 586 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → 0 ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
134133adantlr 715 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
135134adantr 480 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝐹𝑥) ≤ 𝑚) → 0 ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
136127, 135eqbrtrd 5145 . . . . . . 7 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝐹𝑥) ≤ 𝑚) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
137125, 136pm2.61dan 812 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
138137ralrimiva 3133 . . . . 5 ((𝜑𝑚 ∈ ℕ) → ∀𝑥 ∈ ℝ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
1391, 2ifex 4556 . . . . . . 7 if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0) ∈ V
140139a1i 11 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0) ∈ V)
141 eqidd 2735 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)))
142 eqidd 2735 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)))
14379, 108, 140, 141, 142ofrfval2 7700 . . . . 5 ((𝜑𝑚 ∈ ℕ) → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)) ↔ ∀𝑥 ∈ ℝ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)))
144138, 143mpbird 257 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)))
145 peano2nn 12260 . . . . . 6 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
146145adantl 481 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
147 breq2 5127 . . . . . . . 8 (𝑛 = (𝑚 + 1) → ((𝐹𝑥) ≤ 𝑛 ↔ (𝐹𝑥) ≤ (𝑚 + 1)))
148147ifbid 4529 . . . . . . 7 (𝑛 = (𝑚 + 1) → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) = if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
149148mpteq2dv 5224 . . . . . 6 (𝑛 = (𝑚 + 1) → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)))
15032mptex 7225 . . . . . 6 (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)) ∈ V
151149, 31, 150fvmpt 6996 . . . . 5 ((𝑚 + 1) ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘(𝑚 + 1)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)))
152146, 151syl 17 . . . 4 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘(𝑚 + 1)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)))
153144, 47, 1523brtr4d 5155 . . 3 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚) ∘r ≤ ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘(𝑚 + 1)))
15462ffvelcdmda 7084 . . . 4 ((𝜑𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℝ)
15534adantl 481 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)))
156155fveq1d 6888 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦))
157112leidd 11811 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ≤ (𝐹𝑥))
158 breq1 5126 . . . . . . . . . . . . . 14 ((𝐹𝑥) = if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) → ((𝐹𝑥) ≤ (𝐹𝑥) ↔ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ (𝐹𝑥)))
159 breq1 5126 . . . . . . . . . . . . . 14 (0 = if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) → (0 ≤ (𝐹𝑥) ↔ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ (𝐹𝑥)))
160158, 159ifboth 4545 . . . . . . . . . . . . 13 (((𝐹𝑥) ≤ (𝐹𝑥) ∧ 0 ≤ (𝐹𝑥)) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ (𝐹𝑥))
161157, 128, 160syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ (𝐹𝑥))
162161adantlr 715 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ (𝐹𝑥))
163162ralrimiva 3133 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ∀𝑥 ∈ ℝ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ (𝐹𝑥))
16432a1i 11 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → ℝ ∈ V)
1651, 2ifex 4556 . . . . . . . . . . . 12 if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ∈ V
166165a1i 11 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ∈ V)
16754feqmptd 6957 . . . . . . . . . . . 12 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
168167adantr 480 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → 𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
169164, 166, 113, 141, 168ofrfval2 7700 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) ∘r𝐹 ↔ ∀𝑥 ∈ ℝ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ (𝐹𝑥)))
170163, 169mpbird 257 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) ∘r𝐹)
171166fmpttd 7115 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)):ℝ⟶V)
172171ffnd 6717 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) Fn ℝ)
17355adantr 480 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → 𝐹 Fn ℝ)
174 inidm 4207 . . . . . . . . . 10 (ℝ ∩ ℝ) = ℝ
175 eqidd 2735 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦))
176 eqidd 2735 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) = (𝐹𝑦))
177172, 173, 164, 164, 174, 175, 176ofrfval 7689 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) ∘r𝐹 ↔ ∀𝑦 ∈ ℝ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦) ≤ (𝐹𝑦)))
178170, 177mpbid 232 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ∀𝑦 ∈ ℝ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦) ≤ (𝐹𝑦))
179178r19.21bi 3237 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦) ≤ (𝐹𝑦))
180179an32s 652 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦) ≤ (𝐹𝑦))
181156, 180eqbrtrd 5145 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦) ≤ (𝐹𝑦))
182181ralrimiva 3133 . . . 4 ((𝜑𝑦 ∈ ℝ) → ∀𝑚 ∈ ℕ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦) ≤ (𝐹𝑦))
183 brralrspcev 5183 . . . 4 (((𝐹𝑦) ∈ ℝ ∧ ∀𝑚 ∈ ℕ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦) ≤ (𝐹𝑦)) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦) ≤ 𝑧)
184154, 182, 183syl2anc 584 . . 3 ((𝜑𝑦 ∈ ℝ) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦) ≤ 𝑧)
18528fveq2d 6890 . . . . . . 7 (𝑛 = 𝑚 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))))
186185cbvmptv 5235 . . . . . 6 (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) = (𝑚 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))))
18734fveq2d 6890 . . . . . . 7 (𝑚 ∈ ℕ → (∫2‘((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))))
188187mpteq2ia 5225 . . . . . 6 (𝑚 ∈ ℕ ↦ (∫2‘((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚))) = (𝑚 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))))
189186, 188eqtr4i 2760 . . . . 5 (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) = (𝑚 ∈ ℕ ↦ (∫2‘((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)))
190189rneqi 5928 . . . 4 ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) = ran (𝑚 ∈ ℕ ↦ (∫2‘((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)))
191190supeq1i 9469 . . 3 sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ) = sup(ran (𝑚 ∈ ℕ ↦ (∫2‘((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚))), ℝ*, < )
19242, 103, 109, 153, 184, 191itg2mono 25725 . 2 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ))) = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ))
193 eqid 2734 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))
19427, 193, 165fvmpt 6996 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) = if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))
195194adantl 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) = if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))
196161adantr 480 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ (𝐹𝑥))
197195, 196eqbrtrd 5145 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) ≤ (𝐹𝑥))
198197ralrimiva 3133 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) ≤ (𝐹𝑥))
1993a1i 11 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ V)
200199fmpttd 7115 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)):ℕ⟶V)
201200ffnd 6717 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) Fn ℕ)
202 breq1 5126 . . . . . . . . . 10 (𝑤 = ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) → (𝑤 ≤ (𝐹𝑥) ↔ ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) ≤ (𝐹𝑥)))
203202ralrn 7088 . . . . . . . . 9 ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) Fn ℕ → (∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤 ≤ (𝐹𝑥) ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) ≤ (𝐹𝑥)))
204201, 203syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤 ≤ (𝐹𝑥) ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) ≤ (𝐹𝑥)))
205198, 204mpbird 257 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤 ≤ (𝐹𝑥))
206112adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (𝐹𝑥) ∈ ℝ)
207 0re 11245 . . . . . . . . . . 11 0 ∈ ℝ
208 ifcl 4551 . . . . . . . . . . 11 (((𝐹𝑥) ∈ ℝ ∧ 0 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ ℝ)
209206, 207, 208sylancl 586 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ ℝ)
210209fmpttd 7115 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)):ℕ⟶ℝ)
211210frnd 6724 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) ⊆ ℝ)
212 1nn 12259 . . . . . . . . . 10 1 ∈ ℕ
213193, 209dmmptd 6693 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → dom (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = ℕ)
214212, 213eleqtrrid 2840 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → 1 ∈ dom (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
215 n0i 4320 . . . . . . . . . 10 (1 ∈ dom (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) → ¬ dom (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = ∅)
216 dm0rn0 5915 . . . . . . . . . . 11 (dom (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = ∅ ↔ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = ∅)
217216necon3bbii 2978 . . . . . . . . . 10 (¬ dom (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = ∅ ↔ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) ≠ ∅)
218215, 217sylib 218 . . . . . . . . 9 (1 ∈ dom (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) → ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) ≠ ∅)
219214, 218syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) ≠ ∅)
220 brralrspcev 5183 . . . . . . . . 9 (((𝐹𝑥) ∈ ℝ ∧ ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤 ≤ (𝐹𝑥)) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤𝑧)
221112, 205, 220syl2anc 584 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤𝑧)
222 suprleub 12216 . . . . . . . 8 (((ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) ⊆ ℝ ∧ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤𝑧) ∧ (𝐹𝑥) ∈ ℝ) → (sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ) ≤ (𝐹𝑥) ↔ ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤 ≤ (𝐹𝑥)))
223211, 219, 221, 112, 222syl31anc 1374 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ) ≤ (𝐹𝑥) ↔ ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤 ≤ (𝐹𝑥)))
224205, 223mpbird 257 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ) ≤ (𝐹𝑥))
225 arch 12506 . . . . . . . . 9 ((𝐹𝑥) ∈ ℝ → ∃𝑚 ∈ ℕ (𝐹𝑥) < 𝑚)
226112, 225syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ∃𝑚 ∈ ℕ (𝐹𝑥) < 𝑚)
227194ad2antrl 728 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹𝑥) < 𝑚)) → ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) = if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))
228 ltle 11331 . . . . . . . . . . . . 13 (((𝐹𝑥) ∈ ℝ ∧ 𝑚 ∈ ℝ) → ((𝐹𝑥) < 𝑚 → (𝐹𝑥) ≤ 𝑚))
229112, 48, 228syl2an 596 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝐹𝑥) < 𝑚 → (𝐹𝑥) ≤ 𝑚))
230229impr 454 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹𝑥) < 𝑚)) → (𝐹𝑥) ≤ 𝑚)
231230iftrued 4513 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹𝑥) < 𝑚)) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) = (𝐹𝑥))
232227, 231eqtrd 2769 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹𝑥) < 𝑚)) → ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) = (𝐹𝑥))
233201adantr 480 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹𝑥) < 𝑚)) → (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) Fn ℕ)
234 simprl 770 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹𝑥) < 𝑚)) → 𝑚 ∈ ℕ)
235 fnfvelrn 7080 . . . . . . . . . 10 (((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) Fn ℕ ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
236233, 234, 235syl2anc 584 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹𝑥) < 𝑚)) → ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
237232, 236eqeltrrd 2834 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹𝑥) < 𝑚)) → (𝐹𝑥) ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
238226, 237rexlimddv 3148 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
239211, 219, 221, 238suprubd 12212 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ≤ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ))
240211, 219, 221suprcld 12213 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ) ∈ ℝ)
241240, 112letri3d 11385 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ) = (𝐹𝑥) ↔ (sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ) ≤ (𝐹𝑥) ∧ (𝐹𝑥) ≤ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ))))
242224, 239, 241mpbir2and 713 . . . . 5 ((𝜑𝑥 ∈ ℝ) → sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ) = (𝐹𝑥))
243242mpteq2dva 5222 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < )) = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
244243, 167eqtr4d 2772 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < )) = 𝐹)
245244fveq2d 6890 . 2 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ))) = (∫2𝐹))
246192, 245eqtr3d 2771 1 (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ) = (∫2𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2931  wral 3050  wrex 3059  Vcvv 3463  cdif 3928  wss 3931  c0 4313  ifcif 4505   class class class wbr 5123  cmpt 5205  ccnv 5664  dom cdm 5665  ran crn 5666  cres 5667  cima 5668   Fn wfn 6536  wf 6537  cfv 6541  (class class class)co 7413  r cofr 7678  supcsup 9462  cr 11136  0cc0 11137  1c1 11138   + caddc 11140  +∞cpnf 11274  *cxr 11276   < clt 11277  cle 11278  cn 12248  (,)cioo 13369  [,)cico 13371  volcvol 25435  MblFncmbf 25586  2citg2 25588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cc 10457  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-disj 5091  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-ofr 7680  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-oadd 8492  df-omul 8493  df-er 8727  df-map 8850  df-pm 8851  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fi 9433  df-sup 9464  df-inf 9465  df-oi 9532  df-dju 9923  df-card 9961  df-acn 9964  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-n0 12510  df-z 12597  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-ioo 13373  df-ioc 13374  df-ico 13375  df-icc 13376  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14353  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-clim 15507  df-rlim 15508  df-sum 15706  df-rest 17439  df-topgen 17460  df-psmet 21319  df-xmet 21320  df-met 21321  df-bl 21322  df-mopn 21323  df-top 22849  df-topon 22866  df-bases 22901  df-cmp 23342  df-ovol 25436  df-vol 25437  df-mbf 25591  df-itg1 25592  df-itg2 25593
This theorem is referenced by:  itg2cn  25735
  Copyright terms: Public domain W3C validator