MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nzrunit Structured version   Visualization version   GIF version

Theorem nzrunit 20259
Description: A unit is nonzero in any nonzero ring. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
nzrunit.1 𝑈 = (Unit‘𝑅)
nzrunit.2 0 = (0g𝑅)
Assertion
Ref Expression
nzrunit ((𝑅 ∈ NzRing ∧ 𝐴𝑈) → 𝐴0 )

Proof of Theorem nzrunit
StepHypRef Expression
1 eqid 2736 . . . . . 6 (1r𝑅) = (1r𝑅)
2 nzrunit.2 . . . . . 6 0 = (0g𝑅)
31, 2nzrnz 20252 . . . . 5 (𝑅 ∈ NzRing → (1r𝑅) ≠ 0 )
4 nzrring 20253 . . . . . 6 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
5 nzrunit.1 . . . . . . . 8 𝑈 = (Unit‘𝑅)
65, 2, 10unit 19652 . . . . . . 7 (𝑅 ∈ Ring → ( 0𝑈 ↔ (1r𝑅) = 0 ))
76necon3bbid 2969 . . . . . 6 (𝑅 ∈ Ring → (¬ 0𝑈 ↔ (1r𝑅) ≠ 0 ))
84, 7syl 17 . . . . 5 (𝑅 ∈ NzRing → (¬ 0𝑈 ↔ (1r𝑅) ≠ 0 ))
93, 8mpbird 260 . . . 4 (𝑅 ∈ NzRing → ¬ 0𝑈)
10 eleq1 2818 . . . . 5 (𝐴 = 0 → (𝐴𝑈0𝑈))
1110notbid 321 . . . 4 (𝐴 = 0 → (¬ 𝐴𝑈 ↔ ¬ 0𝑈))
129, 11syl5ibrcom 250 . . 3 (𝑅 ∈ NzRing → (𝐴 = 0 → ¬ 𝐴𝑈))
1312necon2ad 2947 . 2 (𝑅 ∈ NzRing → (𝐴𝑈𝐴0 ))
1413imp 410 1 ((𝑅 ∈ NzRing ∧ 𝐴𝑈) → 𝐴0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wne 2932  cfv 6358  0gc0g 16898  1rcur 19470  Ringcrg 19516  Unitcui 19611  NzRingcnzr 20249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-tpos 7946  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-3 11859  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-0g 16900  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-grp 18322  df-minusg 18323  df-mgp 19459  df-ur 19471  df-ring 19518  df-oppr 19595  df-dvdsr 19613  df-unit 19614  df-invr 19644  df-nzr 20250
This theorem is referenced by:  unitnmn0  23520  nrginvrcnlem  23543  nzrneg1ne0  45043
  Copyright terms: Public domain W3C validator