MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  obsss Structured version   Visualization version   GIF version

Theorem obsss 21639
Description: An orthonormal basis is a subset of the base set. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypothesis
Ref Expression
obsss.v 𝑉 = (Base‘𝑊)
Assertion
Ref Expression
obsss (𝐵 ∈ (OBasis‘𝑊) → 𝐵𝑉)

Proof of Theorem obsss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 obsss.v . . 3 𝑉 = (Base‘𝑊)
2 eqid 2730 . . 3 (·𝑖𝑊) = (·𝑖𝑊)
3 eqid 2730 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
4 eqid 2730 . . 3 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
5 eqid 2730 . . 3 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
6 eqid 2730 . . 3 (ocv‘𝑊) = (ocv‘𝑊)
7 eqid 2730 . . 3 (0g𝑊) = (0g𝑊)
81, 2, 3, 4, 5, 6, 7isobs 21635 . 2 (𝐵 ∈ (OBasis‘𝑊) ↔ (𝑊 ∈ PreHil ∧ 𝐵𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥(·𝑖𝑊)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))) ∧ ((ocv‘𝑊)‘𝐵) = {(0g𝑊)})))
98simp2bi 1146 1 (𝐵 ∈ (OBasis‘𝑊) → 𝐵𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  wss 3916  ifcif 4490  {csn 4591  cfv 6513  (class class class)co 7389  Basecbs 17185  Scalarcsca 17229  ·𝑖cip 17231  0gc0g 17408  1rcur 20096  PreHilcphl 21539  ocvcocv 21575  OBasiscobs 21617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fv 6521  df-ov 7392  df-obs 21620
This theorem is referenced by:  obsne0  21640  obselocv  21643  obslbs  21645
  Copyright terms: Public domain W3C validator