![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneicnv | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then converse of 𝐹 is known. (Contributed by RP, 29-May-2021.) |
Ref | Expression |
---|---|
ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
Ref | Expression |
---|---|
ntrneicnv | ⊢ (𝜑 → ◡𝐹 = (𝐵𝑂𝒫 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrnei.o | . 2 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
2 | ntrnei.f | . . . 4 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
3 | ntrnei.r | . . . 4 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
4 | 1, 2, 3 | ntrneibex 39211 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
5 | 4 | pwexd 5079 | . 2 ⊢ (𝜑 → 𝒫 𝐵 ∈ V) |
6 | eqid 2825 | . 2 ⊢ (𝐵𝑂𝒫 𝐵) = (𝐵𝑂𝒫 𝐵) | |
7 | 1, 5, 4, 2, 6 | fsovcnvd 39148 | 1 ⊢ (𝜑 → ◡𝐹 = (𝐵𝑂𝒫 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 ∈ wcel 2166 {crab 3121 Vcvv 3414 𝒫 cpw 4378 class class class wbr 4873 ↦ cmpt 4952 ◡ccnv 5341 ‘cfv 6123 (class class class)co 6905 ↦ cmpt2 6907 ↑𝑚 cmap 8122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-1st 7428 df-2nd 7429 df-map 8124 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |