MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  obsss Structured version   Visualization version   GIF version

Theorem obsss 21663
Description: An orthonormal basis is a subset of the base set. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypothesis
Ref Expression
obsss.v 𝑉 = (Base‘𝑊)
Assertion
Ref Expression
obsss (𝐵 ∈ (OBasis‘𝑊) → 𝐵𝑉)

Proof of Theorem obsss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 obsss.v . . 3 𝑉 = (Base‘𝑊)
2 eqid 2733 . . 3 (·𝑖𝑊) = (·𝑖𝑊)
3 eqid 2733 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
4 eqid 2733 . . 3 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
5 eqid 2733 . . 3 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
6 eqid 2733 . . 3 (ocv‘𝑊) = (ocv‘𝑊)
7 eqid 2733 . . 3 (0g𝑊) = (0g𝑊)
81, 2, 3, 4, 5, 6, 7isobs 21659 . 2 (𝐵 ∈ (OBasis‘𝑊) ↔ (𝑊 ∈ PreHil ∧ 𝐵𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥(·𝑖𝑊)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))) ∧ ((ocv‘𝑊)‘𝐵) = {(0g𝑊)})))
98simp2bi 1146 1 (𝐵 ∈ (OBasis‘𝑊) → 𝐵𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  wss 3898  ifcif 4474  {csn 4575  cfv 6486  (class class class)co 7352  Basecbs 17122  Scalarcsca 17166  ·𝑖cip 17168  0gc0g 17345  1rcur 20101  PreHilcphl 21563  ocvcocv 21599  OBasiscobs 21641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-obs 21644
This theorem is referenced by:  obsne0  21664  obselocv  21667  obslbs  21669
  Copyright terms: Public domain W3C validator