![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnelnfp | Structured version Visualization version GIF version |
Description: Property of a non-fixed point of a function. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
Ref | Expression |
---|---|
fnelnfp | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘𝑋) ≠ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndifnfp 7195 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) | |
2 | 1 | eleq2d 2824 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ 𝑋 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥})) |
3 | fveq2 6906 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
4 | id 22 | . . . 4 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
5 | 3, 4 | neeq12d 2999 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) ≠ 𝑥 ↔ (𝐹‘𝑋) ≠ 𝑋)) |
6 | 5 | elrab3 3695 | . 2 ⊢ (𝑋 ∈ 𝐴 → (𝑋 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥} ↔ (𝐹‘𝑋) ≠ 𝑋)) |
7 | 2, 6 | sylan9bb 509 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘𝑋) ≠ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 {crab 3432 ∖ cdif 3959 I cid 5581 dom cdm 5688 Fn wfn 6557 ‘cfv 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 |
This theorem is referenced by: f1omvdmvd 19475 f1omvdconj 19478 f1otrspeq 19479 pmtrfinv 19493 symggen 19502 psgnunilem1 19525 mdetdiaglem 22619 mdetralt 22629 mdetunilem7 22639 nfpconfp 32648 pmtrcnel 33091 pmtrcnel2 33092 pmtrcnelor 33093 cycpmrn 33145 |
Copyright terms: Public domain | W3C validator |