| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mon1pid | Structured version Visualization version GIF version | ||
| Description: Monicity and degree of the unit polynomial. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
| Ref | Expression |
|---|---|
| mon1pid.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| mon1pid.o | ⊢ 1 = (1r‘𝑃) |
| mon1pid.m | ⊢ 𝑀 = (Monic1p‘𝑅) |
| mon1pid.d | ⊢ 𝐷 = (deg1‘𝑅) |
| Ref | Expression |
|---|---|
| mon1pid | ⊢ (𝑅 ∈ NzRing → ( 1 ∈ 𝑀 ∧ (𝐷‘ 1 ) = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mon1pid.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 2 | 1 | ply1nz 26052 | . . . 4 ⊢ (𝑅 ∈ NzRing → 𝑃 ∈ NzRing) |
| 3 | nzrring 20429 | . . . 4 ⊢ (𝑃 ∈ NzRing → 𝑃 ∈ Ring) | |
| 4 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 5 | mon1pid.o | . . . . 5 ⊢ 1 = (1r‘𝑃) | |
| 6 | 4, 5 | ringidcl 20181 | . . . 4 ⊢ (𝑃 ∈ Ring → 1 ∈ (Base‘𝑃)) |
| 7 | 2, 3, 6 | 3syl 18 | . . 3 ⊢ (𝑅 ∈ NzRing → 1 ∈ (Base‘𝑃)) |
| 8 | eqid 2731 | . . . . 5 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
| 9 | 5, 8 | nzrnz 20428 | . . . 4 ⊢ (𝑃 ∈ NzRing → 1 ≠ (0g‘𝑃)) |
| 10 | 2, 9 | syl 17 | . . 3 ⊢ (𝑅 ∈ NzRing → 1 ≠ (0g‘𝑃)) |
| 11 | nzrring 20429 | . . . . . . . 8 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
| 12 | eqid 2731 | . . . . . . . . 9 ⊢ (algSc‘𝑃) = (algSc‘𝑃) | |
| 13 | eqid 2731 | . . . . . . . . 9 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 14 | 1, 12, 13, 5 | ply1scl1 22205 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → ((algSc‘𝑃)‘(1r‘𝑅)) = 1 ) |
| 15 | 11, 14 | syl 17 | . . . . . . 7 ⊢ (𝑅 ∈ NzRing → ((algSc‘𝑃)‘(1r‘𝑅)) = 1 ) |
| 16 | 15 | fveq2d 6826 | . . . . . 6 ⊢ (𝑅 ∈ NzRing → (coe1‘((algSc‘𝑃)‘(1r‘𝑅))) = (coe1‘ 1 )) |
| 17 | eqid 2731 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 18 | 17, 13 | ringidcl 20181 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 19 | eqid 2731 | . . . . . . . 8 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 20 | 1, 12, 17, 19 | coe1scl 22199 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ∈ (Base‘𝑅)) → (coe1‘((algSc‘𝑃)‘(1r‘𝑅))) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, (1r‘𝑅), (0g‘𝑅)))) |
| 21 | 11, 18, 20 | syl2anc2 585 | . . . . . 6 ⊢ (𝑅 ∈ NzRing → (coe1‘((algSc‘𝑃)‘(1r‘𝑅))) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, (1r‘𝑅), (0g‘𝑅)))) |
| 22 | 16, 21 | eqtr3d 2768 | . . . . 5 ⊢ (𝑅 ∈ NzRing → (coe1‘ 1 ) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, (1r‘𝑅), (0g‘𝑅)))) |
| 23 | 15 | fveq2d 6826 | . . . . . 6 ⊢ (𝑅 ∈ NzRing → (𝐷‘((algSc‘𝑃)‘(1r‘𝑅))) = (𝐷‘ 1 )) |
| 24 | 11, 18 | syl 17 | . . . . . . 7 ⊢ (𝑅 ∈ NzRing → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 25 | 13, 19 | nzrnz 20428 | . . . . . . 7 ⊢ (𝑅 ∈ NzRing → (1r‘𝑅) ≠ (0g‘𝑅)) |
| 26 | mon1pid.d | . . . . . . . 8 ⊢ 𝐷 = (deg1‘𝑅) | |
| 27 | 26, 1, 17, 12, 19 | deg1scl 26043 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ∈ (Base‘𝑅) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (𝐷‘((algSc‘𝑃)‘(1r‘𝑅))) = 0) |
| 28 | 11, 24, 25, 27 | syl3anc 1373 | . . . . . 6 ⊢ (𝑅 ∈ NzRing → (𝐷‘((algSc‘𝑃)‘(1r‘𝑅))) = 0) |
| 29 | 23, 28 | eqtr3d 2768 | . . . . 5 ⊢ (𝑅 ∈ NzRing → (𝐷‘ 1 ) = 0) |
| 30 | 22, 29 | fveq12d 6829 | . . . 4 ⊢ (𝑅 ∈ NzRing → ((coe1‘ 1 )‘(𝐷‘ 1 )) = ((𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, (1r‘𝑅), (0g‘𝑅)))‘0)) |
| 31 | 0nn0 12393 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 32 | iftrue 4481 | . . . . . 6 ⊢ (𝑥 = 0 → if(𝑥 = 0, (1r‘𝑅), (0g‘𝑅)) = (1r‘𝑅)) | |
| 33 | eqid 2731 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, (1r‘𝑅), (0g‘𝑅))) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, (1r‘𝑅), (0g‘𝑅))) | |
| 34 | fvex 6835 | . . . . . 6 ⊢ (1r‘𝑅) ∈ V | |
| 35 | 32, 33, 34 | fvmpt 6929 | . . . . 5 ⊢ (0 ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, (1r‘𝑅), (0g‘𝑅)))‘0) = (1r‘𝑅)) |
| 36 | 31, 35 | ax-mp 5 | . . . 4 ⊢ ((𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, (1r‘𝑅), (0g‘𝑅)))‘0) = (1r‘𝑅) |
| 37 | 30, 36 | eqtrdi 2782 | . . 3 ⊢ (𝑅 ∈ NzRing → ((coe1‘ 1 )‘(𝐷‘ 1 )) = (1r‘𝑅)) |
| 38 | mon1pid.m | . . . 4 ⊢ 𝑀 = (Monic1p‘𝑅) | |
| 39 | 1, 4, 8, 26, 38, 13 | ismon1p 26073 | . . 3 ⊢ ( 1 ∈ 𝑀 ↔ ( 1 ∈ (Base‘𝑃) ∧ 1 ≠ (0g‘𝑃) ∧ ((coe1‘ 1 )‘(𝐷‘ 1 )) = (1r‘𝑅))) |
| 40 | 7, 10, 37, 39 | syl3anbrc 1344 | . 2 ⊢ (𝑅 ∈ NzRing → 1 ∈ 𝑀) |
| 41 | 40, 29 | jca 511 | 1 ⊢ (𝑅 ∈ NzRing → ( 1 ∈ 𝑀 ∧ (𝐷‘ 1 ) = 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ifcif 4475 ↦ cmpt 5172 ‘cfv 6481 0cc0 11003 ℕ0cn0 12378 Basecbs 17117 0gc0g 17340 1rcur 20097 Ringcrg 20149 NzRingcnzr 20425 algSccascl 21787 Poly1cpl1 22087 coe1cco1 22088 deg1cdg1 25984 Monic1pcmn1 26056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 ax-addf 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-fzo 13552 df-seq 13906 df-hash 14235 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-starv 17173 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-hom 17182 df-cco 17183 df-0g 17342 df-gsum 17343 df-prds 17348 df-pws 17350 df-mre 17485 df-mrc 17486 df-acs 17488 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-mhm 18688 df-submnd 18689 df-grp 18846 df-minusg 18847 df-sbg 18848 df-mulg 18978 df-subg 19033 df-ghm 19123 df-cntz 19227 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-nzr 20426 df-subrng 20459 df-subrg 20483 df-lmod 20793 df-lss 20863 df-cnfld 21290 df-ascl 21790 df-psr 21844 df-mvr 21845 df-mpl 21846 df-opsr 21848 df-psr1 22090 df-vr1 22091 df-ply1 22092 df-coe1 22093 df-mdeg 25985 df-deg1 25986 df-mon1 26061 |
| This theorem is referenced by: ply1unit 33533 mon1psubm 43231 deg1mhm 43232 |
| Copyright terms: Public domain | W3C validator |