| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneiel | Structured version Visualization version GIF version | ||
| Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then there is an equivalence between membership in the interior of a set and non-membership in the closure of the complement of the set. (Contributed by RP, 29-May-2021.) |
| Ref | Expression |
|---|---|
| ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
| ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
| ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
| ntrnei.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ntrnei.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
| Ref | Expression |
|---|---|
| ntrneiel | ⊢ (𝜑 → (𝑋 ∈ (𝐼‘𝑆) ↔ 𝑆 ∈ (𝑁‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrnei.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
| 2 | fveq2 6826 | . . . . 5 ⊢ (𝑚 = 𝑆 → (𝐼‘𝑚) = (𝐼‘𝑆)) | |
| 3 | 2 | eleq2d 2814 | . . . 4 ⊢ (𝑚 = 𝑆 → (𝑋 ∈ (𝐼‘𝑚) ↔ 𝑋 ∈ (𝐼‘𝑆))) |
| 4 | 3 | elrab3 3651 | . . 3 ⊢ (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∈ {𝑚 ∈ 𝒫 𝐵 ∣ 𝑋 ∈ (𝐼‘𝑚)} ↔ 𝑋 ∈ (𝐼‘𝑆))) |
| 5 | 1, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝑆 ∈ {𝑚 ∈ 𝒫 𝐵 ∣ 𝑋 ∈ (𝐼‘𝑚)} ↔ 𝑋 ∈ (𝐼‘𝑆))) |
| 6 | ntrnei.o | . . . . 5 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
| 7 | ntrnei.f | . . . . . . 7 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
| 8 | ntrnei.r | . . . . . . 7 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
| 9 | 6, 7, 8 | ntrneibex 44049 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ V) |
| 10 | 9 | pwexd 5321 | . . . . 5 ⊢ (𝜑 → 𝒫 𝐵 ∈ V) |
| 11 | 6, 7, 8 | ntrneiiex 44052 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 12 | eqid 2729 | . . . . 5 ⊢ (𝐹‘𝐼) = (𝐹‘𝐼) | |
| 13 | ntrnei.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 14 | 6, 10, 9, 7, 11, 12, 13 | fsovfvfvd 43987 | . . . 4 ⊢ (𝜑 → ((𝐹‘𝐼)‘𝑋) = {𝑚 ∈ 𝒫 𝐵 ∣ 𝑋 ∈ (𝐼‘𝑚)}) |
| 15 | 6, 7, 8 | ntrneifv1 44055 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝐼) = 𝑁) |
| 16 | 15 | fveq1d 6828 | . . . 4 ⊢ (𝜑 → ((𝐹‘𝐼)‘𝑋) = (𝑁‘𝑋)) |
| 17 | 14, 16 | eqtr3d 2766 | . . 3 ⊢ (𝜑 → {𝑚 ∈ 𝒫 𝐵 ∣ 𝑋 ∈ (𝐼‘𝑚)} = (𝑁‘𝑋)) |
| 18 | 17 | eleq2d 2814 | . 2 ⊢ (𝜑 → (𝑆 ∈ {𝑚 ∈ 𝒫 𝐵 ∣ 𝑋 ∈ (𝐼‘𝑚)} ↔ 𝑆 ∈ (𝑁‘𝑋))) |
| 19 | 5, 18 | bitr3d 281 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝐼‘𝑆) ↔ 𝑆 ∈ (𝑁‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {crab 3396 Vcvv 3438 𝒫 cpw 4553 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 ↑m cmap 8760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-map 8762 |
| This theorem is referenced by: ntrneifv3 44058 ntrneineine0lem 44059 ntrneineine1lem 44060 ntrneifv4 44061 ntrneiel2 44062 ntrneicls00 44065 ntrneicls11 44066 ntrneiiso 44067 ntrneik2 44068 ntrneix2 44069 ntrneikb 44070 ntrneixb 44071 ntrneik3 44072 ntrneix3 44073 ntrneik13 44074 ntrneix13 44075 ntrneik4w 44076 ntrneik4 44077 clsneiel1 44084 neicvgel1 44095 |
| Copyright terms: Public domain | W3C validator |