| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnelnfp | Structured version Visualization version GIF version | ||
| Description: Property of a non-fixed point of a function. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| fnelnfp | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘𝑋) ≠ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndifnfp 7167 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) | |
| 2 | 1 | eleq2d 2820 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ 𝑋 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥})) |
| 3 | fveq2 6875 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
| 4 | id 22 | . . . 4 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
| 5 | 3, 4 | neeq12d 2993 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) ≠ 𝑥 ↔ (𝐹‘𝑋) ≠ 𝑋)) |
| 6 | 5 | elrab3 3672 | . 2 ⊢ (𝑋 ∈ 𝐴 → (𝑋 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥} ↔ (𝐹‘𝑋) ≠ 𝑋)) |
| 7 | 2, 6 | sylan9bb 509 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘𝑋) ≠ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 {crab 3415 ∖ cdif 3923 I cid 5547 dom cdm 5654 Fn wfn 6525 ‘cfv 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fv 6538 |
| This theorem is referenced by: f1omvdmvd 19422 f1omvdconj 19425 f1otrspeq 19426 pmtrfinv 19440 symggen 19449 psgnunilem1 19472 mdetdiaglem 22534 mdetralt 22544 mdetunilem7 22554 nfpconfp 32556 pmtrcnel 33046 pmtrcnel2 33047 pmtrcnelor 33048 cycpmrn 33100 |
| Copyright terms: Public domain | W3C validator |