Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnelnfp | Structured version Visualization version GIF version |
Description: Property of a non-fixed point of a function. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
Ref | Expression |
---|---|
fnelnfp | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘𝑋) ≠ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndifnfp 6991 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) | |
2 | 1 | eleq2d 2823 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ 𝑋 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥})) |
3 | fveq2 6717 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
4 | id 22 | . . . 4 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
5 | 3, 4 | neeq12d 3002 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) ≠ 𝑥 ↔ (𝐹‘𝑋) ≠ 𝑋)) |
6 | 5 | elrab3 3603 | . 2 ⊢ (𝑋 ∈ 𝐴 → (𝑋 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥} ↔ (𝐹‘𝑋) ≠ 𝑋)) |
7 | 2, 6 | sylan9bb 513 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘𝑋) ≠ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 {crab 3065 ∖ cdif 3863 I cid 5454 dom cdm 5551 Fn wfn 6375 ‘cfv 6380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-fv 6388 |
This theorem is referenced by: f1omvdmvd 18835 f1omvdconj 18838 f1otrspeq 18839 pmtrfinv 18853 symggen 18862 psgnunilem1 18885 mdetdiaglem 21495 mdetralt 21505 mdetunilem7 21515 nfpconfp 30686 pmtrcnel 31077 pmtrcnel2 31078 pmtrcnelor 31079 cycpmrn 31129 |
Copyright terms: Public domain | W3C validator |