MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mon1pid Structured version   Visualization version   GIF version

Theorem mon1pid 26087
Description: Monicity and degree of the unit polynomial. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
mon1pid.p 𝑃 = (Poly1𝑅)
mon1pid.o 1 = (1r𝑃)
mon1pid.m 𝑀 = (Monic1p𝑅)
mon1pid.d 𝐷 = (deg1𝑅)
Assertion
Ref Expression
mon1pid (𝑅 ∈ NzRing → ( 1𝑀 ∧ (𝐷1 ) = 0))

Proof of Theorem mon1pid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mon1pid.p . . . . 5 𝑃 = (Poly1𝑅)
21ply1nz 26055 . . . 4 (𝑅 ∈ NzRing → 𝑃 ∈ NzRing)
3 nzrring 20433 . . . 4 (𝑃 ∈ NzRing → 𝑃 ∈ Ring)
4 eqid 2733 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
5 mon1pid.o . . . . 5 1 = (1r𝑃)
64, 5ringidcl 20185 . . . 4 (𝑃 ∈ Ring → 1 ∈ (Base‘𝑃))
72, 3, 63syl 18 . . 3 (𝑅 ∈ NzRing → 1 ∈ (Base‘𝑃))
8 eqid 2733 . . . . 5 (0g𝑃) = (0g𝑃)
95, 8nzrnz 20432 . . . 4 (𝑃 ∈ NzRing → 1 ≠ (0g𝑃))
102, 9syl 17 . . 3 (𝑅 ∈ NzRing → 1 ≠ (0g𝑃))
11 nzrring 20433 . . . . . . . 8 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
12 eqid 2733 . . . . . . . . 9 (algSc‘𝑃) = (algSc‘𝑃)
13 eqid 2733 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
141, 12, 13, 5ply1scl1 22208 . . . . . . . 8 (𝑅 ∈ Ring → ((algSc‘𝑃)‘(1r𝑅)) = 1 )
1511, 14syl 17 . . . . . . 7 (𝑅 ∈ NzRing → ((algSc‘𝑃)‘(1r𝑅)) = 1 )
1615fveq2d 6832 . . . . . 6 (𝑅 ∈ NzRing → (coe1‘((algSc‘𝑃)‘(1r𝑅))) = (coe11 ))
17 eqid 2733 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
1817, 13ringidcl 20185 . . . . . . 7 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
19 eqid 2733 . . . . . . . 8 (0g𝑅) = (0g𝑅)
201, 12, 17, 19coe1scl 22202 . . . . . . 7 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ (Base‘𝑅)) → (coe1‘((algSc‘𝑃)‘(1r𝑅))) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, (1r𝑅), (0g𝑅))))
2111, 18, 20syl2anc2 585 . . . . . 6 (𝑅 ∈ NzRing → (coe1‘((algSc‘𝑃)‘(1r𝑅))) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, (1r𝑅), (0g𝑅))))
2216, 21eqtr3d 2770 . . . . 5 (𝑅 ∈ NzRing → (coe11 ) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, (1r𝑅), (0g𝑅))))
2315fveq2d 6832 . . . . . 6 (𝑅 ∈ NzRing → (𝐷‘((algSc‘𝑃)‘(1r𝑅))) = (𝐷1 ))
2411, 18syl 17 . . . . . . 7 (𝑅 ∈ NzRing → (1r𝑅) ∈ (Base‘𝑅))
2513, 19nzrnz 20432 . . . . . . 7 (𝑅 ∈ NzRing → (1r𝑅) ≠ (0g𝑅))
26 mon1pid.d . . . . . . . 8 𝐷 = (deg1𝑅)
2726, 1, 17, 12, 19deg1scl 26046 . . . . . . 7 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ (Base‘𝑅) ∧ (1r𝑅) ≠ (0g𝑅)) → (𝐷‘((algSc‘𝑃)‘(1r𝑅))) = 0)
2811, 24, 25, 27syl3anc 1373 . . . . . 6 (𝑅 ∈ NzRing → (𝐷‘((algSc‘𝑃)‘(1r𝑅))) = 0)
2923, 28eqtr3d 2770 . . . . 5 (𝑅 ∈ NzRing → (𝐷1 ) = 0)
3022, 29fveq12d 6835 . . . 4 (𝑅 ∈ NzRing → ((coe11 )‘(𝐷1 )) = ((𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, (1r𝑅), (0g𝑅)))‘0))
31 0nn0 12403 . . . . 5 0 ∈ ℕ0
32 iftrue 4480 . . . . . 6 (𝑥 = 0 → if(𝑥 = 0, (1r𝑅), (0g𝑅)) = (1r𝑅))
33 eqid 2733 . . . . . 6 (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, (1r𝑅), (0g𝑅))) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, (1r𝑅), (0g𝑅)))
34 fvex 6841 . . . . . 6 (1r𝑅) ∈ V
3532, 33, 34fvmpt 6935 . . . . 5 (0 ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, (1r𝑅), (0g𝑅)))‘0) = (1r𝑅))
3631, 35ax-mp 5 . . . 4 ((𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, (1r𝑅), (0g𝑅)))‘0) = (1r𝑅)
3730, 36eqtrdi 2784 . . 3 (𝑅 ∈ NzRing → ((coe11 )‘(𝐷1 )) = (1r𝑅))
38 mon1pid.m . . . 4 𝑀 = (Monic1p𝑅)
391, 4, 8, 26, 38, 13ismon1p 26076 . . 3 ( 1𝑀 ↔ ( 1 ∈ (Base‘𝑃) ∧ 1 ≠ (0g𝑃) ∧ ((coe11 )‘(𝐷1 )) = (1r𝑅)))
407, 10, 37, 39syl3anbrc 1344 . 2 (𝑅 ∈ NzRing → 1𝑀)
4140, 29jca 511 1 (𝑅 ∈ NzRing → ( 1𝑀 ∧ (𝐷1 ) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  ifcif 4474  cmpt 5174  cfv 6486  0cc0 11013  0cn0 12388  Basecbs 17122  0gc0g 17345  1rcur 20101  Ringcrg 20153  NzRingcnzr 20429  algSccascl 21791  Poly1cpl1 22090  coe1cco1 22091  deg1cdg1 25987  Monic1pcmn1 26059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-ofr 7617  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-sup 9333  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-0g 17347  df-gsum 17348  df-prds 17353  df-pws 17355  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-submnd 18694  df-grp 18851  df-minusg 18852  df-sbg 18853  df-mulg 18983  df-subg 19038  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-nzr 20430  df-subrng 20463  df-subrg 20487  df-lmod 20797  df-lss 20867  df-cnfld 21294  df-ascl 21794  df-psr 21848  df-mvr 21849  df-mpl 21850  df-opsr 21852  df-psr1 22093  df-vr1 22094  df-ply1 22095  df-coe1 22096  df-mdeg 25988  df-deg1 25989  df-mon1 26064
This theorem is referenced by:  ply1unit  33545  mon1psubm  43316  deg1mhm  43317
  Copyright terms: Public domain W3C validator