Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneiel Structured version   Visualization version   GIF version

Theorem ntrneiel 44238
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then there is an equivalence between membership in the interior of a set and non-membership in the closure of the complement of the set. (Contributed by RP, 29-May-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
ntrnei.x (𝜑𝑋𝐵)
ntrnei.s (𝜑𝑆 ∈ 𝒫 𝐵)
Assertion
Ref Expression
ntrneiel (𝜑 → (𝑋 ∈ (𝐼𝑆) ↔ 𝑆 ∈ (𝑁𝑋)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝑘,𝐼,𝑙,𝑚   𝑆,𝑚   𝑋,𝑙,𝑚   𝜑,𝑖,𝑗,𝑘,𝑙
Allowed substitution hints:   𝜑(𝑚)   𝑆(𝑖,𝑗,𝑘,𝑙)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐼(𝑖,𝑗)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑋(𝑖,𝑗,𝑘)

Proof of Theorem ntrneiel
StepHypRef Expression
1 ntrnei.s . . 3 (𝜑𝑆 ∈ 𝒫 𝐵)
2 fveq2 6831 . . . . 5 (𝑚 = 𝑆 → (𝐼𝑚) = (𝐼𝑆))
32eleq2d 2819 . . . 4 (𝑚 = 𝑆 → (𝑋 ∈ (𝐼𝑚) ↔ 𝑋 ∈ (𝐼𝑆)))
43elrab3 3644 . . 3 (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∈ {𝑚 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑚)} ↔ 𝑋 ∈ (𝐼𝑆)))
51, 4syl 17 . 2 (𝜑 → (𝑆 ∈ {𝑚 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑚)} ↔ 𝑋 ∈ (𝐼𝑆)))
6 ntrnei.o . . . . 5 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
7 ntrnei.f . . . . . . 7 𝐹 = (𝒫 𝐵𝑂𝐵)
8 ntrnei.r . . . . . . 7 (𝜑𝐼𝐹𝑁)
96, 7, 8ntrneibex 44230 . . . . . 6 (𝜑𝐵 ∈ V)
109pwexd 5321 . . . . 5 (𝜑 → 𝒫 𝐵 ∈ V)
116, 7, 8ntrneiiex 44233 . . . . 5 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
12 eqid 2733 . . . . 5 (𝐹𝐼) = (𝐹𝐼)
13 ntrnei.x . . . . 5 (𝜑𝑋𝐵)
146, 10, 9, 7, 11, 12, 13fsovfvfvd 44168 . . . 4 (𝜑 → ((𝐹𝐼)‘𝑋) = {𝑚 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑚)})
156, 7, 8ntrneifv1 44236 . . . . 5 (𝜑 → (𝐹𝐼) = 𝑁)
1615fveq1d 6833 . . . 4 (𝜑 → ((𝐹𝐼)‘𝑋) = (𝑁𝑋))
1714, 16eqtr3d 2770 . . 3 (𝜑 → {𝑚 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑚)} = (𝑁𝑋))
1817eleq2d 2819 . 2 (𝜑 → (𝑆 ∈ {𝑚 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑚)} ↔ 𝑆 ∈ (𝑁𝑋)))
195, 18bitr3d 281 1 (𝜑 → (𝑋 ∈ (𝐼𝑆) ↔ 𝑆 ∈ (𝑁𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437  𝒫 cpw 4551   class class class wbr 5095  cmpt 5176  cfv 6489  (class class class)co 7355  cmpo 7357  m cmap 8759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-map 8761
This theorem is referenced by:  ntrneifv3  44239  ntrneineine0lem  44240  ntrneineine1lem  44241  ntrneifv4  44242  ntrneiel2  44243  ntrneicls00  44246  ntrneicls11  44247  ntrneiiso  44248  ntrneik2  44249  ntrneix2  44250  ntrneikb  44251  ntrneixb  44252  ntrneik3  44253  ntrneix3  44254  ntrneik13  44255  ntrneix13  44256  ntrneik4w  44257  ntrneik4  44258  clsneiel1  44265  neicvgel1  44276
  Copyright terms: Public domain W3C validator