Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneicls00 Structured version   Visualization version   GIF version

Theorem ntrneicls00 43329
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that the closure of the empty set is the empty set hold equally. (Contributed by RP, 2-Jun-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (π‘˜ ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {π‘š ∈ 𝑖 ∣ 𝑙 ∈ (π‘˜β€˜π‘š)})))
ntrnei.f 𝐹 = (𝒫 𝐡𝑂𝐡)
ntrnei.r (πœ‘ β†’ 𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneicls00 (πœ‘ β†’ ((πΌβ€˜π΅) = 𝐡 ↔ βˆ€π‘₯ ∈ 𝐡 𝐡 ∈ (π‘β€˜π‘₯)))
Distinct variable groups:   𝐡,𝑖,𝑗,π‘˜,𝑙,π‘š,π‘₯   π‘˜,𝐼,𝑙,π‘š,π‘₯   πœ‘,𝑖,𝑗,π‘˜,𝑙,π‘₯
Allowed substitution hints:   πœ‘(π‘š)   𝐹(π‘₯,𝑖,𝑗,π‘˜,π‘š,𝑙)   𝐼(𝑖,𝑗)   𝑁(π‘₯,𝑖,𝑗,π‘˜,π‘š,𝑙)   𝑂(π‘₯,𝑖,𝑗,π‘˜,π‘š,𝑙)

Proof of Theorem ntrneicls00
StepHypRef Expression
1 ntrnei.o . . . . . . 7 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (π‘˜ ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {π‘š ∈ 𝑖 ∣ 𝑙 ∈ (π‘˜β€˜π‘š)})))
2 ntrnei.f . . . . . . 7 𝐹 = (𝒫 𝐡𝑂𝐡)
3 ntrnei.r . . . . . . 7 (πœ‘ β†’ 𝐼𝐹𝑁)
41, 2, 3ntrneiiex 43316 . . . . . 6 (πœ‘ β†’ 𝐼 ∈ (𝒫 𝐡 ↑m 𝒫 𝐡))
5 elmapi 8839 . . . . . 6 (𝐼 ∈ (𝒫 𝐡 ↑m 𝒫 𝐡) β†’ 𝐼:𝒫 π΅βŸΆπ’« 𝐡)
64, 5syl 17 . . . . 5 (πœ‘ β†’ 𝐼:𝒫 π΅βŸΆπ’« 𝐡)
71, 2, 3ntrneibex 43313 . . . . . 6 (πœ‘ β†’ 𝐡 ∈ V)
8 pwidg 4614 . . . . . 6 (𝐡 ∈ V β†’ 𝐡 ∈ 𝒫 𝐡)
97, 8syl 17 . . . . 5 (πœ‘ β†’ 𝐡 ∈ 𝒫 𝐡)
106, 9ffvelcdmd 7077 . . . 4 (πœ‘ β†’ (πΌβ€˜π΅) ∈ 𝒫 𝐡)
1110elpwid 4603 . . 3 (πœ‘ β†’ (πΌβ€˜π΅) βŠ† 𝐡)
12 eqss 3989 . . . . 5 ((πΌβ€˜π΅) = 𝐡 ↔ ((πΌβ€˜π΅) βŠ† 𝐡 ∧ 𝐡 βŠ† (πΌβ€˜π΅)))
13 dfss3 3962 . . . . . 6 (𝐡 βŠ† (πΌβ€˜π΅) ↔ βˆ€π‘₯ ∈ 𝐡 π‘₯ ∈ (πΌβ€˜π΅))
1413anbi2i 622 . . . . 5 (((πΌβ€˜π΅) βŠ† 𝐡 ∧ 𝐡 βŠ† (πΌβ€˜π΅)) ↔ ((πΌβ€˜π΅) βŠ† 𝐡 ∧ βˆ€π‘₯ ∈ 𝐡 π‘₯ ∈ (πΌβ€˜π΅)))
1512, 14bitri 275 . . . 4 ((πΌβ€˜π΅) = 𝐡 ↔ ((πΌβ€˜π΅) βŠ† 𝐡 ∧ βˆ€π‘₯ ∈ 𝐡 π‘₯ ∈ (πΌβ€˜π΅)))
1615a1i 11 . . 3 (πœ‘ β†’ ((πΌβ€˜π΅) = 𝐡 ↔ ((πΌβ€˜π΅) βŠ† 𝐡 ∧ βˆ€π‘₯ ∈ 𝐡 π‘₯ ∈ (πΌβ€˜π΅))))
1711, 16mpbirand 704 . 2 (πœ‘ β†’ ((πΌβ€˜π΅) = 𝐡 ↔ βˆ€π‘₯ ∈ 𝐡 π‘₯ ∈ (πΌβ€˜π΅)))
183adantr 480 . . . 4 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ 𝐼𝐹𝑁)
19 simpr 484 . . . 4 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ π‘₯ ∈ 𝐡)
209adantr 480 . . . 4 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ 𝐡 ∈ 𝒫 𝐡)
211, 2, 18, 19, 20ntrneiel 43321 . . 3 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ (π‘₯ ∈ (πΌβ€˜π΅) ↔ 𝐡 ∈ (π‘β€˜π‘₯)))
2221ralbidva 3167 . 2 (πœ‘ β†’ (βˆ€π‘₯ ∈ 𝐡 π‘₯ ∈ (πΌβ€˜π΅) ↔ βˆ€π‘₯ ∈ 𝐡 𝐡 ∈ (π‘β€˜π‘₯)))
2317, 22bitrd 279 1 (πœ‘ β†’ ((πΌβ€˜π΅) = 𝐡 ↔ βˆ€π‘₯ ∈ 𝐡 𝐡 ∈ (π‘β€˜π‘₯)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098  βˆ€wral 3053  {crab 3424  Vcvv 3466   βŠ† wss 3940  π’« cpw 4594   class class class wbr 5138   ↦ cmpt 5221  βŸΆwf 6529  β€˜cfv 6533  (class class class)co 7401   ∈ cmpo 7403   ↑m cmap 8816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-map 8818
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator