MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtnprm Structured version   Visualization version   GIF version

Theorem chtnprm 25893
Description: The Chebyshev function at a non-prime. (Contributed by Mario Carneiro, 19-Sep-2014.)
Assertion
Ref Expression
chtnprm ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (θ‘(𝐴 + 1)) = (θ‘𝐴))

Proof of Theorem chtnprm
Dummy variables 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprr 773 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))
21elin2d 4089 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ∈ ℙ)
3 simprl 771 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → ¬ (𝐴 + 1) ∈ ℙ)
4 nelne2 3031 . . . . . . . . . . . 12 ((𝑥 ∈ ℙ ∧ ¬ (𝐴 + 1) ∈ ℙ) → 𝑥 ≠ (𝐴 + 1))
52, 3, 4syl2anc 587 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ≠ (𝐴 + 1))
6 velsn 4532 . . . . . . . . . . . 12 (𝑥 ∈ {(𝐴 + 1)} ↔ 𝑥 = (𝐴 + 1))
76necon3bbii 2981 . . . . . . . . . . 11 𝑥 ∈ {(𝐴 + 1)} ↔ 𝑥 ≠ (𝐴 + 1))
85, 7sylibr 237 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → ¬ 𝑥 ∈ {(𝐴 + 1)})
91elin1d 4088 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ∈ (2...(𝐴 + 1)))
10 2z 12097 . . . . . . . . . . . . . 14 2 ∈ ℤ
11 zcn 12069 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
1211adantr 484 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝐴 ∈ ℂ)
13 ax-1cn 10675 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
14 pncan 10972 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
1512, 13, 14sylancl 589 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → ((𝐴 + 1) − 1) = 𝐴)
16 elfzuz2 13005 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (2...(𝐴 + 1)) → (𝐴 + 1) ∈ (ℤ‘2))
17 uz2m1nn 12407 . . . . . . . . . . . . . . . . 17 ((𝐴 + 1) ∈ (ℤ‘2) → ((𝐴 + 1) − 1) ∈ ℕ)
189, 16, 173syl 18 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → ((𝐴 + 1) − 1) ∈ ℕ)
1915, 18eqeltrrd 2834 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝐴 ∈ ℕ)
20 nnuz 12365 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
21 2m1e1 11844 . . . . . . . . . . . . . . . . 17 (2 − 1) = 1
2221fveq2i 6679 . . . . . . . . . . . . . . . 16 (ℤ‘(2 − 1)) = (ℤ‘1)
2320, 22eqtr4i 2764 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘(2 − 1))
2419, 23eleqtrdi 2843 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝐴 ∈ (ℤ‘(2 − 1)))
25 fzsuc2 13058 . . . . . . . . . . . . . 14 ((2 ∈ ℤ ∧ 𝐴 ∈ (ℤ‘(2 − 1))) → (2...(𝐴 + 1)) = ((2...𝐴) ∪ {(𝐴 + 1)}))
2610, 24, 25sylancr 590 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → (2...(𝐴 + 1)) = ((2...𝐴) ∪ {(𝐴 + 1)}))
279, 26eleqtrd 2835 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ∈ ((2...𝐴) ∪ {(𝐴 + 1)}))
28 elun 4039 . . . . . . . . . . . 12 (𝑥 ∈ ((2...𝐴) ∪ {(𝐴 + 1)}) ↔ (𝑥 ∈ (2...𝐴) ∨ 𝑥 ∈ {(𝐴 + 1)}))
2927, 28sylib 221 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → (𝑥 ∈ (2...𝐴) ∨ 𝑥 ∈ {(𝐴 + 1)}))
3029ord 863 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → (¬ 𝑥 ∈ (2...𝐴) → 𝑥 ∈ {(𝐴 + 1)}))
318, 30mt3d 150 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ∈ (2...𝐴))
3231, 2elind 4084 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ∈ ((2...𝐴) ∩ ℙ))
3332expr 460 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ) → 𝑥 ∈ ((2...𝐴) ∩ ℙ)))
3433ssrdv 3883 . . . . . 6 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) ⊆ ((2...𝐴) ∩ ℙ))
35 uzid 12341 . . . . . . . 8 (𝐴 ∈ ℤ → 𝐴 ∈ (ℤ𝐴))
3635adantr 484 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ (ℤ𝐴))
37 peano2uz 12385 . . . . . . 7 (𝐴 ∈ (ℤ𝐴) → (𝐴 + 1) ∈ (ℤ𝐴))
38 fzss2 13040 . . . . . . 7 ((𝐴 + 1) ∈ (ℤ𝐴) → (2...𝐴) ⊆ (2...(𝐴 + 1)))
39 ssrin 4124 . . . . . . 7 ((2...𝐴) ⊆ (2...(𝐴 + 1)) → ((2...𝐴) ∩ ℙ) ⊆ ((2...(𝐴 + 1)) ∩ ℙ))
4036, 37, 38, 394syl 19 . . . . . 6 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((2...𝐴) ∩ ℙ) ⊆ ((2...(𝐴 + 1)) ∩ ℙ))
4134, 40eqssd 3894 . . . . 5 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) = ((2...𝐴) ∩ ℙ))
42 peano2z 12106 . . . . . . . . 9 (𝐴 ∈ ℤ → (𝐴 + 1) ∈ ℤ)
4342adantr 484 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℤ)
44 flid 13271 . . . . . . . 8 ((𝐴 + 1) ∈ ℤ → (⌊‘(𝐴 + 1)) = (𝐴 + 1))
4543, 44syl 17 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (⌊‘(𝐴 + 1)) = (𝐴 + 1))
4645oveq2d 7188 . . . . . 6 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (2...(⌊‘(𝐴 + 1))) = (2...(𝐴 + 1)))
4746ineq1d 4102 . . . . 5 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((2...(⌊‘(𝐴 + 1))) ∩ ℙ) = ((2...(𝐴 + 1)) ∩ ℙ))
48 flid 13271 . . . . . . . 8 (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴)
4948adantr 484 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (⌊‘𝐴) = 𝐴)
5049oveq2d 7188 . . . . . 6 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (2...(⌊‘𝐴)) = (2...𝐴))
5150ineq1d 4102 . . . . 5 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((2...(⌊‘𝐴)) ∩ ℙ) = ((2...𝐴) ∩ ℙ))
5241, 47, 513eqtr4d 2783 . . . 4 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((2...(⌊‘(𝐴 + 1))) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))
53 zre 12068 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
5453adantr 484 . . . . 5 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ ℝ)
55 peano2re 10893 . . . . 5 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
56 ppisval 25843 . . . . 5 ((𝐴 + 1) ∈ ℝ → ((0[,](𝐴 + 1)) ∩ ℙ) = ((2...(⌊‘(𝐴 + 1))) ∩ ℙ))
5754, 55, 563syl 18 . . . 4 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((0[,](𝐴 + 1)) ∩ ℙ) = ((2...(⌊‘(𝐴 + 1))) ∩ ℙ))
58 ppisval 25843 . . . . 5 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))
5954, 58syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))
6052, 57, 593eqtr4d 2783 . . 3 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((0[,](𝐴 + 1)) ∩ ℙ) = ((0[,]𝐴) ∩ ℙ))
6160sumeq1d 15153 . 2 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → Σ𝑝 ∈ ((0[,](𝐴 + 1)) ∩ ℙ)(log‘𝑝) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
62 chtval 25849 . . 3 ((𝐴 + 1) ∈ ℝ → (θ‘(𝐴 + 1)) = Σ𝑝 ∈ ((0[,](𝐴 + 1)) ∩ ℙ)(log‘𝑝))
6354, 55, 623syl 18 . 2 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (θ‘(𝐴 + 1)) = Σ𝑝 ∈ ((0[,](𝐴 + 1)) ∩ ℙ)(log‘𝑝))
64 chtval 25849 . . 3 (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
6554, 64syl 17 . 2 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
6661, 63, 653eqtr4d 2783 1 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (θ‘(𝐴 + 1)) = (θ‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 846   = wceq 1542  wcel 2114  wne 2934  cun 3841  cin 3842  wss 3843  {csn 4516  cfv 6339  (class class class)co 7172  cc 10615  cr 10616  0cc0 10617  1c1 10618   + caddc 10620  cmin 10950  cn 11718  2c2 11773  cz 12064  cuz 12326  [,]cicc 12826  ...cfz 12983  cfl 13253  Σcsu 15137  cprime 16114  logclog 25300  θccht 25830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7481  ax-cnex 10673  ax-resscn 10674  ax-1cn 10675  ax-icn 10676  ax-addcl 10677  ax-addrcl 10678  ax-mulcl 10679  ax-mulrcl 10680  ax-mulcom 10681  ax-addass 10682  ax-mulass 10683  ax-distr 10684  ax-i2m1 10685  ax-1ne0 10686  ax-1rid 10687  ax-rnegex 10688  ax-rrecex 10689  ax-cnre 10690  ax-pre-lttri 10691  ax-pre-lttrn 10692  ax-pre-ltadd 10693  ax-pre-mulgt0 10694  ax-pre-sup 10695
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7129  df-ov 7175  df-oprab 7176  df-mpo 7177  df-om 7602  df-1st 7716  df-2nd 7717  df-wrecs 7978  df-recs 8039  df-rdg 8077  df-1o 8133  df-2o 8134  df-er 8322  df-en 8558  df-dom 8559  df-sdom 8560  df-fin 8561  df-sup 8981  df-inf 8982  df-pnf 10757  df-mnf 10758  df-xr 10759  df-ltxr 10760  df-le 10761  df-sub 10952  df-neg 10953  df-div 11378  df-nn 11719  df-2 11781  df-3 11782  df-n0 11979  df-z 12065  df-uz 12327  df-rp 12475  df-icc 12830  df-fz 12984  df-fl 13255  df-seq 13463  df-exp 13524  df-cj 14550  df-re 14551  df-im 14552  df-sqrt 14686  df-abs 14687  df-sum 15138  df-dvds 15702  df-prm 16115  df-cht 25836
This theorem is referenced by:  chtub  25950
  Copyright terms: Public domain W3C validator