| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnelnfp | Structured version Visualization version GIF version | ||
| Description: Property of a non-fixed point of a function. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| fnelnfp | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘𝑋) ≠ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndifnfp 7119 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) | |
| 2 | 1 | eleq2d 2819 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ 𝑋 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥})) |
| 3 | fveq2 6831 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
| 4 | id 22 | . . . 4 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
| 5 | 3, 4 | neeq12d 2991 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) ≠ 𝑥 ↔ (𝐹‘𝑋) ≠ 𝑋)) |
| 6 | 5 | elrab3 3645 | . 2 ⊢ (𝑋 ∈ 𝐴 → (𝑋 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥} ↔ (𝐹‘𝑋) ≠ 𝑋)) |
| 7 | 2, 6 | sylan9bb 509 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘𝑋) ≠ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2930 {crab 3397 ∖ cdif 3896 I cid 5515 dom cdm 5621 Fn wfn 6484 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 |
| This theorem is referenced by: f1omvdmvd 19365 f1omvdconj 19368 f1otrspeq 19369 pmtrfinv 19383 symggen 19392 psgnunilem1 19415 mdetdiaglem 22523 mdetralt 22533 mdetunilem7 22543 nfpconfp 32625 pmtrcnel 33069 pmtrcnel2 33070 pmtrcnelor 33071 cycpmrn 33123 |
| Copyright terms: Public domain | W3C validator |