MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnelnfp Structured version   Visualization version   GIF version

Theorem fnelnfp 7168
Description: Property of a non-fixed point of a function. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
fnelnfp ((𝐹 Fn 𝐴𝑋𝐴) → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑋) ≠ 𝑋))

Proof of Theorem fnelnfp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fndifnfp 7167 . . 3 (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
21eleq2d 2820 . 2 (𝐹 Fn 𝐴 → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ 𝑋 ∈ {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥}))
3 fveq2 6875 . . . 4 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
4 id 22 . . . 4 (𝑥 = 𝑋𝑥 = 𝑋)
53, 4neeq12d 2993 . . 3 (𝑥 = 𝑋 → ((𝐹𝑥) ≠ 𝑥 ↔ (𝐹𝑋) ≠ 𝑋))
65elrab3 3672 . 2 (𝑋𝐴 → (𝑋 ∈ {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥} ↔ (𝐹𝑋) ≠ 𝑋))
72, 6sylan9bb 509 1 ((𝐹 Fn 𝐴𝑋𝐴) → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑋) ≠ 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  {crab 3415  cdif 3923   I cid 5547  dom cdm 5654   Fn wfn 6525  cfv 6530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-fv 6538
This theorem is referenced by:  f1omvdmvd  19422  f1omvdconj  19425  f1otrspeq  19426  pmtrfinv  19440  symggen  19449  psgnunilem1  19472  mdetdiaglem  22534  mdetralt  22544  mdetunilem7  22554  nfpconfp  32556  pmtrcnel  33046  pmtrcnel2  33047  pmtrcnelor  33048  cycpmrn  33100
  Copyright terms: Public domain W3C validator