![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneiel | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then there is an equivalence between membership in the interior of a set and non-membership in the closure of the complement of the set. (Contributed by RP, 29-May-2021.) |
Ref | Expression |
---|---|
ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
ntrnei.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ntrnei.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
Ref | Expression |
---|---|
ntrneiel | ⊢ (𝜑 → (𝑋 ∈ (𝐼‘𝑆) ↔ 𝑆 ∈ (𝑁‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrnei.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
2 | fveq2 6885 | . . . . 5 ⊢ (𝑚 = 𝑆 → (𝐼‘𝑚) = (𝐼‘𝑆)) | |
3 | 2 | eleq2d 2813 | . . . 4 ⊢ (𝑚 = 𝑆 → (𝑋 ∈ (𝐼‘𝑚) ↔ 𝑋 ∈ (𝐼‘𝑆))) |
4 | 3 | elrab3 3679 | . . 3 ⊢ (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∈ {𝑚 ∈ 𝒫 𝐵 ∣ 𝑋 ∈ (𝐼‘𝑚)} ↔ 𝑋 ∈ (𝐼‘𝑆))) |
5 | 1, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝑆 ∈ {𝑚 ∈ 𝒫 𝐵 ∣ 𝑋 ∈ (𝐼‘𝑚)} ↔ 𝑋 ∈ (𝐼‘𝑆))) |
6 | ntrnei.o | . . . . 5 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
7 | ntrnei.f | . . . . . . 7 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
8 | ntrnei.r | . . . . . . 7 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
9 | 6, 7, 8 | ntrneibex 43400 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ V) |
10 | 9 | pwexd 5370 | . . . . 5 ⊢ (𝜑 → 𝒫 𝐵 ∈ V) |
11 | 6, 7, 8 | ntrneiiex 43403 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
12 | eqid 2726 | . . . . 5 ⊢ (𝐹‘𝐼) = (𝐹‘𝐼) | |
13 | ntrnei.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
14 | 6, 10, 9, 7, 11, 12, 13 | fsovfvfvd 43338 | . . . 4 ⊢ (𝜑 → ((𝐹‘𝐼)‘𝑋) = {𝑚 ∈ 𝒫 𝐵 ∣ 𝑋 ∈ (𝐼‘𝑚)}) |
15 | 6, 7, 8 | ntrneifv1 43406 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝐼) = 𝑁) |
16 | 15 | fveq1d 6887 | . . . 4 ⊢ (𝜑 → ((𝐹‘𝐼)‘𝑋) = (𝑁‘𝑋)) |
17 | 14, 16 | eqtr3d 2768 | . . 3 ⊢ (𝜑 → {𝑚 ∈ 𝒫 𝐵 ∣ 𝑋 ∈ (𝐼‘𝑚)} = (𝑁‘𝑋)) |
18 | 17 | eleq2d 2813 | . 2 ⊢ (𝜑 → (𝑆 ∈ {𝑚 ∈ 𝒫 𝐵 ∣ 𝑋 ∈ (𝐼‘𝑚)} ↔ 𝑆 ∈ (𝑁‘𝑋))) |
19 | 5, 18 | bitr3d 281 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝐼‘𝑆) ↔ 𝑆 ∈ (𝑁‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 {crab 3426 Vcvv 3468 𝒫 cpw 4597 class class class wbr 5141 ↦ cmpt 5224 ‘cfv 6537 (class class class)co 7405 ∈ cmpo 7407 ↑m cmap 8822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7974 df-2nd 7975 df-map 8824 |
This theorem is referenced by: ntrneifv3 43409 ntrneineine0lem 43410 ntrneineine1lem 43411 ntrneifv4 43412 ntrneiel2 43413 ntrneicls00 43416 ntrneicls11 43417 ntrneiiso 43418 ntrneik2 43419 ntrneix2 43420 ntrneikb 43421 ntrneixb 43422 ntrneik3 43423 ntrneix3 43424 ntrneik13 43425 ntrneix13 43426 ntrneik4w 43427 ntrneik4 43428 clsneiel1 43435 neicvgel1 43446 |
Copyright terms: Public domain | W3C validator |