Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneicls00 Structured version   Visualization version   GIF version

Theorem ntrneicls00 40432
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that the closure of the empty set is the empty set hold equally. (Contributed by RP, 2-Jun-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneicls00 (𝜑 → ((𝐼𝐵) = 𝐵 ↔ ∀𝑥𝐵 𝐵 ∈ (𝑁𝑥)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑥   𝑘,𝐼,𝑙,𝑚,𝑥   𝜑,𝑖,𝑗,𝑘,𝑙,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑥,𝑖,𝑗,𝑘,𝑚,𝑙)   𝐼(𝑖,𝑗)   𝑁(𝑥,𝑖,𝑗,𝑘,𝑚,𝑙)   𝑂(𝑥,𝑖,𝑗,𝑘,𝑚,𝑙)

Proof of Theorem ntrneicls00
StepHypRef Expression
1 ntrnei.o . . . . . . 7 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
2 ntrnei.f . . . . . . 7 𝐹 = (𝒫 𝐵𝑂𝐵)
3 ntrnei.r . . . . . . 7 (𝜑𝐼𝐹𝑁)
41, 2, 3ntrneiiex 40419 . . . . . 6 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
5 elmapi 8422 . . . . . 6 (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
64, 5syl 17 . . . . 5 (𝜑𝐼:𝒫 𝐵⟶𝒫 𝐵)
71, 2, 3ntrneibex 40416 . . . . . 6 (𝜑𝐵 ∈ V)
8 pwidg 4555 . . . . . 6 (𝐵 ∈ V → 𝐵 ∈ 𝒫 𝐵)
97, 8syl 17 . . . . 5 (𝜑𝐵 ∈ 𝒫 𝐵)
106, 9ffvelrnd 6846 . . . 4 (𝜑 → (𝐼𝐵) ∈ 𝒫 𝐵)
1110elpwid 4552 . . 3 (𝜑 → (𝐼𝐵) ⊆ 𝐵)
12 eqss 3981 . . . . 5 ((𝐼𝐵) = 𝐵 ↔ ((𝐼𝐵) ⊆ 𝐵𝐵 ⊆ (𝐼𝐵)))
13 dfss3 3955 . . . . . 6 (𝐵 ⊆ (𝐼𝐵) ↔ ∀𝑥𝐵 𝑥 ∈ (𝐼𝐵))
1413anbi2i 624 . . . . 5 (((𝐼𝐵) ⊆ 𝐵𝐵 ⊆ (𝐼𝐵)) ↔ ((𝐼𝐵) ⊆ 𝐵 ∧ ∀𝑥𝐵 𝑥 ∈ (𝐼𝐵)))
1512, 14bitri 277 . . . 4 ((𝐼𝐵) = 𝐵 ↔ ((𝐼𝐵) ⊆ 𝐵 ∧ ∀𝑥𝐵 𝑥 ∈ (𝐼𝐵)))
1615a1i 11 . . 3 (𝜑 → ((𝐼𝐵) = 𝐵 ↔ ((𝐼𝐵) ⊆ 𝐵 ∧ ∀𝑥𝐵 𝑥 ∈ (𝐼𝐵))))
1711, 16mpbirand 705 . 2 (𝜑 → ((𝐼𝐵) = 𝐵 ↔ ∀𝑥𝐵 𝑥 ∈ (𝐼𝐵)))
183adantr 483 . . . 4 ((𝜑𝑥𝐵) → 𝐼𝐹𝑁)
19 simpr 487 . . . 4 ((𝜑𝑥𝐵) → 𝑥𝐵)
209adantr 483 . . . 4 ((𝜑𝑥𝐵) → 𝐵 ∈ 𝒫 𝐵)
211, 2, 18, 19, 20ntrneiel 40424 . . 3 ((𝜑𝑥𝐵) → (𝑥 ∈ (𝐼𝐵) ↔ 𝐵 ∈ (𝑁𝑥)))
2221ralbidva 3196 . 2 (𝜑 → (∀𝑥𝐵 𝑥 ∈ (𝐼𝐵) ↔ ∀𝑥𝐵 𝐵 ∈ (𝑁𝑥)))
2317, 22bitrd 281 1 (𝜑 → ((𝐼𝐵) = 𝐵 ↔ ∀𝑥𝐵 𝐵 ∈ (𝑁𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  {crab 3142  Vcvv 3494  wss 3935  𝒫 cpw 4538   class class class wbr 5058  cmpt 5138  wf 6345  cfv 6349  (class class class)co 7150  cmpo 7152  m cmap 8400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-map 8402
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator