![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > pjneli | Structured version Visualization version GIF version |
Description: If a vector does not belong to subspace, the norm of its projection is less than its norm. (Contributed by NM, 27-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjnorm.1 | ⊢ 𝐻 ∈ Cℋ |
pjnorm.2 | ⊢ 𝐴 ∈ ℋ |
Ref | Expression |
---|---|
pjneli | ⊢ (¬ 𝐴 ∈ 𝐻 ↔ (normℎ‘((projℎ‘𝐻)‘𝐴)) < (normℎ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjnorm.1 | . . . 4 ⊢ 𝐻 ∈ Cℋ | |
2 | pjnorm.2 | . . . 4 ⊢ 𝐴 ∈ ℋ | |
3 | 1, 2 | pjnormi 31479 | . . 3 ⊢ (normℎ‘((projℎ‘𝐻)‘𝐴)) ≤ (normℎ‘𝐴) |
4 | 3 | biantrur 530 | . 2 ⊢ ((normℎ‘𝐴) ≠ (normℎ‘((projℎ‘𝐻)‘𝐴)) ↔ ((normℎ‘((projℎ‘𝐻)‘𝐴)) ≤ (normℎ‘𝐴) ∧ (normℎ‘𝐴) ≠ (normℎ‘((projℎ‘𝐻)‘𝐴)))) |
5 | 1, 2 | pjoc1i 31189 | . . . 4 ⊢ (𝐴 ∈ 𝐻 ↔ ((projℎ‘(⊥‘𝐻))‘𝐴) = 0ℎ) |
6 | 1, 2 | pjpythi 31480 | . . . . . 6 ⊢ ((normℎ‘𝐴)↑2) = (((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + ((normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴))↑2)) |
7 | sq0 14159 | . . . . . . . 8 ⊢ (0↑2) = 0 | |
8 | 7 | oveq2i 7415 | . . . . . . 7 ⊢ (((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + (0↑2)) = (((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + 0) |
9 | 1, 2 | pjhclii 31180 | . . . . . . . . . . 11 ⊢ ((projℎ‘𝐻)‘𝐴) ∈ ℋ |
10 | 9 | normcli 30889 | . . . . . . . . . 10 ⊢ (normℎ‘((projℎ‘𝐻)‘𝐴)) ∈ ℝ |
11 | 10 | resqcli 14153 | . . . . . . . . 9 ⊢ ((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) ∈ ℝ |
12 | 11 | recni 11229 | . . . . . . . 8 ⊢ ((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) ∈ ℂ |
13 | 12 | addridi 11402 | . . . . . . 7 ⊢ (((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + 0) = ((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) |
14 | 8, 13 | eqtr2i 2755 | . . . . . 6 ⊢ ((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) = (((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + (0↑2)) |
15 | 6, 14 | eqeq12i 2744 | . . . . 5 ⊢ (((normℎ‘𝐴)↑2) = ((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) ↔ (((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + ((normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴))↑2)) = (((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + (0↑2))) |
16 | 1 | choccli 31065 | . . . . . . . . . . 11 ⊢ (⊥‘𝐻) ∈ Cℋ |
17 | 16, 2 | pjhclii 31180 | . . . . . . . . . 10 ⊢ ((projℎ‘(⊥‘𝐻))‘𝐴) ∈ ℋ |
18 | 17 | normcli 30889 | . . . . . . . . 9 ⊢ (normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴)) ∈ ℝ |
19 | 18 | resqcli 14153 | . . . . . . . 8 ⊢ ((normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴))↑2) ∈ ℝ |
20 | 19 | recni 11229 | . . . . . . 7 ⊢ ((normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴))↑2) ∈ ℂ |
21 | 0cn 11207 | . . . . . . . 8 ⊢ 0 ∈ ℂ | |
22 | 21 | sqcli 14148 | . . . . . . 7 ⊢ (0↑2) ∈ ℂ |
23 | 12, 20, 22 | addcani 11408 | . . . . . 6 ⊢ ((((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + ((normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴))↑2)) = (((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + (0↑2)) ↔ ((normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴))↑2) = (0↑2)) |
24 | normge0 30884 | . . . . . . . 8 ⊢ (((projℎ‘(⊥‘𝐻))‘𝐴) ∈ ℋ → 0 ≤ (normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴))) | |
25 | 17, 24 | ax-mp 5 | . . . . . . 7 ⊢ 0 ≤ (normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴)) |
26 | 0le0 12314 | . . . . . . 7 ⊢ 0 ≤ 0 | |
27 | 0re 11217 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
28 | 18, 27 | sq11i 14158 | . . . . . . 7 ⊢ ((0 ≤ (normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴)) ∧ 0 ≤ 0) → (((normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴))↑2) = (0↑2) ↔ (normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴)) = 0)) |
29 | 25, 26, 28 | mp2an 689 | . . . . . 6 ⊢ (((normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴))↑2) = (0↑2) ↔ (normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴)) = 0) |
30 | 17 | norm-i-i 30891 | . . . . . 6 ⊢ ((normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴)) = 0 ↔ ((projℎ‘(⊥‘𝐻))‘𝐴) = 0ℎ) |
31 | 23, 29, 30 | 3bitri 297 | . . . . 5 ⊢ ((((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + ((normℎ‘((projℎ‘(⊥‘𝐻))‘𝐴))↑2)) = (((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) + (0↑2)) ↔ ((projℎ‘(⊥‘𝐻))‘𝐴) = 0ℎ) |
32 | 15, 31 | bitr2i 276 | . . . 4 ⊢ (((projℎ‘(⊥‘𝐻))‘𝐴) = 0ℎ ↔ ((normℎ‘𝐴)↑2) = ((normℎ‘((projℎ‘𝐻)‘𝐴))↑2)) |
33 | normge0 30884 | . . . . . 6 ⊢ (𝐴 ∈ ℋ → 0 ≤ (normℎ‘𝐴)) | |
34 | 2, 33 | ax-mp 5 | . . . . 5 ⊢ 0 ≤ (normℎ‘𝐴) |
35 | normge0 30884 | . . . . . 6 ⊢ (((projℎ‘𝐻)‘𝐴) ∈ ℋ → 0 ≤ (normℎ‘((projℎ‘𝐻)‘𝐴))) | |
36 | 9, 35 | ax-mp 5 | . . . . 5 ⊢ 0 ≤ (normℎ‘((projℎ‘𝐻)‘𝐴)) |
37 | 2 | normcli 30889 | . . . . . 6 ⊢ (normℎ‘𝐴) ∈ ℝ |
38 | 37, 10 | sq11i 14158 | . . . . 5 ⊢ ((0 ≤ (normℎ‘𝐴) ∧ 0 ≤ (normℎ‘((projℎ‘𝐻)‘𝐴))) → (((normℎ‘𝐴)↑2) = ((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) ↔ (normℎ‘𝐴) = (normℎ‘((projℎ‘𝐻)‘𝐴)))) |
39 | 34, 36, 38 | mp2an 689 | . . . 4 ⊢ (((normℎ‘𝐴)↑2) = ((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) ↔ (normℎ‘𝐴) = (normℎ‘((projℎ‘𝐻)‘𝐴))) |
40 | 5, 32, 39 | 3bitri 297 | . . 3 ⊢ (𝐴 ∈ 𝐻 ↔ (normℎ‘𝐴) = (normℎ‘((projℎ‘𝐻)‘𝐴))) |
41 | 40 | necon3bbii 2982 | . 2 ⊢ (¬ 𝐴 ∈ 𝐻 ↔ (normℎ‘𝐴) ≠ (normℎ‘((projℎ‘𝐻)‘𝐴))) |
42 | 10, 37 | ltleni 11333 | . 2 ⊢ ((normℎ‘((projℎ‘𝐻)‘𝐴)) < (normℎ‘𝐴) ↔ ((normℎ‘((projℎ‘𝐻)‘𝐴)) ≤ (normℎ‘𝐴) ∧ (normℎ‘𝐴) ≠ (normℎ‘((projℎ‘𝐻)‘𝐴)))) |
