![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > obsss | Structured version Visualization version GIF version |
Description: An orthonormal basis is a subset of the base set. (Contributed by Mario Carneiro, 23-Oct-2015.) |
Ref | Expression |
---|---|
obsss.v | β’ π = (Baseβπ) |
Ref | Expression |
---|---|
obsss | β’ (π΅ β (OBasisβπ) β π΅ β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | obsss.v | . . 3 β’ π = (Baseβπ) | |
2 | eqid 2732 | . . 3 β’ (Β·πβπ) = (Β·πβπ) | |
3 | eqid 2732 | . . 3 β’ (Scalarβπ) = (Scalarβπ) | |
4 | eqid 2732 | . . 3 β’ (1rβ(Scalarβπ)) = (1rβ(Scalarβπ)) | |
5 | eqid 2732 | . . 3 β’ (0gβ(Scalarβπ)) = (0gβ(Scalarβπ)) | |
6 | eqid 2732 | . . 3 β’ (ocvβπ) = (ocvβπ) | |
7 | eqid 2732 | . . 3 β’ (0gβπ) = (0gβπ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | isobs 21266 | . 2 β’ (π΅ β (OBasisβπ) β (π β PreHil β§ π΅ β π β§ (βπ₯ β π΅ βπ¦ β π΅ (π₯(Β·πβπ)π¦) = if(π₯ = π¦, (1rβ(Scalarβπ)), (0gβ(Scalarβπ))) β§ ((ocvβπ)βπ΅) = {(0gβπ)}))) |
9 | 8 | simp2bi 1146 | 1 β’ (π΅ β (OBasisβπ) β π΅ β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 β wss 3947 ifcif 4527 {csn 4627 βcfv 6540 (class class class)co 7405 Basecbs 17140 Scalarcsca 17196 Β·πcip 17198 0gc0g 17381 1rcur 19998 PreHilcphl 21168 ocvcocv 21204 OBasiscobs 21248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fv 6548 df-ov 7408 df-obs 21251 |
This theorem is referenced by: obsne0 21271 obselocv 21274 obslbs 21276 |
Copyright terms: Public domain | W3C validator |