Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1nz Structured version   Visualization version   GIF version

Theorem ply1nz 24722
 Description: Univariate polynomials over a nonzero ring are a nonzero ring. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypothesis
Ref Expression
ply1domn.p 𝑃 = (Poly1𝑅)
Assertion
Ref Expression
ply1nz (𝑅 ∈ NzRing → 𝑃 ∈ NzRing)

Proof of Theorem ply1nz
StepHypRef Expression
1 nzrring 20027 . . 3 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
2 ply1domn.p . . . 4 𝑃 = (Poly1𝑅)
32ply1ring 20877 . . 3 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
41, 3syl 17 . 2 (𝑅 ∈ NzRing → 𝑃 ∈ Ring)
5 eqid 2798 . . . . . 6 (algSc‘𝑃) = (algSc‘𝑃)
6 eqid 2798 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
7 eqid 2798 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
82, 5, 6, 7ply1sclf 20914 . . . . 5 (𝑅 ∈ Ring → (algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃))
91, 8syl 17 . . . 4 (𝑅 ∈ NzRing → (algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃))
10 eqid 2798 . . . . . 6 (1r𝑅) = (1r𝑅)
116, 10ringidcl 19314 . . . . 5 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
121, 11syl 17 . . . 4 (𝑅 ∈ NzRing → (1r𝑅) ∈ (Base‘𝑅))
139, 12ffvelrnd 6829 . . 3 (𝑅 ∈ NzRing → ((algSc‘𝑃)‘(1r𝑅)) ∈ (Base‘𝑃))
14 eqid 2798 . . . . 5 (0g𝑅) = (0g𝑅)
1510, 14nzrnz 20026 . . . 4 (𝑅 ∈ NzRing → (1r𝑅) ≠ (0g𝑅))
16 eqid 2798 . . . . 5 (0g𝑃) = (0g𝑃)
172, 5, 14, 16, 6ply1scln0 20920 . . . 4 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ (Base‘𝑅) ∧ (1r𝑅) ≠ (0g𝑅)) → ((algSc‘𝑃)‘(1r𝑅)) ≠ (0g𝑃))
181, 12, 15, 17syl3anc 1368 . . 3 (𝑅 ∈ NzRing → ((algSc‘𝑃)‘(1r𝑅)) ≠ (0g𝑃))
19 eldifsn 4680 . . 3 (((algSc‘𝑃)‘(1r𝑅)) ∈ ((Base‘𝑃) ∖ {(0g𝑃)}) ↔ (((algSc‘𝑃)‘(1r𝑅)) ∈ (Base‘𝑃) ∧ ((algSc‘𝑃)‘(1r𝑅)) ≠ (0g𝑃)))
2013, 18, 19sylanbrc 586 . 2 (𝑅 ∈ NzRing → ((algSc‘𝑃)‘(1r𝑅)) ∈ ((Base‘𝑃) ∖ {(0g𝑃)}))
2116, 7ringelnzr 20032 . 2 ((𝑃 ∈ Ring ∧ ((algSc‘𝑃)‘(1r𝑅)) ∈ ((Base‘𝑃) ∖ {(0g𝑃)})) → 𝑃 ∈ NzRing)
224, 20, 21syl2anc 587 1 (𝑅 ∈ NzRing → 𝑃 ∈ NzRing)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2111   ≠ wne 2987   ∖ cdif 3878  {csn 4525  ⟶wf 6320  ‘cfv 6324  Basecbs 16475  0gc0g 16705  1rcur 19244  Ringcrg 19290  NzRingcnzr 20023  algSccascl 20541  Poly1cpl1 20806 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-tset 16576  df-ple 16577  df-0g 16707  df-gsum 16708  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-subrg 19526  df-lmod 19629  df-lss 19697  df-nzr 20024  df-ascl 20544  df-psr 20594  df-mvr 20595  df-mpl 20596  df-opsr 20598  df-psr1 20809  df-vr1 20810  df-ply1 20811  df-coe1 20812 This theorem is referenced by:  ply1nzb  24723  ply1domn  24724  mon1pid  40144  mon1psubm  40145
 Copyright terms: Public domain W3C validator