MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnelnfp Structured version   Visualization version   GIF version

Theorem fnelnfp 7049
Description: Property of a non-fixed point of a function. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
fnelnfp ((𝐹 Fn 𝐴𝑋𝐴) → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑋) ≠ 𝑋))

Proof of Theorem fnelnfp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fndifnfp 7048 . . 3 (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
21eleq2d 2824 . 2 (𝐹 Fn 𝐴 → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ 𝑋 ∈ {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥}))
3 fveq2 6774 . . . 4 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
4 id 22 . . . 4 (𝑥 = 𝑋𝑥 = 𝑋)
53, 4neeq12d 3005 . . 3 (𝑥 = 𝑋 → ((𝐹𝑥) ≠ 𝑥 ↔ (𝐹𝑋) ≠ 𝑋))
65elrab3 3625 . 2 (𝑋𝐴 → (𝑋 ∈ {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥} ↔ (𝐹𝑋) ≠ 𝑋))
72, 6sylan9bb 510 1 ((𝐹 Fn 𝐴𝑋𝐴) → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑋) ≠ 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  {crab 3068  cdif 3884   I cid 5488  dom cdm 5589   Fn wfn 6428  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441
This theorem is referenced by:  f1omvdmvd  19051  f1omvdconj  19054  f1otrspeq  19055  pmtrfinv  19069  symggen  19078  psgnunilem1  19101  mdetdiaglem  21747  mdetralt  21757  mdetunilem7  21767  nfpconfp  30967  pmtrcnel  31358  pmtrcnel2  31359  pmtrcnelor  31360  cycpmrn  31410
  Copyright terms: Public domain W3C validator