![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > pjneli | Structured version Visualization version GIF version |
Description: If a vector does not belong to subspace, the norm of its projection is less than its norm. (Contributed by NM, 27-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjnorm.1 | ⊢ 𝐻 ∈ Cℋ |
pjnorm.2 | ⊢ 𝐴 ∈ ℋ |
Ref | Expression |
---|---|
pjneli | ⊢ (¬ 𝐴 ∈ 𝐻 ↔ (normℎ‘((projℎ‘𝐻)‘𝐴)) < (normℎ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjnorm.1 | . . . 4 ⊢ 𝐻 ∈ Cℋ | |
2 | pjnorm.2 | . . . 4 ⊢ 𝐴 ∈ ℋ | |
3 | 1, 2 | pjnormi 31603 | . . 3 ⊢ (normℎ‘((projℎ‘𝐻)‘𝐴)) ≤ (normℎ‘𝐴) |
4 | 3 | biantrur 529 | . 2 ⊢ ((normℎ‘𝐴) ≠ (normℎ‘((projℎ‘𝐻)‘𝐴)) ↔ ((normℎ‘((projℎ‘𝐻)‘𝐴)) ≤ (normℎ‘𝐴) ∧ (normℎ‘𝐴) ≠ (normℎ‘((projℎ‘𝐻)‘𝐴)))) |
5 | 1, 2 | pjoc1i 31313 | . . . 4 ⊢ (𝐴 ∈ 𝐻 ↔ ((projℎ‘(⊥‘𝐻))‘𝐴) = 0ℎ) |
6 | 1, 2 | pjpythi 31604 | . . . . . 6 ⊢ ((normℎ‘𝐴)↑2) = (((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + ((normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴))↑2)) |
7 | sq0 14191 | . . . . . . . 8 ⊢ (0↑2) = 0 | |
8 | 7 | oveq2i 7430 | . . . . . . 7 ⊢ (((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + (0↑2)) = (((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + 0) |
9 | 1, 2 | pjhclii 31304 | . . . . . . . . . . 11 ⊢ ((projℎ‘𝐻)‘𝐴) ∈ ℋ |
10 | 9 | normcli 31013 | . . . . . . . . . 10 ⊢ (normℎ‘((projℎ‘𝐻)‘𝐴)) ∈ ℝ |
11 | 10 | resqcli 14185 | . . . . . . . . 9 ⊢ ((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) ∈ ℝ |
12 | 11 | recni 11260 | . . . . . . . 8 ⊢ ((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) ∈ ℂ |
13 | 12 | addridi 11433 | . . . . . . 7 ⊢ (((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + 0) = ((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) |
14 | 8, 13 | eqtr2i 2754 | . . . . . 6 ⊢ ((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) = (((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + (0↑2)) |
15 | 6, 14 | eqeq12i 2743 | . . . . 5 ⊢ (((normℎ‘𝐴)↑2) = ((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) ↔ (((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + ((normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴))↑2)) = (((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + (0↑2))) |
16 | 1 | choccli 31189 | . . . . . . . . . . 11 ⊢ (⊥‘𝐻) ∈ Cℋ |
17 | 16, 2 | pjhclii 31304 | . . . . . . . . . 10 ⊢ ((projℎ‘(⊥‘𝐻))‘𝐴) ∈ ℋ |
18 | 17 | normcli 31013 | . . . . . . . . 9 ⊢ (normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴)) ∈ ℝ |
19 | 18 | resqcli 14185 | . . . . . . . 8 ⊢ ((normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴))↑2) ∈ ℝ |
20 | 19 | recni 11260 | . . . . . . 7 ⊢ ((normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴))↑2) ∈ ℂ |
21 | 0cn 11238 | . . . . . . . 8 ⊢ 0 ∈ ℂ | |
