![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > obsss | Structured version Visualization version GIF version |
Description: An orthonormal basis is a subset of the base set. (Contributed by Mario Carneiro, 23-Oct-2015.) |
Ref | Expression |
---|---|
obsss.v | ⊢ 𝑉 = (Base‘𝑊) |
Ref | Expression |
---|---|
obsss | ⊢ (𝐵 ∈ (OBasis‘𝑊) → 𝐵 ⊆ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | obsss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
2 | eqid 2771 | . . 3 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
3 | eqid 2771 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
4 | eqid 2771 | . . 3 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
5 | eqid 2771 | . . 3 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
6 | eqid 2771 | . . 3 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
7 | eqid 2771 | . . 3 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
8 | 1, 2, 3, 4, 5, 6, 7 | isobs 20281 | . 2 ⊢ (𝐵 ∈ (OBasis‘𝑊) ↔ (𝑊 ∈ PreHil ∧ 𝐵 ⊆ 𝑉 ∧ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(·𝑖‘𝑊)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))) ∧ ((ocv‘𝑊)‘𝐵) = {(0g‘𝑊)}))) |
9 | 8 | simp2bi 1140 | 1 ⊢ (𝐵 ∈ (OBasis‘𝑊) → 𝐵 ⊆ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 ⊆ wss 3723 ifcif 4225 {csn 4316 ‘cfv 6031 (class class class)co 6793 Basecbs 16064 Scalarcsca 16152 ·𝑖cip 16154 0gc0g 16308 1rcur 18709 PreHilcphl 20186 ocvcocv 20221 OBasiscobs 20263 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fv 6039 df-ov 6796 df-obs 20266 |
This theorem is referenced by: obsne0 20286 obselocv 20289 obslbs 20291 |
Copyright terms: Public domain | W3C validator |