43 | 4, 41, 42 | 3bitr4i 303 | 1 ⊢ (¬ 𝐴 ∈ 𝐻 ↔ (normℎ‘((projℎ‘𝐻)‘𝐴)) < (normℎ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 class class class wbr 5141 ‘cfv 6536 (class class class)co 7404 0cc0 11109 + caddc 11112 < clt 11249 ≤ cle 11250 2c2 12268 ↑cexp 14030 ℋchba 30677 normℎcno 30681 0ℎc0v 30682 Cℋ cch 30687 ⊥cort 30688 projℎcpjh 30695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-inf2 9635 ax-cc 10429 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 ax-mulf 11189 ax-hilex 30757 ax-hfvadd 30758 ax-hvcom 30759 ax-hvass 30760 ax-hv0cl 30761 ax-hvaddid 30762 ax-hfvmul 30763 ax-hvmulid 30764 ax-hvmulass 30765 ax-hvdistr1 30766 ax-hvdistr2 30767 ax-hvmul0 30768 ax-hfi 30837 ax-his1 30840 ax-his2 30841 ax-his3 30842 ax-his4 30843 ax-hcompl 30960 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8144 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-2o 8465 df-oadd 8468 df-omul 8469 df-er 8702 df-map 8821 df-pm 8822 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-fi 9405 df-sup 9436 df-inf 9437 df-oi 9504 df-card 9933 df-acn 9936 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-dec 12679 df-uz 12824 df-q 12934 df-rp 12978 df-xneg 13095 df-xadd 13096 df-xmul 13097 df-ioo 13331 df-ico 13333 df-icc 13334 df-fz 13488 df-fzo 13631 df-fl 13760 df-seq 13970 df-exp 14031 df-hash 14294 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-clim 15436 df-rlim 15437 df-sum 15637 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-hom 17228 df-cco 17229 df-rest 17375 df-topn 17376 df-0g 17394 df-gsum 17395 df-topgen 17396 df-pt 17397 df-prds 17400 df-xrs 17455 df-qtop 17460 df-imas 17461 df-xps 17463 df-mre 17537 df-mrc 17538 df-acs 17540 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-submnd 18712 df-mulg 18994 df-cntz 19231 df-cmn 19700 df-psmet 21228 df-xmet 21229 df-met 21230 df-bl 21231 df-mopn 21232 df-fbas 21233 df-fg 21234 df-cnfld 21237 df-top 22747 df-topon 22764 df-topsp 22786 df-bases 22800 df-cld 22874 df-ntr 22875 df-cls 22876 df-nei 22953 df-cn 23082 df-cnp 23083 df-lm 23084 df-haus 23170 df-tx 23417 df-hmeo 23610 df-fil 23701 df-fm 23793 df-flim 23794 df-flf 23795 df-xms 24177 df-ms 24178 df-tms 24179 df-cfil 25134 df-cau 25135 df-cmet 25136 df-grpo 30251 df-gid 30252 df-ginv 30253 df-gdiv 30254 df-ablo 30303 df-vc 30317 df-nv 30350 df-va 30353 df-ba 30354 df-sm 30355 df-0v 30356 df-vs 30357 df-nmcv 30358 df-ims 30359 df-dip 30459 df-ssp 30480 df-ph 30571 df-cbn 30621 df-hnorm 30726 df-hba 30727 df-hvsub 30729 df-hlim 30730 df-hcau 30731 df-sh 30965 df-ch 30979 df-oc 31010 df-ch0 31011 df-shs 31066 df-pjh 31153 |
This theorem is referenced by: pjnel 31484 |
Copyright terms: Public domain | W3C validator |