Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > pjneli | Structured version Visualization version GIF version |
Description: If a vector does not belong to subspace, the norm of its projection is less than its norm. (Contributed by NM, 27-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjnorm.1 | ⊢ 𝐻 ∈ Cℋ |
pjnorm.2 | ⊢ 𝐴 ∈ ℋ |
Ref | Expression |
---|---|
pjneli | ⊢ (¬ 𝐴 ∈ 𝐻 ↔ (normℎ‘((projℎ‘𝐻)‘𝐴)) < (normℎ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjnorm.1 | . . . 4 ⊢ 𝐻 ∈ Cℋ | |
2 | pjnorm.2 | . . . 4 ⊢ 𝐴 ∈ ℋ | |
3 | 1, 2 | pjnormi 29984 | . . 3 ⊢ (normℎ‘((projℎ‘𝐻)‘𝐴)) ≤ (normℎ‘𝐴) |
4 | 3 | biantrur 530 | . 2 ⊢ ((normℎ‘𝐴) ≠ (normℎ‘((projℎ‘𝐻)‘𝐴)) ↔ ((normℎ‘((projℎ‘𝐻)‘𝐴)) ≤ (normℎ‘𝐴) ∧ (normℎ‘𝐴) ≠ (normℎ‘((projℎ‘𝐻)‘𝐴)))) |
5 | 1, 2 | pjoc1i 29694 | . . . 4 ⊢ (𝐴 ∈ 𝐻 ↔ ((projℎ‘(⊥‘𝐻))‘𝐴) = 0ℎ) |
6 | 1, 2 | pjpythi 29985 | . . . . . 6 ⊢ ((normℎ‘𝐴)↑2) = (((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + ((normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴))↑2)) |
7 | sq0 13837 | . . . . . . . 8 ⊢ (0↑2) = 0 | |
8 | 7 | oveq2i 7266 | . . . . . . 7 ⊢ (((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + (0↑2)) = (((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + 0) |
9 | 1, 2 | pjhclii 29685 | . . . . . . . . . . 11 ⊢ ((projℎ‘𝐻)‘𝐴) ∈ ℋ |
10 | 9 | normcli 29394 | . . . . . . . . . 10 ⊢ (normℎ‘((projℎ‘𝐻)‘𝐴)) ∈ ℝ |
11 | 10 | resqcli 13831 | . . . . . . . . 9 ⊢ ((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) ∈ ℝ |
12 | 11 | recni 10920 | . . . . . . . 8 ⊢ ((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) ∈ ℂ |
13 | 12 | addid1i 11092 | . . . . . . 7 ⊢ (((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + 0) = ((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) |
14 | 8, 13 | eqtr2i 2767 | . . . . . 6 ⊢ ((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) = (((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + (0↑2)) |
15 | 6, 14 | eqeq12i 2756 | . . . . 5 ⊢ (((normℎ‘𝐴)↑2) = ((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) ↔ (((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + ((normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴))↑2)) = (((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + (0↑2))) |
16 | 1 | choccli 29570 | . . . . . . . . . . 11 ⊢ (⊥‘𝐻) ∈ Cℋ |
17 | 16, 2 | pjhclii 29685 | . . . . . . . . . 10 ⊢ ((projℎ‘(⊥‘𝐻))‘𝐴) ∈ ℋ |
18 | 17 | normcli 29394 | . . . . . . . . 9 ⊢ (normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴)) ∈ ℝ |
19 | 18 | resqcli 13831 | . . . . . . . 8 ⊢ ((normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴))↑2) ∈ ℝ |
20 | 19 | recni 10920 | . . . . . . 7 ⊢ ((normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴))↑2) ∈ ℂ |
21 | 0cn 10898 | . . . . . . . 8 ⊢ 0 ∈ ℂ | |
22 | 21 | sqcli 13826 | . . . . . . 7 ⊢ (0↑2) ∈ ℂ |
23 | 12, 20, 22 | addcani 11098 | . . . . . 6 ⊢ ((((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + ((normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴))↑2)) = (((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + (0↑2)) ↔ ((normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴))↑2) = (0↑2)) |
24 | normge0 29389 | . . . . . . . 8 ⊢ (((projℎ‘(⊥‘𝐻))‘𝐴) ∈ ℋ → 0 ≤ (normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴))) | |
25 | 17, 24 | ax-mp 5 | . . . . . . 7 ⊢ 0 ≤ (normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴)) |
26 | 0le0 12004 | . . . . . . 7 ⊢ 0 ≤ 0 | |
27 | 0re 10908 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
