![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneicls00 | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that the closure of the empty set is the empty set hold equally. (Contributed by RP, 2-Jun-2021.) |
Ref | Expression |
---|---|
ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
Ref | Expression |
---|---|
ntrneicls00 | ⊢ (𝜑 → ((𝐼‘𝐵) = 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐵 ∈ (𝑁‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrnei.o | . . . . . . 7 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
2 | ntrnei.f | . . . . . . 7 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
3 | ntrnei.r | . . . . . . 7 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
4 | 1, 2, 3 | ntrneiiex 39209 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) |
5 | elmapi 8149 | . . . . . 6 ⊢ (𝐼 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐼:𝒫 𝐵⟶𝒫 𝐵) |
7 | 1, 2, 3 | ntrneibex 39206 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ V) |
8 | pwidg 4395 | . . . . . 6 ⊢ (𝐵 ∈ V → 𝐵 ∈ 𝒫 𝐵) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝒫 𝐵) |
10 | 6, 9 | ffvelrnd 6614 | . . . 4 ⊢ (𝜑 → (𝐼‘𝐵) ∈ 𝒫 𝐵) |
11 | 10 | elpwid 4392 | . . 3 ⊢ (𝜑 → (𝐼‘𝐵) ⊆ 𝐵) |
12 | eqss 3842 | . . . . 5 ⊢ ((𝐼‘𝐵) = 𝐵 ↔ ((𝐼‘𝐵) ⊆ 𝐵 ∧ 𝐵 ⊆ (𝐼‘𝐵))) | |
13 | dfss3 3816 | . . . . . 6 ⊢ (𝐵 ⊆ (𝐼‘𝐵) ↔ ∀𝑥 ∈ 𝐵 𝑥 ∈ (𝐼‘𝐵)) | |
14 | 13 | anbi2i 616 | . . . . 5 ⊢ (((𝐼‘𝐵) ⊆ 𝐵 ∧ 𝐵 ⊆ (𝐼‘𝐵)) ↔ ((𝐼‘𝐵) ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝑥 ∈ (𝐼‘𝐵))) |
15 | 12, 14 | bitri 267 | . . . 4 ⊢ ((𝐼‘𝐵) = 𝐵 ↔ ((𝐼‘𝐵) ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝑥 ∈ (𝐼‘𝐵))) |
16 | 15 | a1i 11 | . . 3 ⊢ (𝜑 → ((𝐼‘𝐵) = 𝐵 ↔ ((𝐼‘𝐵) ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝑥 ∈ (𝐼‘𝐵)))) |
17 | 11, 16 | mpbirand 698 | . 2 ⊢ (𝜑 → ((𝐼‘𝐵) = 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑥 ∈ (𝐼‘𝐵))) |
18 | 3 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐼𝐹𝑁) |
19 | simpr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
20 | 9 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐵 ∈ 𝒫 𝐵) |
21 | 1, 2, 18, 19, 20 | ntrneiel 39214 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝐼‘𝐵) ↔ 𝐵 ∈ (𝑁‘𝑥))) |
22 | 21 | ralbidva 3194 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝑥 ∈ (𝐼‘𝐵) ↔ ∀𝑥 ∈ 𝐵 𝐵 ∈ (𝑁‘𝑥))) |
23 | 17, 22 | bitrd 271 | 1 ⊢ (𝜑 → ((𝐼‘𝐵) = 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐵 ∈ (𝑁‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∀wral 3117 {crab 3121 Vcvv 3414 ⊆ wss 3798 𝒫 cpw 4380 class class class wbr 4875 ↦ cmpt 4954 ⟶wf 6123 ‘cfv 6127 (class class class)co 6910 ↦ cmpt2 6912 ↑𝑚 cmap 8127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-1st 7433 df-2nd 7434 df-map 8129 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |