Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneicls00 Structured version   Visualization version   GIF version

Theorem ntrneicls00 44051
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that the closure of the empty set is the empty set hold equally. (Contributed by RP, 2-Jun-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneicls00 (𝜑 → ((𝐼𝐵) = 𝐵 ↔ ∀𝑥𝐵 𝐵 ∈ (𝑁𝑥)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑥   𝑘,𝐼,𝑙,𝑚,𝑥   𝜑,𝑖,𝑗,𝑘,𝑙,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑥,𝑖,𝑗,𝑘,𝑚,𝑙)   𝐼(𝑖,𝑗)   𝑁(𝑥,𝑖,𝑗,𝑘,𝑚,𝑙)   𝑂(𝑥,𝑖,𝑗,𝑘,𝑚,𝑙)

Proof of Theorem ntrneicls00
StepHypRef Expression
1 ntrnei.o . . . . . . 7 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
2 ntrnei.f . . . . . . 7 𝐹 = (𝒫 𝐵𝑂𝐵)
3 ntrnei.r . . . . . . 7 (𝜑𝐼𝐹𝑁)
41, 2, 3ntrneiiex 44038 . . . . . 6 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
5 elmapi 8907 . . . . . 6 (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
64, 5syl 17 . . . . 5 (𝜑𝐼:𝒫 𝐵⟶𝒫 𝐵)
71, 2, 3ntrneibex 44035 . . . . . 6 (𝜑𝐵 ∈ V)
8 pwidg 4642 . . . . . 6 (𝐵 ∈ V → 𝐵 ∈ 𝒫 𝐵)
97, 8syl 17 . . . . 5 (𝜑𝐵 ∈ 𝒫 𝐵)
106, 9ffvelcdmd 7119 . . . 4 (𝜑 → (𝐼𝐵) ∈ 𝒫 𝐵)
1110elpwid 4631 . . 3 (𝜑 → (𝐼𝐵) ⊆ 𝐵)
12 eqss 4024 . . . . 5 ((𝐼𝐵) = 𝐵 ↔ ((𝐼𝐵) ⊆ 𝐵𝐵 ⊆ (𝐼𝐵)))
13 dfss3 3997 . . . . . 6 (𝐵 ⊆ (𝐼𝐵) ↔ ∀𝑥𝐵 𝑥 ∈ (𝐼𝐵))
1413anbi2i 622 . . . . 5 (((𝐼𝐵) ⊆ 𝐵𝐵 ⊆ (𝐼𝐵)) ↔ ((𝐼𝐵) ⊆ 𝐵 ∧ ∀𝑥𝐵 𝑥 ∈ (𝐼𝐵)))
1512, 14bitri 275 . . . 4 ((𝐼𝐵) = 𝐵 ↔ ((𝐼𝐵) ⊆ 𝐵 ∧ ∀𝑥𝐵 𝑥 ∈ (𝐼𝐵)))
1615a1i 11 . . 3 (𝜑 → ((𝐼𝐵) = 𝐵 ↔ ((𝐼𝐵) ⊆ 𝐵 ∧ ∀𝑥𝐵 𝑥 ∈ (𝐼𝐵))))
1711, 16mpbirand 706 . 2 (𝜑 → ((𝐼𝐵) = 𝐵 ↔ ∀𝑥𝐵 𝑥 ∈ (𝐼𝐵)))
183adantr 480 . . . 4 ((𝜑𝑥𝐵) → 𝐼𝐹𝑁)
19 simpr 484 . . . 4 ((𝜑𝑥𝐵) → 𝑥𝐵)
209adantr 480 . . . 4 ((𝜑𝑥𝐵) → 𝐵 ∈ 𝒫 𝐵)
211, 2, 18, 19, 20ntrneiel 44043 . . 3 ((𝜑𝑥𝐵) → (𝑥 ∈ (𝐼𝐵) ↔ 𝐵 ∈ (𝑁𝑥)))
2221ralbidva 3182 . 2 (𝜑 → (∀𝑥𝐵 𝑥 ∈ (𝐼𝐵) ↔ ∀𝑥𝐵 𝐵 ∈ (𝑁𝑥)))
2317, 22bitrd 279 1 (𝜑 → ((𝐼𝐵) = 𝐵 ↔ ∀𝑥𝐵 𝐵 ∈ (𝑁𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  Vcvv 3488  wss 3976  𝒫 cpw 4622   class class class wbr 5166  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  m cmap 8884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator