MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnelnfp Structured version   Visualization version   GIF version

Theorem fnelnfp 7120
Description: Property of a non-fixed point of a function. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
fnelnfp ((𝐹 Fn 𝐴𝑋𝐴) → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑋) ≠ 𝑋))

Proof of Theorem fnelnfp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fndifnfp 7119 . . 3 (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
21eleq2d 2819 . 2 (𝐹 Fn 𝐴 → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ 𝑋 ∈ {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥}))
3 fveq2 6831 . . . 4 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
4 id 22 . . . 4 (𝑥 = 𝑋𝑥 = 𝑋)
53, 4neeq12d 2991 . . 3 (𝑥 = 𝑋 → ((𝐹𝑥) ≠ 𝑥 ↔ (𝐹𝑋) ≠ 𝑋))
65elrab3 3645 . 2 (𝑋𝐴 → (𝑋 ∈ {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥} ↔ (𝐹𝑋) ≠ 𝑋))
72, 6sylan9bb 509 1 ((𝐹 Fn 𝐴𝑋𝐴) → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑋) ≠ 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2930  {crab 3397  cdif 3896   I cid 5515  dom cdm 5621   Fn wfn 6484  cfv 6489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497
This theorem is referenced by:  f1omvdmvd  19365  f1omvdconj  19368  f1otrspeq  19369  pmtrfinv  19383  symggen  19392  psgnunilem1  19415  mdetdiaglem  22523  mdetralt  22533  mdetunilem7  22543  nfpconfp  32625  pmtrcnel  33069  pmtrcnel2  33070  pmtrcnelor  33071  cycpmrn  33123
  Copyright terms: Public domain W3C validator