| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneicnv | Structured version Visualization version GIF version | ||
| Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then converse of 𝐹 is known. (Contributed by RP, 29-May-2021.) |
| Ref | Expression |
|---|---|
| ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
| ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
| ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
| Ref | Expression |
|---|---|
| ntrneicnv | ⊢ (𝜑 → ◡𝐹 = (𝐵𝑂𝒫 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrnei.o | . 2 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
| 2 | ntrnei.f | . . . 4 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
| 3 | ntrnei.r | . . . 4 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
| 4 | 1, 2, 3 | ntrneibex 44034 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
| 5 | 4 | pwexd 5342 | . 2 ⊢ (𝜑 → 𝒫 𝐵 ∈ V) |
| 6 | eqid 2730 | . 2 ⊢ (𝐵𝑂𝒫 𝐵) = (𝐵𝑂𝒫 𝐵) | |
| 7 | 1, 5, 4, 2, 6 | fsovcnvd 43975 | 1 ⊢ (𝜑 → ◡𝐹 = (𝐵𝑂𝒫 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3411 Vcvv 3455 𝒫 cpw 4571 class class class wbr 5115 ↦ cmpt 5196 ◡ccnv 5645 ‘cfv 6519 (class class class)co 7394 ∈ cmpo 7396 ↑m cmap 8803 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-1st 7977 df-2nd 7978 df-map 8805 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |