| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneicnv | Structured version Visualization version GIF version | ||
| Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then converse of 𝐹 is known. (Contributed by RP, 29-May-2021.) |
| Ref | Expression |
|---|---|
| ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
| ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
| ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
| Ref | Expression |
|---|---|
| ntrneicnv | ⊢ (𝜑 → ◡𝐹 = (𝐵𝑂𝒫 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrnei.o | . 2 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
| 2 | ntrnei.f | . . . 4 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
| 3 | ntrnei.r | . . . 4 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
| 4 | 1, 2, 3 | ntrneibex 44180 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
| 5 | 4 | pwexd 5321 | . 2 ⊢ (𝜑 → 𝒫 𝐵 ∈ V) |
| 6 | eqid 2733 | . 2 ⊢ (𝐵𝑂𝒫 𝐵) = (𝐵𝑂𝒫 𝐵) | |
| 7 | 1, 5, 4, 2, 6 | fsovcnvd 44121 | 1 ⊢ (𝜑 → ◡𝐹 = (𝐵𝑂𝒫 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 {crab 3397 Vcvv 3438 𝒫 cpw 4551 class class class wbr 5095 ↦ cmpt 5176 ◡ccnv 5620 ‘cfv 6489 (class class class)co 7355 ∈ cmpo 7357 ↑m cmap 8759 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-map 8761 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |