MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nzrunit Structured version   Visualization version   GIF version

Theorem nzrunit 20290
Description: A unit is nonzero in any nonzero ring. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
nzrunit.1 𝑈 = (Unit‘𝑅)
nzrunit.2 0 = (0g𝑅)
Assertion
Ref Expression
nzrunit ((𝑅 ∈ NzRing ∧ 𝐴𝑈) → 𝐴0 )

Proof of Theorem nzrunit
StepHypRef Expression
1 eqid 2733 . . . . . 6 (1r𝑅) = (1r𝑅)
2 nzrunit.2 . . . . . 6 0 = (0g𝑅)
31, 2nzrnz 20283 . . . . 5 (𝑅 ∈ NzRing → (1r𝑅) ≠ 0 )
4 nzrring 20284 . . . . . 6 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
5 nzrunit.1 . . . . . . . 8 𝑈 = (Unit‘𝑅)
65, 2, 10unit 20199 . . . . . . 7 (𝑅 ∈ Ring → ( 0𝑈 ↔ (1r𝑅) = 0 ))
76necon3bbid 2979 . . . . . 6 (𝑅 ∈ Ring → (¬ 0𝑈 ↔ (1r𝑅) ≠ 0 ))
84, 7syl 17 . . . . 5 (𝑅 ∈ NzRing → (¬ 0𝑈 ↔ (1r𝑅) ≠ 0 ))
93, 8mpbird 257 . . . 4 (𝑅 ∈ NzRing → ¬ 0𝑈)
10 eleq1 2822 . . . . 5 (𝐴 = 0 → (𝐴𝑈0𝑈))
1110notbid 318 . . . 4 (𝐴 = 0 → (¬ 𝐴𝑈 ↔ ¬ 0𝑈))
129, 11syl5ibrcom 246 . . 3 (𝑅 ∈ NzRing → (𝐴 = 0 → ¬ 𝐴𝑈))
1312necon2ad 2956 . 2 (𝑅 ∈ NzRing → (𝐴𝑈𝐴0 ))
1413imp 408 1 ((𝑅 ∈ NzRing ∧ 𝐴𝑈) → 𝐴0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2941  cfv 6540  0gc0g 17381  1rcur 19996  Ringcrg 20047  Unitcui 20158  NzRingcnzr 20280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-2nd 7971  df-tpos 8206  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-mgp 19980  df-ur 19997  df-ring 20049  df-oppr 20139  df-dvdsr 20160  df-unit 20161  df-invr 20191  df-nzr 20281
This theorem is referenced by:  unitnmn0  24167  nrginvrcnlem  24190  nzrneg1ne0  46578
  Copyright terms: Public domain W3C validator