| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneiel | Structured version Visualization version GIF version | ||
| Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then there is an equivalence between membership in the interior of a set and non-membership in the closure of the complement of the set. (Contributed by RP, 29-May-2021.) |
| Ref | Expression |
|---|---|
| ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
| ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
| ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
| ntrnei.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ntrnei.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
| Ref | Expression |
|---|---|
| ntrneiel | ⊢ (𝜑 → (𝑋 ∈ (𝐼‘𝑆) ↔ 𝑆 ∈ (𝑁‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrnei.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
| 2 | fveq2 6861 | . . . . 5 ⊢ (𝑚 = 𝑆 → (𝐼‘𝑚) = (𝐼‘𝑆)) | |
| 3 | 2 | eleq2d 2815 | . . . 4 ⊢ (𝑚 = 𝑆 → (𝑋 ∈ (𝐼‘𝑚) ↔ 𝑋 ∈ (𝐼‘𝑆))) |
| 4 | 3 | elrab3 3663 | . . 3 ⊢ (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∈ {𝑚 ∈ 𝒫 𝐵 ∣ 𝑋 ∈ (𝐼‘𝑚)} ↔ 𝑋 ∈ (𝐼‘𝑆))) |
| 5 | 1, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝑆 ∈ {𝑚 ∈ 𝒫 𝐵 ∣ 𝑋 ∈ (𝐼‘𝑚)} ↔ 𝑋 ∈ (𝐼‘𝑆))) |
| 6 | ntrnei.o | . . . . 5 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
| 7 | ntrnei.f | . . . . . . 7 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
| 8 | ntrnei.r | . . . . . . 7 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
| 9 | 6, 7, 8 | ntrneibex 44069 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ V) |
| 10 | 9 | pwexd 5337 | . . . . 5 ⊢ (𝜑 → 𝒫 𝐵 ∈ V) |
| 11 | 6, 7, 8 | ntrneiiex 44072 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 12 | eqid 2730 | . . . . 5 ⊢ (𝐹‘𝐼) = (𝐹‘𝐼) | |
| 13 | ntrnei.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 14 | 6, 10, 9, 7, 11, 12, 13 | fsovfvfvd 44007 | . . . 4 ⊢ (𝜑 → ((𝐹‘𝐼)‘𝑋) = {𝑚 ∈ 𝒫 𝐵 ∣ 𝑋 ∈ (𝐼‘𝑚)}) |
| 15 | 6, 7, 8 | ntrneifv1 44075 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝐼) = 𝑁) |
| 16 | 15 | fveq1d 6863 | . . . 4 ⊢ (𝜑 → ((𝐹‘𝐼)‘𝑋) = (𝑁‘𝑋)) |
| 17 | 14, 16 | eqtr3d 2767 | . . 3 ⊢ (𝜑 → {𝑚 ∈ 𝒫 𝐵 ∣ 𝑋 ∈ (𝐼‘𝑚)} = (𝑁‘𝑋)) |
| 18 | 17 | eleq2d 2815 | . 2 ⊢ (𝜑 → (𝑆 ∈ {𝑚 ∈ 𝒫 𝐵 ∣ 𝑋 ∈ (𝐼‘𝑚)} ↔ 𝑆 ∈ (𝑁‘𝑋))) |
| 19 | 5, 18 | bitr3d 281 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝐼‘𝑆) ↔ 𝑆 ∈ (𝑁‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 𝒫 cpw 4566 class class class wbr 5110 ↦ cmpt 5191 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 ↑m cmap 8802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-map 8804 |
| This theorem is referenced by: ntrneifv3 44078 ntrneineine0lem 44079 ntrneineine1lem 44080 ntrneifv4 44081 ntrneiel2 44082 ntrneicls00 44085 ntrneicls11 44086 ntrneiiso 44087 ntrneik2 44088 ntrneix2 44089 ntrneikb 44090 ntrneixb 44091 ntrneik3 44092 ntrneix3 44093 ntrneik13 44094 ntrneix13 44095 ntrneik4w 44096 ntrneik4 44097 clsneiel1 44104 neicvgel1 44115 |
| Copyright terms: Public domain | W3C validator |