![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mon1pid | Structured version Visualization version GIF version |
Description: Monicity and degree of the unit polynomial. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
Ref | Expression |
---|---|
mon1pid.p | β’ π = (Poly1βπ ) |
mon1pid.o | β’ 1 = (1rβπ) |
mon1pid.m | β’ π = (Monic1pβπ ) |
mon1pid.d | β’ π· = ( deg1 βπ ) |
Ref | Expression |
---|---|
mon1pid | β’ (π β NzRing β ( 1 β π β§ (π·β 1 ) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mon1pid.p | . . . . 5 β’ π = (Poly1βπ ) | |
2 | 1 | ply1nz 25639 | . . . 4 β’ (π β NzRing β π β NzRing) |
3 | nzrring 20295 | . . . 4 β’ (π β NzRing β π β Ring) | |
4 | eqid 2733 | . . . . 5 β’ (Baseβπ) = (Baseβπ) | |
5 | mon1pid.o | . . . . 5 β’ 1 = (1rβπ) | |
6 | 4, 5 | ringidcl 20083 | . . . 4 β’ (π β Ring β 1 β (Baseβπ)) |
7 | 2, 3, 6 | 3syl 18 | . . 3 β’ (π β NzRing β 1 β (Baseβπ)) |
8 | eqid 2733 | . . . . 5 β’ (0gβπ) = (0gβπ) | |
9 | 5, 8 | nzrnz 20294 | . . . 4 β’ (π β NzRing β 1 β (0gβπ)) |
10 | 2, 9 | syl 17 | . . 3 β’ (π β NzRing β 1 β (0gβπ)) |
11 | nzrring 20295 | . . . . . . . 8 β’ (π β NzRing β π β Ring) | |
12 | eqid 2733 | . . . . . . . . 9 β’ (algScβπ) = (algScβπ) | |
13 | eqid 2733 | . . . . . . . . 9 β’ (1rβπ ) = (1rβπ ) | |
14 | 1, 12, 13, 5 | ply1scl1 21815 | . . . . . . . 8 β’ (π β Ring β ((algScβπ)β(1rβπ )) = 1 ) |
15 | 11, 14 | syl 17 | . . . . . . 7 β’ (π β NzRing β ((algScβπ)β(1rβπ )) = 1 ) |
16 | 15 | fveq2d 6896 | . . . . . 6 β’ (π β NzRing β (coe1β((algScβπ)β(1rβπ ))) = (coe1β 1 )) |
17 | eqid 2733 | . . . . . . . 8 β’ (Baseβπ ) = (Baseβπ ) | |
18 | 17, 13 | ringidcl 20083 | . . . . . . 7 β’ (π β Ring β (1rβπ ) β (Baseβπ )) |
19 | eqid 2733 | . . . . . . . 8 β’ (0gβπ ) = (0gβπ ) | |
20 | 1, 12, 17, 19 | coe1scl 21809 | . . . . . . 7 β’ ((π β Ring β§ (1rβπ ) β (Baseβπ )) β (coe1β((algScβπ)β(1rβπ ))) = (π₯ β β0 β¦ if(π₯ = 0, (1rβπ ), (0gβπ )))) |
21 | 11, 18, 20 | syl2anc2 586 | . . . . . 6 β’ (π β NzRing β (coe1β((algScβπ)β(1rβπ ))) = (π₯ β β0 β¦ if(π₯ = 0, (1rβπ ), (0gβπ )))) |
22 | 16, 21 | eqtr3d 2775 | . . . . 5 β’ (π β NzRing β (coe1β 1 ) = (π₯ β β0 β¦ if(π₯ = 0, (1rβπ ), (0gβπ )))) |
23 | 15 | fveq2d 6896 | . . . . . 6 β’ (π β NzRing β (π·β((algScβπ)β(1rβπ ))) = (π·β 1 )) |
24 | 11, 18 | syl 17 | . . . . . . 7 β’ (π β NzRing β (1rβπ ) β (Baseβπ )) |
25 | 13, 19 | nzrnz 20294 | . . . . . . 7 β’ (π β NzRing β (1rβπ ) β (0gβπ )) |
26 | mon1pid.d | . . . . . . . 8 β’ π· = ( deg1 βπ ) | |
27 | 26, 1, 17, 12, 19 | deg1scl 25631 | . . . . . . 7 β’ ((π β Ring β§ (1rβπ ) β (Baseβπ ) β§ (1rβπ ) β (0gβπ )) β (π·β((algScβπ)β(1rβπ ))) = 0) |
28 | 11, 24, 25, 27 | syl3anc 1372 | . . . . . 6 β’ (π β NzRing β (π·β((algScβπ)β(1rβπ ))) = 0) |
29 | 23, 28 | eqtr3d 2775 | . . . . 5 β’ (π β NzRing β (π·β 1 ) = 0) |
30 | 22, 29 | fveq12d 6899 | . . . 4 β’ (π β NzRing β ((coe1β 1 )β(π·β 1 )) = ((π₯ β β0 β¦ if(π₯ = 0, (1rβπ ), (0gβπ )))β0)) |
31 | 0nn0 12487 | . . . . 5 β’ 0 β β0 | |
32 | iftrue 4535 | . . . . . 6 β’ (π₯ = 0 β if(π₯ = 0, (1rβπ ), (0gβπ )) = (1rβπ )) | |
33 | eqid 2733 | . . . . . 6 β’ (π₯ β β0 β¦ if(π₯ = 0, (1rβπ ), (0gβπ ))) = (π₯ β β0 β¦ if(π₯ = 0, (1rβπ ), (0gβπ ))) | |
34 | fvex 6905 | . . . . . 6 β’ (1rβπ ) β V | |
35 | 32, 33, 34 | fvmpt 6999 | . . . . 5 β’ (0 β β0 β ((π₯ β β0 β¦ if(π₯ = 0, (1rβπ ), (0gβπ )))β0) = (1rβπ )) |
36 | 31, 35 | ax-mp 5 | . . . 4 β’ ((π₯ β β0 β¦ if(π₯ = 0, (1rβπ ), (0gβπ )))β0) = (1rβπ ) |
37 | 30, 36 | eqtrdi 2789 | . . 3 β’ (π β NzRing β ((coe1β 1 )β(π·β 1 )) = (1rβπ )) |
38 | mon1pid.m | . . . 4 β’ π = (Monic1pβπ ) | |
39 | 1, 4, 8, 26, 38, 13 | ismon1p 25660 | . . 3 β’ ( 1 β π β ( 1 β (Baseβπ) β§ 1 β (0gβπ) β§ ((coe1β 1 )β(π·β 1 )) = (1rβπ ))) |
40 | 7, 10, 37, 39 | syl3anbrc 1344 | . 2 β’ (π β NzRing β 1 β π) |
41 | 40, 29 | jca 513 | 1 β’ (π β NzRing β ( 1 β π β§ (π·β 1 ) = 0)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 β wne 2941 ifcif 4529 β¦ cmpt 5232 βcfv 6544 0cc0 11110 β0cn0 12472 Basecbs 17144 0gc0g 17385 1rcur 20004 Ringcrg 20056 NzRingcnzr 20291 algSccascl 21407 Poly1cpl1 21701 coe1cco1 21702 deg1 cdg1 25569 Monic1pcmn1 25643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 ax-addf 11189 ax-mulf 11190 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-of 7670 df-ofr 7671 df-om 7856 df-1st 7975 df-2nd 7976 df-supp 8147 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-pm 8823 df-ixp 8892 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-fsupp 9362 df-sup 9437 df-oi 9505 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-fz 13485 df-fzo 13628 df-seq 13967 df-hash 14291 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-hom 17221 df-cco 17222 df-0g 17387 df-gsum 17388 df-prds 17393 df-pws 17395 df-mre 17530 df-mrc 17531 df-acs 17533 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-mhm 18671 df-submnd 18672 df-grp 18822 df-minusg 18823 df-sbg 18824 df-mulg 18951 df-subg 19003 df-ghm 19090 df-cntz 19181 df-cmn 19650 df-abl 19651 df-mgp 19988 df-ur 20005 df-ring 20058 df-cring 20059 df-nzr 20292 df-subrg 20317 df-lmod 20473 df-lss 20543 df-cnfld 20945 df-ascl 21410 df-psr 21462 df-mvr 21463 df-mpl 21464 df-opsr 21466 df-psr1 21704 df-vr1 21705 df-ply1 21706 df-coe1 21707 df-mdeg 25570 df-deg1 25571 df-mon1 25648 |
This theorem is referenced by: mon1psubm 41948 deg1mhm 41949 |
Copyright terms: Public domain | W3C validator |