| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnelnfp | Structured version Visualization version GIF version | ||
| Description: Property of a non-fixed point of a function. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| fnelnfp | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘𝑋) ≠ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndifnfp 7196 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) | |
| 2 | 1 | eleq2d 2827 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ 𝑋 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥})) |
| 3 | fveq2 6906 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
| 4 | id 22 | . . . 4 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
| 5 | 3, 4 | neeq12d 3002 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) ≠ 𝑥 ↔ (𝐹‘𝑋) ≠ 𝑋)) |
| 6 | 5 | elrab3 3693 | . 2 ⊢ (𝑋 ∈ 𝐴 → (𝑋 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥} ↔ (𝐹‘𝑋) ≠ 𝑋)) |
| 7 | 2, 6 | sylan9bb 509 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘𝑋) ≠ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 {crab 3436 ∖ cdif 3948 I cid 5577 dom cdm 5685 Fn wfn 6556 ‘cfv 6561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 |
| This theorem is referenced by: f1omvdmvd 19461 f1omvdconj 19464 f1otrspeq 19465 pmtrfinv 19479 symggen 19488 psgnunilem1 19511 mdetdiaglem 22604 mdetralt 22614 mdetunilem7 22624 nfpconfp 32642 pmtrcnel 33109 pmtrcnel2 33110 pmtrcnelor 33111 cycpmrn 33163 |
| Copyright terms: Public domain | W3C validator |