MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtnprm Structured version   Visualization version   GIF version

Theorem chtnprm 27197
Description: The Chebyshev function at a non-prime. (Contributed by Mario Carneiro, 19-Sep-2014.)
Assertion
Ref Expression
chtnprm ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (θ‘(𝐴 + 1)) = (θ‘𝐴))

Proof of Theorem chtnprm
Dummy variables 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprr 773 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))
21elin2d 4205 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ∈ ℙ)
3 simprl 771 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → ¬ (𝐴 + 1) ∈ ℙ)
4 nelne2 3040 . . . . . . . . . . . 12 ((𝑥 ∈ ℙ ∧ ¬ (𝐴 + 1) ∈ ℙ) → 𝑥 ≠ (𝐴 + 1))
52, 3, 4syl2anc 584 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ≠ (𝐴 + 1))
6 velsn 4642 . . . . . . . . . . . 12 (𝑥 ∈ {(𝐴 + 1)} ↔ 𝑥 = (𝐴 + 1))
76necon3bbii 2988 . . . . . . . . . . 11 𝑥 ∈ {(𝐴 + 1)} ↔ 𝑥 ≠ (𝐴 + 1))
85, 7sylibr 234 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → ¬ 𝑥 ∈ {(𝐴 + 1)})
91elin1d 4204 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ∈ (2...(𝐴 + 1)))
10 2z 12649 . . . . . . . . . . . . . 14 2 ∈ ℤ
11 zcn 12618 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
1211adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝐴 ∈ ℂ)
13 ax-1cn 11213 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
14 pncan 11514 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
1512, 13, 14sylancl 586 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → ((𝐴 + 1) − 1) = 𝐴)
16 elfzuz2 13569 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (2...(𝐴 + 1)) → (𝐴 + 1) ∈ (ℤ‘2))
17 uz2m1nn 12965 . . . . . . . . . . . . . . . . 17 ((𝐴 + 1) ∈ (ℤ‘2) → ((𝐴 + 1) − 1) ∈ ℕ)
189, 16, 173syl 18 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → ((𝐴 + 1) − 1) ∈ ℕ)
1915, 18eqeltrrd 2842 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝐴 ∈ ℕ)
20 nnuz 12921 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
21 2m1e1 12392 . . . . . . . . . . . . . . . . 17 (2 − 1) = 1
2221fveq2i 6909 . . . . . . . . . . . . . . . 16 (ℤ‘(2 − 1)) = (ℤ‘1)
2320, 22eqtr4i 2768 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘(2 − 1))
2419, 23eleqtrdi 2851 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝐴 ∈ (ℤ‘(2 − 1)))
25 fzsuc2 13622 . . . . . . . . . . . . . 14 ((2 ∈ ℤ ∧ 𝐴 ∈ (ℤ‘(2 − 1))) → (2...(𝐴 + 1)) = ((2...𝐴) ∪ {(𝐴 + 1)}))
2610, 24, 25sylancr 587 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → (2...(𝐴 + 1)) = ((2...𝐴) ∪ {(𝐴 + 1)}))
279, 26eleqtrd 2843 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ∈ ((2...𝐴) ∪ {(𝐴 + 1)}))
28 elun 4153 . . . . . . . . . . . 12 (𝑥 ∈ ((2...𝐴) ∪ {(𝐴 + 1)}) ↔ (𝑥 ∈ (2...𝐴) ∨ 𝑥 ∈ {(𝐴 + 1)}))
2927, 28sylib 218 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → (𝑥 ∈ (2...𝐴) ∨ 𝑥 ∈ {(𝐴 + 1)}))
3029ord 865 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → (¬ 𝑥 ∈ (2...𝐴) → 𝑥 ∈ {(𝐴 + 1)}))
318, 30mt3d 148 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ∈ (2...𝐴))
3231, 2elind 4200 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ∈ ((2...𝐴) ∩ ℙ))
3332expr 456 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ) → 𝑥 ∈ ((2...𝐴) ∩ ℙ)))
3433ssrdv 3989 . . . . . 6 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) ⊆ ((2...𝐴) ∩ ℙ))
35 uzid 12893 . . . . . . . 8 (𝐴 ∈ ℤ → 𝐴 ∈ (ℤ𝐴))
3635adantr 480 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ (ℤ𝐴))
37 peano2uz 12943 . . . . . . 7 (𝐴 ∈ (ℤ𝐴) → (𝐴 + 1) ∈ (ℤ𝐴))
38 fzss2 13604 . . . . . . 7 ((𝐴 + 1) ∈ (ℤ𝐴) → (2...𝐴) ⊆ (2...(𝐴 + 1)))
39 ssrin 4242 . . . . . . 7 ((2...𝐴) ⊆ (2...(𝐴 + 1)) → ((2...𝐴) ∩ ℙ) ⊆ ((2...(𝐴 + 1)) ∩ ℙ))
4036, 37, 38, 394syl 19 . . . . . 6 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((2...𝐴) ∩ ℙ) ⊆ ((2...(𝐴 + 1)) ∩ ℙ))
4134, 40eqssd 4001 . . . . 5 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) = ((2...𝐴) ∩ ℙ))
42 peano2z 12658 . . . . . . . . 9 (𝐴 ∈ ℤ → (𝐴 + 1) ∈ ℤ)
4342adantr 480 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℤ)
44 flid 13848 . . . . . . . 8 ((𝐴 + 1) ∈ ℤ → (⌊‘(𝐴 + 1)) = (𝐴 + 1))
4543, 44syl 17 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (⌊‘(𝐴 + 1)) = (𝐴 + 1))
4645oveq2d 7447 . . . . . 6 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (2...(⌊‘(𝐴 + 1))) = (2...(𝐴 + 1)))
4746ineq1d 4219 . . . . 5 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((2...(⌊‘(𝐴 + 1))) ∩ ℙ) = ((2...(𝐴 + 1)) ∩ ℙ))
48 flid 13848 . . . . . . . 8 (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴)
4948adantr 480 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (⌊‘𝐴) = 𝐴)
5049oveq2d 7447 . . . . . 6 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (2...(⌊‘𝐴)) = (2...𝐴))
5150ineq1d 4219 . . . . 5 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((2...(⌊‘𝐴)) ∩ ℙ) = ((2...𝐴) ∩ ℙ))
5241, 47, 513eqtr4d 2787 . . . 4 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((2...(⌊‘(𝐴 + 1))) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))
53 zre 12617 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
5453adantr 480 . . . . 5 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ ℝ)
55 peano2re 11434 . . . . 5 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
56 ppisval 27147 . . . . 5 ((𝐴 + 1) ∈ ℝ → ((0[,](𝐴 + 1)) ∩ ℙ) = ((2...(⌊‘(𝐴 + 1))) ∩ ℙ))
5754, 55, 563syl 18 . . . 4 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((0[,](𝐴 + 1)) ∩ ℙ) = ((2...(⌊‘(𝐴 + 1))) ∩ ℙ))
58 ppisval 27147 . . . . 5 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))
5954, 58syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))
6052, 57, 593eqtr4d 2787 . . 3 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((0[,](𝐴 + 1)) ∩ ℙ) = ((0[,]𝐴) ∩ ℙ))
6160sumeq1d 15736 . 2 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → Σ𝑝 ∈ ((0[,](𝐴 + 1)) ∩ ℙ)(log‘𝑝) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
62 chtval 27153 . . 3 ((𝐴 + 1) ∈ ℝ → (θ‘(𝐴 + 1)) = Σ𝑝 ∈ ((0[,](𝐴 + 1)) ∩ ℙ)(log‘𝑝))
6354, 55, 623syl 18 . 2 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (θ‘(𝐴 + 1)) = Σ𝑝 ∈ ((0[,](𝐴 + 1)) ∩ ℙ)(log‘𝑝))
64 chtval 27153 . . 3 (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
6554, 64syl 17 . 2 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
6661, 63, 653eqtr4d 2787 1 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (θ‘(𝐴 + 1)) = (θ‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940  cun 3949  cin 3950  wss 3951  {csn 4626  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158  cmin 11492  cn 12266  2c2 12321  cz 12613  cuz 12878  [,]cicc 13390  ...cfz 13547  cfl 13830  Σcsu 15722  cprime 16708  logclog 26596  θccht 27134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-icc 13394  df-fz 13548  df-fl 13832  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-sum 15723  df-dvds 16291  df-prm 16709  df-cht 27140
This theorem is referenced by:  chtub  27256
  Copyright terms: Public domain W3C validator