MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnelnfp Structured version   Visualization version   GIF version

Theorem fnelnfp 7162
Description: Property of a non-fixed point of a function. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
fnelnfp ((𝐹 Fn 𝐴𝑋𝐴) → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑋) ≠ 𝑋))

Proof of Theorem fnelnfp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fndifnfp 7161 . . 3 (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
21eleq2d 2820 . 2 (𝐹 Fn 𝐴 → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ 𝑋 ∈ {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥}))
3 fveq2 6881 . . . 4 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
4 id 22 . . . 4 (𝑥 = 𝑋𝑥 = 𝑋)
53, 4neeq12d 3003 . . 3 (𝑥 = 𝑋 → ((𝐹𝑥) ≠ 𝑥 ↔ (𝐹𝑋) ≠ 𝑋))
65elrab3 3682 . 2 (𝑋𝐴 → (𝑋 ∈ {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥} ↔ (𝐹𝑋) ≠ 𝑋))
72, 6sylan9bb 511 1 ((𝐹 Fn 𝐴𝑋𝐴) → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑋) ≠ 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2941  {crab 3433  cdif 3943   I cid 5569  dom cdm 5672   Fn wfn 6530  cfv 6535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-br 5145  df-opab 5207  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-fv 6543
This theorem is referenced by:  f1omvdmvd  19295  f1omvdconj  19298  f1otrspeq  19299  pmtrfinv  19313  symggen  19322  psgnunilem1  19345  mdetdiaglem  22069  mdetralt  22079  mdetunilem7  22089  nfpconfp  31825  pmtrcnel  32221  pmtrcnel2  32222  pmtrcnelor  32223  cycpmrn  32273
  Copyright terms: Public domain W3C validator