28 | 18, 27 | sq11i 13836 | . . . . . . 7 ⊢ ((0 ≤ (normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴)) ∧ 0 ≤ 0) → (((normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴))↑2) = (0↑2) ↔ (normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴)) = 0)) |
29 | 25, 26, 28 | mp2an 688 | . . . . . 6 ⊢ (((normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴))↑2) = (0↑2) ↔ (normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴)) = 0) |
30 | 17 | norm-i-i 29396 | . . . . . 6 ⊢ ((normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴)) = 0 ↔ ((projℎ‘(⊥‘𝐻))‘𝐴) = 0ℎ) |
31 | 23, 29, 30 | 3bitri 296 | . . . . 5 ⊢ ((((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + ((normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴))↑2)) = (((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + (0↑2)) ↔ ((projℎ‘(⊥‘𝐻))‘𝐴) = 0ℎ) |
32 | 15, 31 | bitr2i 275 | . . . 4 ⊢ (((projℎ‘(⊥‘𝐻))‘𝐴) = 0ℎ ↔ ((normℎ‘𝐴)↑2) = ((normℎ‘((projℎ‘𝐻)‘𝐴))↑2)) |
33 | normge0 29389 | . . . . . 6 ⊢ (𝐴 ∈ ℋ → 0 ≤ (normℎ‘𝐴)) | |
34 | 2, 33 | ax-mp 5 | . . . . 5 ⊢ 0 ≤ (normℎ‘𝐴) |
35 | normge0 29389 | . . . . . 6 ⊢ (((projℎ‘𝐻)‘𝐴) ∈ ℋ → 0 ≤ (normℎ‘((projℎ‘𝐻)‘𝐴))) | |
36 | 9, 35 | ax-mp 5 | . . . . 5 ⊢ 0 ≤ (normℎ‘((projℎ‘𝐻)‘𝐴)) |
37 | 2 | normcli 29394 | . . . . . 6 ⊢ (normℎ‘𝐴) ∈ ℝ |
38 | 37, 10 | sq11i 13836 | . . . . 5 ⊢ ((0 ≤ (normℎ‘𝐴) ∧ 0 ≤ (normℎ‘((projℎ‘𝐻)‘𝐴))) → (((normℎ‘𝐴)↑2) = ((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) ↔ (normℎ‘𝐴) = (normℎ‘((projℎ‘𝐻)‘𝐴)))) |
39 | 34, 36, 38 | mp2an 688 | . . . 4 ⊢ (((normℎ‘𝐴)↑2) = ((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) ↔ (normℎ‘𝐴) = (normℎ‘((projℎ‘𝐻)‘𝐴))) |
40 | 5, 32, 39 | 3bitri 296 | . . 3 ⊢ (𝐴 ∈ 𝐻 ↔ (normℎ‘𝐴) = (normℎ‘((projℎ‘𝐻)‘𝐴))) |
41 | 40 | necon3bbii 2990 | . 2 ⊢ (¬ 𝐴 ∈ 𝐻 ↔ (normℎ‘𝐴) ≠ (normℎ‘((projℎ‘𝐻)‘𝐴))) |
42 | 10, 37 | ltleni 11023 | . 2 ⊢ ((normℎ‘((projℎ‘𝐻)‘𝐴)) < (normℎ‘𝐴) ↔ ((normℎ‘((projℎ‘𝐻)‘𝐴)) ≤ (normℎ‘𝐴) ∧ (normℎ‘𝐴) ≠ (normℎ‘((projℎ‘𝐻)‘𝐴)))) |
43 | 4, 41, 42 | 3bitr4i 302 | 1 ⊢ (¬ 𝐴 ∈ 𝐻 ↔ (normℎ‘((projℎ‘𝐻)‘𝐴)) < (normℎ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 0cc0 10802 + caddc 10805 < clt 10940 ≤ cle 10941 2c2 11958 ↑cexp 13710 ℋchba 29182 normℎcno 29186 0ℎc0v 29187 Cℋ cch 29192 ⊥cort 29193 projℎcpjh 29200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cc 10122 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 ax-hilex 29262 ax-hfvadd 29263 ax-hvcom 29264 ax-hvass 29265 ax-hv0cl 29266 ax-hvaddid 29267 ax-hfvmul 29268 ax-hvmulid 29269 ax-hvmulass 29270 ax-hvdistr1 29271 ax-hvdistr2 29272 ax-hvmul0 29273 ax-hfi 29342 ax-his1 29345 ax-his2 29346 ax-his3 29347 ax-his4 29348 ax-hcompl 29465 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-omul 8272 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-acn 9631 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 df-sum 15326 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-cn 22286 df-cnp 22287 df-lm 22288 df-haus 22374 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cfil 24324 df-cau 24325 df-cmet 24326 df-grpo 28756 df-gid 28757 df-ginv 28758 df-gdiv 28759 df-ablo 28808 df-vc 28822 df-nv 28855 df-va 28858 df-ba 28859 df-sm 28860 df-0v 28861 df-vs 28862 df-nmcv 28863 df-ims 28864 df-dip 28964 df-ssp 28985 df-ph 29076 df-cbn 29126 df-hnorm 29231 df-hba 29232 df-hvsub 29234 df-hlim 29235 df-hcau 29236 df-sh 29470 df-ch 29484 df-oc 29515 df-ch0 29516 df-shs 29571 df-pjh 29658 |
This theorem is referenced by: pjnel 29989 |
Copyright terms: Public domain | W3C validator |