|   | Mathbox for Richard Penner | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneicls00 | Structured version Visualization version GIF version | ||
| Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that the closure of the empty set is the empty set hold equally. (Contributed by RP, 2-Jun-2021.) | 
| Ref | Expression | 
|---|---|
| ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | 
| ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | 
| ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) | 
| Ref | Expression | 
|---|---|
| ntrneicls00 | ⊢ (𝜑 → ((𝐼‘𝐵) = 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐵 ∈ (𝑁‘𝑥))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ntrnei.o | . . . . . . 7 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
| 2 | ntrnei.f | . . . . . . 7 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
| 3 | ntrnei.r | . . . . . . 7 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
| 4 | 1, 2, 3 | ntrneiiex 44094 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) | 
| 5 | elmapi 8890 | . . . . . 6 ⊢ (𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐼:𝒫 𝐵⟶𝒫 𝐵) | 
| 7 | 1, 2, 3 | ntrneibex 44091 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ V) | 
| 8 | pwidg 4619 | . . . . . 6 ⊢ (𝐵 ∈ V → 𝐵 ∈ 𝒫 𝐵) | |
| 9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝒫 𝐵) | 
| 10 | 6, 9 | ffvelcdmd 7104 | . . . 4 ⊢ (𝜑 → (𝐼‘𝐵) ∈ 𝒫 𝐵) | 
| 11 | 10 | elpwid 4608 | . . 3 ⊢ (𝜑 → (𝐼‘𝐵) ⊆ 𝐵) | 
| 12 | eqss 3998 | . . . . 5 ⊢ ((𝐼‘𝐵) = 𝐵 ↔ ((𝐼‘𝐵) ⊆ 𝐵 ∧ 𝐵 ⊆ (𝐼‘𝐵))) | |
| 13 | dfss3 3971 | . . . . . 6 ⊢ (𝐵 ⊆ (𝐼‘𝐵) ↔ ∀𝑥 ∈ 𝐵 𝑥 ∈ (𝐼‘𝐵)) | |
| 14 | 13 | anbi2i 623 | . . . . 5 ⊢ (((𝐼‘𝐵) ⊆ 𝐵 ∧ 𝐵 ⊆ (𝐼‘𝐵)) ↔ ((𝐼‘𝐵) ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝑥 ∈ (𝐼‘𝐵))) | 
| 15 | 12, 14 | bitri 275 | . . . 4 ⊢ ((𝐼‘𝐵) = 𝐵 ↔ ((𝐼‘𝐵) ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝑥 ∈ (𝐼‘𝐵))) | 
| 16 | 15 | a1i 11 | . . 3 ⊢ (𝜑 → ((𝐼‘𝐵) = 𝐵 ↔ ((𝐼‘𝐵) ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝑥 ∈ (𝐼‘𝐵)))) | 
| 17 | 11, 16 | mpbirand 707 | . 2 ⊢ (𝜑 → ((𝐼‘𝐵) = 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑥 ∈ (𝐼‘𝐵))) | 
| 18 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐼𝐹𝑁) | 
| 19 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 20 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐵 ∈ 𝒫 𝐵) | 
| 21 | 1, 2, 18, 19, 20 | ntrneiel 44099 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝐼‘𝐵) ↔ 𝐵 ∈ (𝑁‘𝑥))) | 
| 22 | 21 | ralbidva 3175 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝑥 ∈ (𝐼‘𝐵) ↔ ∀𝑥 ∈ 𝐵 𝐵 ∈ (𝑁‘𝑥))) | 
| 23 | 17, 22 | bitrd 279 | 1 ⊢ (𝜑 → ((𝐼‘𝐵) = 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐵 ∈ (𝑁‘𝑥))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 {crab 3435 Vcvv 3479 ⊆ wss 3950 𝒫 cpw 4599 class class class wbr 5142 ↦ cmpt 5224 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 ∈ cmpo 7434 ↑m cmap 8867 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-map 8869 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |