| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mon1pid | Structured version Visualization version GIF version | ||
| Description: Monicity and degree of the unit polynomial. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
| Ref | Expression |
|---|---|
| mon1pid.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| mon1pid.o | ⊢ 1 = (1r‘𝑃) |
| mon1pid.m | ⊢ 𝑀 = (Monic1p‘𝑅) |
| mon1pid.d | ⊢ 𝐷 = (deg1‘𝑅) |
| Ref | Expression |
|---|---|
| mon1pid | ⊢ (𝑅 ∈ NzRing → ( 1 ∈ 𝑀 ∧ (𝐷‘ 1 ) = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mon1pid.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 2 | 1 | ply1nz 26043 | . . . 4 ⊢ (𝑅 ∈ NzRing → 𝑃 ∈ NzRing) |
| 3 | nzrring 20419 | . . . 4 ⊢ (𝑃 ∈ NzRing → 𝑃 ∈ Ring) | |
| 4 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 5 | mon1pid.o | . . . . 5 ⊢ 1 = (1r‘𝑃) | |
| 6 | 4, 5 | ringidcl 20168 | . . . 4 ⊢ (𝑃 ∈ Ring → 1 ∈ (Base‘𝑃)) |
| 7 | 2, 3, 6 | 3syl 18 | . . 3 ⊢ (𝑅 ∈ NzRing → 1 ∈ (Base‘𝑃)) |
| 8 | eqid 2729 | . . . . 5 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
| 9 | 5, 8 | nzrnz 20418 | . . . 4 ⊢ (𝑃 ∈ NzRing → 1 ≠ (0g‘𝑃)) |
| 10 | 2, 9 | syl 17 | . . 3 ⊢ (𝑅 ∈ NzRing → 1 ≠ (0g‘𝑃)) |
| 11 | nzrring 20419 | . . . . . . . 8 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
| 12 | eqid 2729 | . . . . . . . . 9 ⊢ (algSc‘𝑃) = (algSc‘𝑃) | |
| 13 | eqid 2729 | . . . . . . . . 9 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 14 | 1, 12, 13, 5 | ply1scl1 22195 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → ((algSc‘𝑃)‘(1r‘𝑅)) = 1 ) |
| 15 | 11, 14 | syl 17 | . . . . . . 7 ⊢ (𝑅 ∈ NzRing → ((algSc‘𝑃)‘(1r‘𝑅)) = 1 ) |
| 16 | 15 | fveq2d 6830 | . . . . . 6 ⊢ (𝑅 ∈ NzRing → (coe1‘((algSc‘𝑃)‘(1r‘𝑅))) = (coe1‘ 1 )) |
| 17 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 18 | 17, 13 | ringidcl 20168 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 19 | eqid 2729 | . . . . . . . 8 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 20 | 1, 12, 17, 19 | coe1scl 22189 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ∈ (Base‘𝑅)) → (coe1‘((algSc‘𝑃)‘(1r‘𝑅))) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, (1r‘𝑅), (0g‘𝑅)))) |
| 21 | 11, 18, 20 | syl2anc2 585 | . . . . . 6 ⊢ (𝑅 ∈ NzRing → (coe1‘((algSc‘𝑃)‘(1r‘𝑅))) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, (1r‘𝑅), (0g‘𝑅)))) |
| 22 | 16, 21 | eqtr3d 2766 | . . . . 5 ⊢ (𝑅 ∈ NzRing → (coe1‘ 1 ) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, (1r‘𝑅), (0g‘𝑅)))) |
| 23 | 15 | fveq2d 6830 | . . . . . 6 ⊢ (𝑅 ∈ NzRing → (𝐷‘((algSc‘𝑃)‘(1r‘𝑅))) = (𝐷‘ 1 )) |
| 24 | 11, 18 | syl 17 | . . . . . . 7 ⊢ (𝑅 ∈ NzRing → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 25 | 13, 19 | nzrnz 20418 | . . . . . . 7 ⊢ (𝑅 ∈ NzRing → (1r‘𝑅) ≠ (0g‘𝑅)) |
| 26 | mon1pid.d | . . . . . . . 8 ⊢ 𝐷 = (deg1‘𝑅) | |
| 27 | 26, 1, 17, 12, 19 | deg1scl 26034 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ∈ (Base‘𝑅) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (𝐷‘((algSc‘𝑃)‘(1r‘𝑅))) = 0) |
| 28 | 11, 24, 25, 27 | syl3anc 1373 | . . . . . 6 ⊢ (𝑅 ∈ NzRing → (𝐷‘((algSc‘𝑃)‘(1r‘𝑅))) = 0) |
| 29 | 23, 28 | eqtr3d 2766 | . . . . 5 ⊢ (𝑅 ∈ NzRing → (𝐷‘ 1 ) = 0) |
| 30 | 22, 29 | fveq12d 6833 | . . . 4 ⊢ (𝑅 ∈ NzRing → ((coe1‘ 1 )‘(𝐷‘ 1 )) = ((𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, (1r‘𝑅), (0g‘𝑅)))‘0)) |
| 31 | 0nn0 12417 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 32 | iftrue 4484 | . . . . . 6 ⊢ (𝑥 = 0 → if(𝑥 = 0, (1r‘𝑅), (0g‘𝑅)) = (1r‘𝑅)) | |
| 33 | eqid 2729 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, (1r‘𝑅), (0g‘𝑅))) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, (1r‘𝑅), (0g‘𝑅))) | |
| 34 | fvex 6839 | . . . . . 6 ⊢ (1r‘𝑅) ∈ V | |
| 35 | 32, 33, 34 | fvmpt 6934 | . . . . 5 ⊢ (0 ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, (1r‘𝑅), (0g‘𝑅)))‘0) = (1r‘𝑅)) |
| 36 | 31, 35 | ax-mp 5 | . . . 4 ⊢ ((𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, (1r‘𝑅), (0g‘𝑅)))‘0) = (1r‘𝑅) |
| 37 | 30, 36 | eqtrdi 2780 | . . 3 ⊢ (𝑅 ∈ NzRing → ((coe1‘ 1 )‘(𝐷‘ 1 )) = (1r‘𝑅)) |
| 38 | mon1pid.m | . . . 4 ⊢ 𝑀 = (Monic1p‘𝑅) | |
| 39 | 1, 4, 8, 26, 38, 13 | ismon1p 26064 | . . 3 ⊢ ( 1 ∈ 𝑀 ↔ ( 1 ∈ (Base‘𝑃) ∧ 1 ≠ (0g‘𝑃) ∧ ((coe1‘ 1 )‘(𝐷‘ 1 )) = (1r‘𝑅))) |
| 40 | 7, 10, 37, 39 | syl3anbrc 1344 | . 2 ⊢ (𝑅 ∈ NzRing → 1 ∈ 𝑀) |
| 41 | 40, 29 | jca 511 | 1 ⊢ (𝑅 ∈ NzRing → ( 1 ∈ 𝑀 ∧ (𝐷‘ 1 ) = 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ifcif 4478 ↦ cmpt 5176 ‘cfv 6486 0cc0 11028 ℕ0cn0 12402 Basecbs 17138 0gc0g 17361 1rcur 20084 Ringcrg 20136 NzRingcnzr 20415 algSccascl 21777 Poly1cpl1 22077 coe1cco1 22078 deg1cdg1 25975 Monic1pcmn1 26047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-ofr 7618 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-0g 17363 df-gsum 17364 df-prds 17369 df-pws 17371 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-mulg 18965 df-subg 19020 df-ghm 19110 df-cntz 19214 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-nzr 20416 df-subrng 20449 df-subrg 20473 df-lmod 20783 df-lss 20853 df-cnfld 21280 df-ascl 21780 df-psr 21834 df-mvr 21835 df-mpl 21836 df-opsr 21838 df-psr1 22080 df-vr1 22081 df-ply1 22082 df-coe1 22083 df-mdeg 25976 df-deg1 25977 df-mon1 26052 |
| This theorem is referenced by: ply1unit 33520 mon1psubm 43172 deg1mhm 43173 |
| Copyright terms: Public domain | W3C validator |