Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneiel Structured version   Visualization version   GIF version

Theorem ntrneiel 42914
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then there is an equivalence between membership in the interior of a set and non-membership in the closure of the complement of the set. (Contributed by RP, 29-May-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
ntrnei.x (𝜑𝑋𝐵)
ntrnei.s (𝜑𝑆 ∈ 𝒫 𝐵)
Assertion
Ref Expression
ntrneiel (𝜑 → (𝑋 ∈ (𝐼𝑆) ↔ 𝑆 ∈ (𝑁𝑋)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝑘,𝐼,𝑙,𝑚   𝑆,𝑚   𝑋,𝑙,𝑚   𝜑,𝑖,𝑗,𝑘,𝑙
Allowed substitution hints:   𝜑(𝑚)   𝑆(𝑖,𝑗,𝑘,𝑙)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐼(𝑖,𝑗)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑋(𝑖,𝑗,𝑘)

Proof of Theorem ntrneiel
StepHypRef Expression
1 ntrnei.s . . 3 (𝜑𝑆 ∈ 𝒫 𝐵)
2 fveq2 6891 . . . . 5 (𝑚 = 𝑆 → (𝐼𝑚) = (𝐼𝑆))
32eleq2d 2819 . . . 4 (𝑚 = 𝑆 → (𝑋 ∈ (𝐼𝑚) ↔ 𝑋 ∈ (𝐼𝑆)))
43elrab3 3684 . . 3 (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∈ {𝑚 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑚)} ↔ 𝑋 ∈ (𝐼𝑆)))
51, 4syl 17 . 2 (𝜑 → (𝑆 ∈ {𝑚 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑚)} ↔ 𝑋 ∈ (𝐼𝑆)))
6 ntrnei.o . . . . 5 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
7 ntrnei.f . . . . . . 7 𝐹 = (𝒫 𝐵𝑂𝐵)
8 ntrnei.r . . . . . . 7 (𝜑𝐼𝐹𝑁)
96, 7, 8ntrneibex 42906 . . . . . 6 (𝜑𝐵 ∈ V)
109pwexd 5377 . . . . 5 (𝜑 → 𝒫 𝐵 ∈ V)
116, 7, 8ntrneiiex 42909 . . . . 5 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
12 eqid 2732 . . . . 5 (𝐹𝐼) = (𝐹𝐼)
13 ntrnei.x . . . . 5 (𝜑𝑋𝐵)
146, 10, 9, 7, 11, 12, 13fsovfvfvd 42844 . . . 4 (𝜑 → ((𝐹𝐼)‘𝑋) = {𝑚 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑚)})
156, 7, 8ntrneifv1 42912 . . . . 5 (𝜑 → (𝐹𝐼) = 𝑁)
1615fveq1d 6893 . . . 4 (𝜑 → ((𝐹𝐼)‘𝑋) = (𝑁𝑋))
1714, 16eqtr3d 2774 . . 3 (𝜑 → {𝑚 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑚)} = (𝑁𝑋))
1817eleq2d 2819 . 2 (𝜑 → (𝑆 ∈ {𝑚 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑚)} ↔ 𝑆 ∈ (𝑁𝑋)))
195, 18bitr3d 280 1 (𝜑 → (𝑋 ∈ (𝐼𝑆) ↔ 𝑆 ∈ (𝑁𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2106  {crab 3432  Vcvv 3474  𝒫 cpw 4602   class class class wbr 5148  cmpt 5231  cfv 6543  (class class class)co 7411  cmpo 7413  m cmap 8822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-map 8824
This theorem is referenced by:  ntrneifv3  42915  ntrneineine0lem  42916  ntrneineine1lem  42917  ntrneifv4  42918  ntrneiel2  42919  ntrneicls00  42922  ntrneicls11  42923  ntrneiiso  42924  ntrneik2  42925  ntrneix2  42926  ntrneikb  42927  ntrneixb  42928  ntrneik3  42929  ntrneix3  42930  ntrneik13  42931  ntrneix13  42932  ntrneik4w  42933  ntrneik4  42934  clsneiel1  42941  neicvgel1  42952
  Copyright terms: Public domain W3C validator