22 | 21 | sqcli 14180 | . . . . . . 7 ⊢ (0↑2) ∈ ℂ |
23 | 12, 20, 22 | addcani 11439 | . . . . . 6 ⊢ ((((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + ((normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴))↑2)) = (((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + (0↑2)) ↔ ((normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴))↑2) = (0↑2)) |
24 | normge0 31008 | . . . . . . . 8 ⊢ (((projℎ‘(⊥‘𝐻))‘𝐴) ∈ ℋ → 0 ≤ (normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴))) | |
25 | 17, 24 | ax-mp 5 | . . . . . . 7 ⊢ 0 ≤ (normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴)) |
26 | 0le0 12346 | . . . . . . 7 ⊢ 0 ≤ 0 | |
27 | 0re 11248 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
28 | 18, 27 | sq11i 14190 | . . . . . . 7 ⊢ ((0 ≤ (normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴)) ∧ 0 ≤ 0) → (((normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴))↑2) = (0↑2) ↔ (normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴)) = 0)) |
29 | 25, 26, 28 | mp2an 690 | . . . . . 6 ⊢ (((normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴))↑2) = (0↑2) ↔ (normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴)) = 0) |
30 | 17 | norm-i-i 31015 | . . . . . 6 ⊢ ((normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴)) = 0 ↔ ((projℎ‘(⊥‘𝐻))‘𝐴) = 0ℎ) |
31 | 23, 29, 30 | 3bitri 296 | . . . . 5 ⊢ ((((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + ((normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴))↑2)) = (((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + (0↑2)) ↔ ((projℎ‘(⊥‘𝐻))‘𝐴) = 0ℎ) |
32 | 15, 31 | bitr2i 275 | . . . 4 ⊢ (((projℎ‘(⊥‘𝐻))‘𝐴) = 0ℎ ↔ ((normℎ‘𝐴)↑2) = ((normℎ‘((projℎ‘𝐻)‘𝐴))↑2)) |
33 | normge0 31008 | . . . . . 6 ⊢ (𝐴 ∈ ℋ → 0 ≤ (normℎ‘𝐴)) | |
34 | 2, 33 | ax-mp 5 | . . . . 5 ⊢ 0 ≤ (normℎ‘𝐴) |
35 | normge0 31008 | . . . . . 6 ⊢ (((projℎ‘𝐻)‘𝐴) ∈ ℋ → 0 ≤ (normℎ‘((projℎ‘𝐻)‘𝐴))) | |
36 | 9, 35 | ax-mp 5 | . . . . 5 ⊢ 0 ≤ (normℎ‘((projℎ‘𝐻)‘𝐴)) |
37 | 2 | normcli 31013 | . . . . . 6 ⊢ (normℎ‘𝐴) ∈ ℝ |
38 | 37, 10 | sq11i 14190 | . . . . 5 ⊢ ((0 ≤ (normℎ‘𝐴) ∧ 0 ≤ (normℎ‘((projℎ‘𝐻)‘𝐴))) → (((normℎ‘𝐴)↑2) = ((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) ↔ (normℎ‘𝐴) = (normℎ‘((projℎ‘𝐻)‘𝐴)))) |
39 | 34, 36, 38 | mp2an 690 | . . . 4 ⊢ (((normℎ‘𝐴)↑2) = ((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) ↔ (normℎ‘𝐴) = (normℎ‘((projℎ‘𝐻)‘𝐴))) |
40 | 5, 32, 39 | 3bitri 296 | . . 3 ⊢ (𝐴 ∈ 𝐻 ↔ (normℎ‘𝐴) = (normℎ‘((projℎ‘𝐻)‘𝐴))) |
41 | 40 | necon3bbii 2977 | . 2 ⊢ (¬ 𝐴 ∈ 𝐻 ↔ (normℎ‘𝐴) ≠ (normℎ‘((projℎ‘𝐻)‘𝐴))) |
42 | 10, 37 | ltleni 11364 | . 2 ⊢ ((normℎ‘((projℎ‘𝐻)‘𝐴)) < (normℎ‘𝐴) ↔ ((normℎ‘((projℎ‘𝐻)‘𝐴)) ≤ (normℎ‘𝐴) ∧ (normℎ‘𝐴) ≠ (normℎ‘((projℎ‘𝐻)‘𝐴)))) |
43 | 4, 41, 42 | 3bitr4i 302 | 1 ⊢ (¬ 𝐴 ∈ 𝐻 ↔ (normℎ‘((projℎ‘𝐻)‘𝐴)) < (normℎ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 class class class wbr 5149 ‘cfv 6549 (class class class)co 7419 0cc0 11140 + caddc 11143 < clt 11280 ≤ cle 11281 2c2 12300 ↑cexp 14062 ℋchba 30801 normℎcno 30805 0ℎc0v 30806 Cℋ cch 30811 ⊥cort 30812 projℎcpjh 30819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9666 ax-cc 10460 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 ax-addf 11219 ax-mulf 11220 ax-hilex 30881 ax-hfvadd 30882 ax-hvcom 30883 ax-hvass 30884 ax-hv0cl 30885 ax-hvaddid 30886 ax-hfvmul 30887 ax-hvmulid 30888 ax-hvmulass 30889 ax-hvdistr1 30890 ax-hvdistr2 30891 ax-hvmul0 30892 ax-hfi 30961 ax-his1 30964 ax-his2 30965 ax-his3 30966 ax-his4 30967 ax-hcompl 31084 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-of 7685 df-om 7872 df-1st 7994 df-2nd 7995 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-omul 8492 df-er 8725 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9388 df-fi 9436 df-sup 9467 df-inf 9468 df-oi 9535 df-card 9964 df-acn 9967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-uz 12856 df-q 12966 df-rp 13010 df-xneg 13127 df-xadd 13128 df-xmul 13129 df-ioo 13363 df-ico 13365 df-icc 13366 df-fz 13520 df-fzo 13663 df-fl 13793 df-seq 14003 df-exp 14063 df-hash 14326 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-clim 15468 df-rlim 15469 df-sum 15669 df-struct 17119 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-mulr 17250 df-starv 17251 df-sca 17252 df-vsca 17253 df-ip 17254 df-tset 17255 df-ple 17256 df-ds 17258 df-unif 17259 df-hom 17260 df-cco 17261 df-rest 17407 df-topn 17408 df-0g 17426 df-gsum 17427 df-topgen 17428 df-pt 17429 df-prds 17432 df-xrs 17487 df-qtop 17492 df-imas 17493 df-xps 17495 df-mre 17569 df-mrc 17570 df-acs 17572 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-submnd 18744 df-mulg 19032 df-cntz 19280 df-cmn 19749 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-fbas 21293 df-fg 21294 df-cnfld 21297 df-top 22840 df-topon 22857 df-topsp 22879 df-bases 22893 df-cld 22967 df-ntr 22968 df-cls 22969 df-nei 23046 df-cn 23175 df-cnp 23176 df-lm 23177 df-haus 23263 df-tx 23510 df-hmeo 23703 df-fil 23794 df-fm 23886 df-flim 23887 df-flf 23888 df-xms 24270 df-ms 24271 df-tms 24272 df-cfil 25227 df-cau 25228 df-cmet 25229 df-grpo 30375 df-gid 30376 df-ginv 30377 df-gdiv 30378 df-ablo 30427 df-vc 30441 df-nv 30474 df-va 30477 df-ba 30478 df-sm 30479 df-0v 30480 df-vs 30481 df-nmcv 30482 df-ims 30483 df-dip 30583 df-ssp 30604 df-ph 30695 df-cbn 30745 df-hnorm 30850 df-hba 30851 df-hvsub 30853 df-hlim 30854 df-hcau 30855 df-sh 31089 df-ch 31103 df-oc 31134 df-ch0 31135 df-shs 31190 df-pjh 31277 |
This theorem is referenced by: pjnel 31608 |
Copyright terms: Public domain | W3C validator |