Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneicls00 Structured version   Visualization version   GIF version

Theorem ntrneicls00 41328
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that the closure of the empty set is the empty set hold equally. (Contributed by RP, 2-Jun-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneicls00 (𝜑 → ((𝐼𝐵) = 𝐵 ↔ ∀𝑥𝐵 𝐵 ∈ (𝑁𝑥)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑥   𝑘,𝐼,𝑙,𝑚,𝑥   𝜑,𝑖,𝑗,𝑘,𝑙,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑥,𝑖,𝑗,𝑘,𝑚,𝑙)   𝐼(𝑖,𝑗)   𝑁(𝑥,𝑖,𝑗,𝑘,𝑚,𝑙)   𝑂(𝑥,𝑖,𝑗,𝑘,𝑚,𝑙)

Proof of Theorem ntrneicls00
StepHypRef Expression
1 ntrnei.o . . . . . . 7 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
2 ntrnei.f . . . . . . 7 𝐹 = (𝒫 𝐵𝑂𝐵)
3 ntrnei.r . . . . . . 7 (𝜑𝐼𝐹𝑁)
41, 2, 3ntrneiiex 41315 . . . . . 6 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
5 elmapi 8519 . . . . . 6 (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
64, 5syl 17 . . . . 5 (𝜑𝐼:𝒫 𝐵⟶𝒫 𝐵)
71, 2, 3ntrneibex 41312 . . . . . 6 (𝜑𝐵 ∈ V)
8 pwidg 4525 . . . . . 6 (𝐵 ∈ V → 𝐵 ∈ 𝒫 𝐵)
97, 8syl 17 . . . . 5 (𝜑𝐵 ∈ 𝒫 𝐵)
106, 9ffvelrnd 6894 . . . 4 (𝜑 → (𝐼𝐵) ∈ 𝒫 𝐵)
1110elpwid 4514 . . 3 (𝜑 → (𝐼𝐵) ⊆ 𝐵)
12 eqss 3906 . . . . 5 ((𝐼𝐵) = 𝐵 ↔ ((𝐼𝐵) ⊆ 𝐵𝐵 ⊆ (𝐼𝐵)))
13 dfss3 3879 . . . . . 6 (𝐵 ⊆ (𝐼𝐵) ↔ ∀𝑥𝐵 𝑥 ∈ (𝐼𝐵))
1413anbi2i 626 . . . . 5 (((𝐼𝐵) ⊆ 𝐵𝐵 ⊆ (𝐼𝐵)) ↔ ((𝐼𝐵) ⊆ 𝐵 ∧ ∀𝑥𝐵 𝑥 ∈ (𝐼𝐵)))
1512, 14bitri 278 . . . 4 ((𝐼𝐵) = 𝐵 ↔ ((𝐼𝐵) ⊆ 𝐵 ∧ ∀𝑥𝐵 𝑥 ∈ (𝐼𝐵)))
1615a1i 11 . . 3 (𝜑 → ((𝐼𝐵) = 𝐵 ↔ ((𝐼𝐵) ⊆ 𝐵 ∧ ∀𝑥𝐵 𝑥 ∈ (𝐼𝐵))))
1711, 16mpbirand 707 . 2 (𝜑 → ((𝐼𝐵) = 𝐵 ↔ ∀𝑥𝐵 𝑥 ∈ (𝐼𝐵)))
183adantr 484 . . . 4 ((𝜑𝑥𝐵) → 𝐼𝐹𝑁)
19 simpr 488 . . . 4 ((𝜑𝑥𝐵) → 𝑥𝐵)
209adantr 484 . . . 4 ((𝜑𝑥𝐵) → 𝐵 ∈ 𝒫 𝐵)
211, 2, 18, 19, 20ntrneiel 41320 . . 3 ((𝜑𝑥𝐵) → (𝑥 ∈ (𝐼𝐵) ↔ 𝐵 ∈ (𝑁𝑥)))
2221ralbidva 3110 . 2 (𝜑 → (∀𝑥𝐵 𝑥 ∈ (𝐼𝐵) ↔ ∀𝑥𝐵 𝐵 ∈ (𝑁𝑥)))
2317, 22bitrd 282 1 (𝜑 → ((𝐼𝐵) = 𝐵 ↔ ∀𝑥𝐵 𝐵 ∈ (𝑁𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3054  {crab 3058  Vcvv 3401  wss 3857  𝒫 cpw 4503   class class class wbr 5043  cmpt 5124  wf 6365  cfv 6369  (class class class)co 7202  cmpo 7204  m cmap 8497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-id 5444  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-ov 7205  df-oprab 7206  df-mpo 7207  df-1st 7750  df-2nd 7751  df-map 8499
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator