MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2cnlem1 Structured version   Visualization version   GIF version

Theorem itg2cnlem1 24365
Description: Lemma for itgcn 24448. (Contributed by Mario Carneiro, 30-Aug-2014.)
Hypotheses
Ref Expression
itg2cn.1 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2cn.2 (𝜑𝐹 ∈ MblFn)
itg2cn.3 (𝜑 → (∫2𝐹) ∈ ℝ)
Assertion
Ref Expression
itg2cnlem1 (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ) = (∫2𝐹))
Distinct variable groups:   𝑥,𝑛,𝐹   𝜑,𝑛,𝑥

Proof of Theorem itg2cnlem1
Dummy variables 𝑚 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6658 . . . . . . . . . 10 (𝐹𝑥) ∈ V
2 c0ex 10624 . . . . . . . . . 10 0 ∈ V
31, 2ifex 4473 . . . . . . . . 9 if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ V
4 eqid 2798 . . . . . . . . . 10 (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))
54fvmpt2 6756 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ V) → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥) = if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))
63, 5mpan2 690 . . . . . . . 8 (𝑥 ∈ ℝ → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥) = if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))
76mpteq2dv 5126 . . . . . . 7 (𝑥 ∈ ℝ → (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)) = (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
87rneqd 5772 . . . . . 6 (𝑥 ∈ ℝ → ran (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)) = ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
98supeq1d 8894 . . . . 5 (𝑥 ∈ ℝ → sup(ran (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)), ℝ, < ) = sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ))
109mpteq2ia 5121 . . . 4 (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)), ℝ, < )) = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ))
11 nfcv 2955 . . . . 5 𝑦sup(ran (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)), ℝ, < )
12 nfcv 2955 . . . . . . . 8 𝑥
13 nfmpt1 5128 . . . . . . . . . . 11 𝑥(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))
1412, 13nfmpt 5127 . . . . . . . . . 10 𝑥(𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
15 nfcv 2955 . . . . . . . . . 10 𝑥𝑚
1614, 15nffv 6655 . . . . . . . . 9 𝑥((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)
17 nfcv 2955 . . . . . . . . 9 𝑥𝑦
1816, 17nffv 6655 . . . . . . . 8 𝑥(((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦)
1912, 18nfmpt 5127 . . . . . . 7 𝑥(𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦))
2019nfrn 5788 . . . . . 6 𝑥ran (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦))
21 nfcv 2955 . . . . . 6 𝑥
22 nfcv 2955 . . . . . 6 𝑥 <
2320, 21, 22nfsup 8899 . . . . 5 𝑥sup(ran (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦)), ℝ, < )
24 fveq2 6645 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥) = ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑦))
2524mpteq2dv 5126 . . . . . . . 8 (𝑥 = 𝑦 → (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑦)))
26 breq2 5034 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → ((𝐹𝑥) ≤ 𝑛 ↔ (𝐹𝑥) ≤ 𝑚))
2726ifbid 4447 . . . . . . . . . . . 12 (𝑛 = 𝑚 → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) = if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))
2827mpteq2dv 5126 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)))
2928fveq1d 6647 . . . . . . . . . 10 (𝑛 = 𝑚 → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦))
3029cbvmptv 5133 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑦)) = (𝑚 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦))
31 eqid 2798 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))) = (𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
32 reex 10617 . . . . . . . . . . . . 13 ℝ ∈ V
3332mptex 6963 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) ∈ V
3428, 31, 33fvmpt 6745 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)))
3534fveq1d 6647 . . . . . . . . . 10 (𝑚 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦))
3635mpteq2ia 5121 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦)) = (𝑚 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦))
3730, 36eqtr4i 2824 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑦)) = (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦))
3825, 37eqtrdi 2849 . . . . . . 7 (𝑥 = 𝑦 → (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)) = (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦)))
3938rneqd 5772 . . . . . 6 (𝑥 = 𝑦 → ran (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)) = ran (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦)))
4039supeq1d 8894 . . . . 5 (𝑥 = 𝑦 → sup(ran (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)), ℝ, < ) = sup(ran (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦)), ℝ, < ))
4111, 23, 40cbvmpt 5131 . . . 4 (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑥)), ℝ, < )) = (𝑦 ∈ ℝ ↦ sup(ran (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦)), ℝ, < ))
4210, 41eqtr3i 2823 . . 3 (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < )) = (𝑦 ∈ ℝ ↦ sup(ran (𝑚 ∈ ℕ ↦ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦)), ℝ, < ))
43 fveq2 6645 . . . . . . . 8 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
4443breq1d 5040 . . . . . . 7 (𝑥 = 𝑦 → ((𝐹𝑥) ≤ 𝑚 ↔ (𝐹𝑦) ≤ 𝑚))
4544, 43ifbieq1d 4448 . . . . . 6 (𝑥 = 𝑦 → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) = if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0))
4645cbvmptv 5133 . . . . 5 (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) = (𝑦 ∈ ℝ ↦ if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0))
4734adantl 485 . . . . 5 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)))
48 nnre 11632 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
4948ad2antlr 726 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → 𝑚 ∈ ℝ)
5049rexrd 10680 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → 𝑚 ∈ ℝ*)
51 elioopnf 12821 . . . . . . . . . . 11 (𝑚 ∈ ℝ* → ((𝐹𝑦) ∈ (𝑚(,)+∞) ↔ ((𝐹𝑦) ∈ ℝ ∧ 𝑚 < (𝐹𝑦))))
5250, 51syl 17 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝐹𝑦) ∈ (𝑚(,)+∞) ↔ ((𝐹𝑦) ∈ ℝ ∧ 𝑚 < (𝐹𝑦))))
53 simpr 488 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
54 itg2cn.1 . . . . . . . . . . . . . 14 (𝜑𝐹:ℝ⟶(0[,)+∞))
5554ffnd 6488 . . . . . . . . . . . . 13 (𝜑𝐹 Fn ℝ)
5655ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → 𝐹 Fn ℝ)
57 elpreima 6805 . . . . . . . . . . . 12 (𝐹 Fn ℝ → (𝑦 ∈ (𝐹 “ (𝑚(,)+∞)) ↔ (𝑦 ∈ ℝ ∧ (𝐹𝑦) ∈ (𝑚(,)+∞))))
5856, 57syl 17 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑦 ∈ (𝐹 “ (𝑚(,)+∞)) ↔ (𝑦 ∈ ℝ ∧ (𝐹𝑦) ∈ (𝑚(,)+∞))))
5953, 58mpbirand 706 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑦 ∈ (𝐹 “ (𝑚(,)+∞)) ↔ (𝐹𝑦) ∈ (𝑚(,)+∞)))
60 rge0ssre 12834 . . . . . . . . . . . . . 14 (0[,)+∞) ⊆ ℝ
61 fss 6501 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ)
6254, 60, 61sylancl 589 . . . . . . . . . . . . 13 (𝜑𝐹:ℝ⟶ℝ)
6362adantr 484 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
6463ffvelrnda 6828 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℝ)
6564biantrurd 536 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑚 < (𝐹𝑦) ↔ ((𝐹𝑦) ∈ ℝ ∧ 𝑚 < (𝐹𝑦))))
6652, 59, 653bitr4d 314 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑦 ∈ (𝐹 “ (𝑚(,)+∞)) ↔ 𝑚 < (𝐹𝑦)))
6766notbid 321 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (¬ 𝑦 ∈ (𝐹 “ (𝑚(,)+∞)) ↔ ¬ 𝑚 < (𝐹𝑦)))
68 eldif 3891 . . . . . . . . . 10 (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↔ (𝑦 ∈ ℝ ∧ ¬ 𝑦 ∈ (𝐹 “ (𝑚(,)+∞))))
6968baib 539 . . . . . . . . 9 (𝑦 ∈ ℝ → (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↔ ¬ 𝑦 ∈ (𝐹 “ (𝑚(,)+∞))))
7069adantl 485 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↔ ¬ 𝑦 ∈ (𝐹 “ (𝑚(,)+∞))))
7164, 49lenltd 10775 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝐹𝑦) ≤ 𝑚 ↔ ¬ 𝑚 < (𝐹𝑦)))
7267, 70, 713bitr4d 314 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↔ (𝐹𝑦) ≤ 𝑚))
7372ifbid 4447 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0) = if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0))
7473mpteq2dva 5125 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0)) = (𝑦 ∈ ℝ ↦ if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0)))
7546, 47, 743eqtr4a 2859 . . . 4 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚) = (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0)))
76 difss 4059 . . . . . 6 (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ⊆ ℝ
7776a1i 11 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ⊆ ℝ)
78 rembl 24144 . . . . . 6 ℝ ∈ dom vol
7978a1i 11 . . . . 5 ((𝜑𝑚 ∈ ℕ) → ℝ ∈ dom vol)
80 fvex 6658 . . . . . . 7 (𝐹𝑦) ∈ V
8180, 2ifex 4473 . . . . . 6 if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0) ∈ V
8281a1i 11 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞)))) → if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0) ∈ V)
83 eldifn 4055 . . . . . . 7 (𝑦 ∈ (ℝ ∖ (ℝ ∖ (𝐹 “ (𝑚(,)+∞)))) → ¬ 𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))))
8483adantl 485 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ (ℝ ∖ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))))) → ¬ 𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))))
8584iffalsed 4436 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ (ℝ ∖ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))))) → if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0) = 0)
86 iftrue 4431 . . . . . . . . 9 (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) → if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0) = (𝐹𝑦))
8786mpteq2ia 5121 . . . . . . . 8 (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↦ if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0)) = (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↦ (𝐹𝑦))
88 resmpt 5872 . . . . . . . . 9 ((ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ⊆ ℝ → ((𝑦 ∈ ℝ ↦ (𝐹𝑦)) ↾ (ℝ ∖ (𝐹 “ (𝑚(,)+∞)))) = (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↦ (𝐹𝑦)))
8976, 88ax-mp 5 . . . . . . . 8 ((𝑦 ∈ ℝ ↦ (𝐹𝑦)) ↾ (ℝ ∖ (𝐹 “ (𝑚(,)+∞)))) = (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↦ (𝐹𝑦))
9087, 89eqtr4i 2824 . . . . . . 7 (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↦ if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0)) = ((𝑦 ∈ ℝ ↦ (𝐹𝑦)) ↾ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))))
9154feqmptd 6708 . . . . . . . . 9 (𝜑𝐹 = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
92 itg2cn.2 . . . . . . . . 9 (𝜑𝐹 ∈ MblFn)
9391, 92eqeltrrd 2891 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℝ ↦ (𝐹𝑦)) ∈ MblFn)
94 mbfima 24234 . . . . . . . . . 10 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) → (𝐹 “ (𝑚(,)+∞)) ∈ dom vol)
9592, 62, 94syl2anc 587 . . . . . . . . 9 (𝜑 → (𝐹 “ (𝑚(,)+∞)) ∈ dom vol)
96 cmmbl 24138 . . . . . . . . 9 ((𝐹 “ (𝑚(,)+∞)) ∈ dom vol → (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ∈ dom vol)
9795, 96syl 17 . . . . . . . 8 (𝜑 → (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ∈ dom vol)
98 mbfres 24248 . . . . . . . 8 (((𝑦 ∈ ℝ ↦ (𝐹𝑦)) ∈ MblFn ∧ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ∈ dom vol) → ((𝑦 ∈ ℝ ↦ (𝐹𝑦)) ↾ (ℝ ∖ (𝐹 “ (𝑚(,)+∞)))) ∈ MblFn)
9993, 97, 98syl2anc 587 . . . . . . 7 (𝜑 → ((𝑦 ∈ ℝ ↦ (𝐹𝑦)) ↾ (ℝ ∖ (𝐹 “ (𝑚(,)+∞)))) ∈ MblFn)
10090, 99eqeltrid 2894 . . . . . 6 (𝜑 → (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↦ if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0)) ∈ MblFn)
101100adantr 484 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))) ↦ if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0)) ∈ MblFn)
10277, 79, 82, 85, 101mbfss 24250 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (ℝ ∖ (𝐹 “ (𝑚(,)+∞))), (𝐹𝑦), 0)) ∈ MblFn)
10375, 102eqeltrd 2890 . . 3 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚) ∈ MblFn)
10454ffvelrnda 6828 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
105 0e0icopnf 12836 . . . . . 6 0 ∈ (0[,)+∞)
106 ifcl 4469 . . . . . 6 (((𝐹𝑥) ∈ (0[,)+∞) ∧ 0 ∈ (0[,)+∞)) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ∈ (0[,)+∞))
107104, 105, 106sylancl 589 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ∈ (0[,)+∞))
108107adantlr 714 . . . 4 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ∈ (0[,)+∞))
10947, 108fmpt3d 6857 . . 3 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚):ℝ⟶(0[,)+∞))
110 elrege0 12832 . . . . . . . . . . . . 13 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
111104, 110sylib 221 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
112111simpld 498 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
113112adantlr 714 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
114113adantr 484 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → (𝐹𝑥) ∈ ℝ)
115114leidd 11195 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → (𝐹𝑥) ≤ (𝐹𝑥))
116 iftrue 4431 . . . . . . . . 9 ((𝐹𝑥) ≤ 𝑚 → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) = (𝐹𝑥))
117116adantl 485 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) = (𝐹𝑥))
11848ad3antlr 730 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → 𝑚 ∈ ℝ)
119 peano2re 10802 . . . . . . . . . . 11 (𝑚 ∈ ℝ → (𝑚 + 1) ∈ ℝ)
120118, 119syl 17 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → (𝑚 + 1) ∈ ℝ)
121 simpr 488 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → (𝐹𝑥) ≤ 𝑚)
122118lep1d 11560 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → 𝑚 ≤ (𝑚 + 1))
123114, 118, 120, 121, 122letrd 10786 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → (𝐹𝑥) ≤ (𝑚 + 1))
124123iftrued 4433 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0) = (𝐹𝑥))
125115, 117, 1243brtr4d 5062 . . . . . . 7 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐹𝑥) ≤ 𝑚) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
126 iffalse 4434 . . . . . . . . 9 (¬ (𝐹𝑥) ≤ 𝑚 → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) = 0)
127126adantl 485 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝐹𝑥) ≤ 𝑚) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) = 0)
128111simprd 499 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (𝐹𝑥))
129 0le0 11726 . . . . . . . . . . 11 0 ≤ 0
130 breq2 5034 . . . . . . . . . . . 12 ((𝐹𝑥) = if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0) → (0 ≤ (𝐹𝑥) ↔ 0 ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)))
131 breq2 5034 . . . . . . . . . . . 12 (0 = if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0) → (0 ≤ 0 ↔ 0 ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)))
132130, 131ifboth 4463 . . . . . . . . . . 11 ((0 ≤ (𝐹𝑥) ∧ 0 ≤ 0) → 0 ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
133128, 129, 132sylancl 589 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → 0 ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
134133adantlr 714 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
135134adantr 484 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝐹𝑥) ≤ 𝑚) → 0 ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
136127, 135eqbrtrd 5052 . . . . . . 7 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝐹𝑥) ≤ 𝑚) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
137125, 136pm2.61dan 812 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
138137ralrimiva 3149 . . . . 5 ((𝜑𝑚 ∈ ℕ) → ∀𝑥 ∈ ℝ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
1391, 2ifex 4473 . . . . . . 7 if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0) ∈ V
140139a1i 11 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0) ∈ V)
141 eqidd 2799 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)))
142 eqidd 2799 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)))
14379, 108, 140, 141, 142ofrfval2 7407 . . . . 5 ((𝜑𝑚 ∈ ℕ) → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)) ↔ ∀𝑥 ∈ ℝ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)))
144138, 143mpbird 260 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)))
145 peano2nn 11637 . . . . . 6 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
146145adantl 485 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
147 breq2 5034 . . . . . . . 8 (𝑛 = (𝑚 + 1) → ((𝐹𝑥) ≤ 𝑛 ↔ (𝐹𝑥) ≤ (𝑚 + 1)))
148147ifbid 4447 . . . . . . 7 (𝑛 = (𝑚 + 1) → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) = if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0))
149148mpteq2dv 5126 . . . . . 6 (𝑛 = (𝑚 + 1) → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)))
15032mptex 6963 . . . . . 6 (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)) ∈ V
151149, 31, 150fvmpt 6745 . . . . 5 ((𝑚 + 1) ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘(𝑚 + 1)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)))
152146, 151syl 17 . . . 4 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘(𝑚 + 1)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ (𝑚 + 1), (𝐹𝑥), 0)))
153144, 47, 1523brtr4d 5062 . . 3 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚) ∘r ≤ ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘(𝑚 + 1)))
15462ffvelrnda 6828 . . . 4 ((𝜑𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℝ)
15534adantl 485 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)))
156155fveq1d 6647 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦))
157112leidd 11195 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ≤ (𝐹𝑥))
158 breq1 5033 . . . . . . . . . . . . . 14 ((𝐹𝑥) = if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) → ((𝐹𝑥) ≤ (𝐹𝑥) ↔ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ (𝐹𝑥)))
159 breq1 5033 . . . . . . . . . . . . . 14 (0 = if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) → (0 ≤ (𝐹𝑥) ↔ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ (𝐹𝑥)))
160158, 159ifboth 4463 . . . . . . . . . . . . 13 (((𝐹𝑥) ≤ (𝐹𝑥) ∧ 0 ≤ (𝐹𝑥)) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ (𝐹𝑥))
161157, 128, 160syl2anc 587 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ (𝐹𝑥))
162161adantlr 714 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ (𝐹𝑥))
163162ralrimiva 3149 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ∀𝑥 ∈ ℝ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ (𝐹𝑥))
16432a1i 11 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → ℝ ∈ V)
1651, 2ifex 4473 . . . . . . . . . . . 12 if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ∈ V
166165a1i 11 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ∈ V)
16754feqmptd 6708 . . . . . . . . . . . 12 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
168167adantr 484 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → 𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
169164, 166, 113, 141, 168ofrfval2 7407 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) ∘r𝐹 ↔ ∀𝑥 ∈ ℝ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ (𝐹𝑥)))
170163, 169mpbird 260 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) ∘r𝐹)
171166fmpttd 6856 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)):ℝ⟶V)
172171ffnd 6488 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) Fn ℝ)
17355adantr 484 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → 𝐹 Fn ℝ)
174 inidm 4145 . . . . . . . . . 10 (ℝ ∩ ℝ) = ℝ
175 eqidd 2799 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦))
176 eqidd 2799 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) = (𝐹𝑦))
177172, 173, 164, 164, 174, 175, 176ofrfval 7397 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) ∘r𝐹 ↔ ∀𝑦 ∈ ℝ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦) ≤ (𝐹𝑦)))
178170, 177mpbid 235 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ∀𝑦 ∈ ℝ ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦) ≤ (𝐹𝑦))
179178r19.21bi 3173 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦) ≤ (𝐹𝑦))
180179an32s 651 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))‘𝑦) ≤ (𝐹𝑦))
181156, 180eqbrtrd 5052 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦) ≤ (𝐹𝑦))
182181ralrimiva 3149 . . . 4 ((𝜑𝑦 ∈ ℝ) → ∀𝑚 ∈ ℕ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦) ≤ (𝐹𝑦))
183 brralrspcev 5090 . . . 4 (((𝐹𝑦) ∈ ℝ ∧ ∀𝑚 ∈ ℕ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦) ≤ (𝐹𝑦)) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦) ≤ 𝑧)
184154, 182, 183syl2anc 587 . . 3 ((𝜑𝑦 ∈ ℝ) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ (((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)‘𝑦) ≤ 𝑧)
18528fveq2d 6649 . . . . . . 7 (𝑛 = 𝑚 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))))
186185cbvmptv 5133 . . . . . 6 (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) = (𝑚 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))))
18734fveq2d 6649 . . . . . . 7 (𝑚 ∈ ℕ → (∫2‘((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))))
188187mpteq2ia 5121 . . . . . 6 (𝑚 ∈ ℕ ↦ (∫2‘((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚))) = (𝑚 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))))
189186, 188eqtr4i 2824 . . . . 5 (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) = (𝑚 ∈ ℕ ↦ (∫2‘((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)))
190189rneqi 5771 . . . 4 ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) = ran (𝑚 ∈ ℕ ↦ (∫2‘((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚)))
191190supeq1i 8895 . . 3 sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ) = sup(ran (𝑚 ∈ ℕ ↦ (∫2‘((𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))‘𝑚))), ℝ*, < )
19242, 103, 109, 153, 184, 191itg2mono 24357 . 2 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ))) = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ))
193 eqid 2798 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))
19427, 193, 165fvmpt 6745 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) = if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))
195194adantl 485 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) = if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))
196161adantr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) ≤ (𝐹𝑥))
197195, 196eqbrtrd 5052 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) ≤ (𝐹𝑥))
198197ralrimiva 3149 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) ≤ (𝐹𝑥))
1993a1i 11 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ V)
200199fmpttd 6856 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)):ℕ⟶V)
201200ffnd 6488 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) Fn ℕ)
202 breq1 5033 . . . . . . . . . 10 (𝑤 = ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) → (𝑤 ≤ (𝐹𝑥) ↔ ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) ≤ (𝐹𝑥)))
203202ralrn 6831 . . . . . . . . 9 ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) Fn ℕ → (∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤 ≤ (𝐹𝑥) ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) ≤ (𝐹𝑥)))
204201, 203syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤 ≤ (𝐹𝑥) ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) ≤ (𝐹𝑥)))
205198, 204mpbird 260 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤 ≤ (𝐹𝑥))
206112adantr 484 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (𝐹𝑥) ∈ ℝ)
207 0re 10632 . . . . . . . . . . 11 0 ∈ ℝ
208 ifcl 4469 . . . . . . . . . . 11 (((𝐹𝑥) ∈ ℝ ∧ 0 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ ℝ)
209206, 207, 208sylancl 589 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ ℝ)
210209fmpttd 6856 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)):ℕ⟶ℝ)
211210frnd 6494 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) ⊆ ℝ)
212 1nn 11636 . . . . . . . . . 10 1 ∈ ℕ
213193, 209dmmptd 6465 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → dom (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = ℕ)
214212, 213eleqtrrid 2897 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → 1 ∈ dom (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
215 n0i 4249 . . . . . . . . . 10 (1 ∈ dom (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) → ¬ dom (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = ∅)
216 dm0rn0 5759 . . . . . . . . . . 11 (dom (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = ∅ ↔ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = ∅)
217216necon3bbii 3034 . . . . . . . . . 10 (¬ dom (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = ∅ ↔ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) ≠ ∅)
218215, 217sylib 221 . . . . . . . . 9 (1 ∈ dom (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) → ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) ≠ ∅)
219214, 218syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) ≠ ∅)
220 brralrspcev 5090 . . . . . . . . 9 (((𝐹𝑥) ∈ ℝ ∧ ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤 ≤ (𝐹𝑥)) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤𝑧)
221112, 205, 220syl2anc 587 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤𝑧)
222 suprleub 11594 . . . . . . . 8 (((ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) ⊆ ℝ ∧ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤𝑧) ∧ (𝐹𝑥) ∈ ℝ) → (sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ) ≤ (𝐹𝑥) ↔ ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤 ≤ (𝐹𝑥)))
223211, 219, 221, 112, 222syl31anc 1370 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ) ≤ (𝐹𝑥) ↔ ∀𝑤 ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))𝑤 ≤ (𝐹𝑥)))
224205, 223mpbird 260 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ) ≤ (𝐹𝑥))
225 arch 11882 . . . . . . . . 9 ((𝐹𝑥) ∈ ℝ → ∃𝑚 ∈ ℕ (𝐹𝑥) < 𝑚)
226112, 225syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ∃𝑚 ∈ ℕ (𝐹𝑥) < 𝑚)
227194ad2antrl 727 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹𝑥) < 𝑚)) → ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) = if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))
228 ltle 10718 . . . . . . . . . . . . 13 (((𝐹𝑥) ∈ ℝ ∧ 𝑚 ∈ ℝ) → ((𝐹𝑥) < 𝑚 → (𝐹𝑥) ≤ 𝑚))
229112, 48, 228syl2an 598 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝐹𝑥) < 𝑚 → (𝐹𝑥) ≤ 𝑚))
230229impr 458 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹𝑥) < 𝑚)) → (𝐹𝑥) ≤ 𝑚)
231230iftrued 4433 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹𝑥) < 𝑚)) → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) = (𝐹𝑥))
232227, 231eqtrd 2833 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹𝑥) < 𝑚)) → ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) = (𝐹𝑥))
233201adantr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹𝑥) < 𝑚)) → (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) Fn ℕ)
234 simprl 770 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹𝑥) < 𝑚)) → 𝑚 ∈ ℕ)
235 fnfvelrn 6825 . . . . . . . . . 10 (((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) Fn ℕ ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
236233, 234, 235syl2anc 587 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹𝑥) < 𝑚)) → ((𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))‘𝑚) ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
237232, 236eqeltrrd 2891 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑚 ∈ ℕ ∧ (𝐹𝑥) < 𝑚)) → (𝐹𝑥) ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
238226, 237rexlimddv 3250 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))
239211, 219, 221, 238suprubd 11590 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ≤ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ))
240211, 219, 221suprcld 11591 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ) ∈ ℝ)
241240, 112letri3d 10771 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ) = (𝐹𝑥) ↔ (sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ) ≤ (𝐹𝑥) ∧ (𝐹𝑥) ≤ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ))))
242224, 239, 241mpbir2and 712 . . . . 5 ((𝜑𝑥 ∈ ℝ) → sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ) = (𝐹𝑥))
243242mpteq2dva 5125 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < )) = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
244243, 167eqtr4d 2836 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < )) = 𝐹)
245244fveq2d 6649 . 2 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)), ℝ, < ))) = (∫2𝐹))
246192, 245eqtr3d 2835 1 (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ) = (∫2𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  Vcvv 3441  cdif 3878  wss 3881  c0 4243  ifcif 4425   class class class wbr 5030  cmpt 5110  ccnv 5518  dom cdm 5519  ran crn 5520  cres 5521  cima 5522   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  r cofr 7388  supcsup 8888  cr 10525  0cc0 10526  1c1 10527   + caddc 10529  +∞cpnf 10661  *cxr 10663   < clt 10664  cle 10665  cn 11625  (,)cioo 12726  [,)cico 12728  volcvol 24067  MblFncmbf 24218  2citg2 24220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cc 9846  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-acn 9355  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-rest 16688  df-topgen 16709  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-top 21499  df-topon 21516  df-bases 21551  df-cmp 21992  df-ovol 24068  df-vol 24069  df-mbf 24223  df-itg1 24224  df-itg2 24225
This theorem is referenced by:  itg2cn  24367
  Copyright terms: Public domain W3C validator