MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  obsss Structured version   Visualization version   GIF version

Theorem obsss 21659
Description: An orthonormal basis is a subset of the base set. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypothesis
Ref Expression
obsss.v 𝑉 = (Base‘𝑊)
Assertion
Ref Expression
obsss (𝐵 ∈ (OBasis‘𝑊) → 𝐵𝑉)

Proof of Theorem obsss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 obsss.v . . 3 𝑉 = (Base‘𝑊)
2 eqid 2731 . . 3 (·𝑖𝑊) = (·𝑖𝑊)
3 eqid 2731 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
4 eqid 2731 . . 3 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
5 eqid 2731 . . 3 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
6 eqid 2731 . . 3 (ocv‘𝑊) = (ocv‘𝑊)
7 eqid 2731 . . 3 (0g𝑊) = (0g𝑊)
81, 2, 3, 4, 5, 6, 7isobs 21655 . 2 (𝐵 ∈ (OBasis‘𝑊) ↔ (𝑊 ∈ PreHil ∧ 𝐵𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥(·𝑖𝑊)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))) ∧ ((ocv‘𝑊)‘𝐵) = {(0g𝑊)})))
98simp2bi 1146 1 (𝐵 ∈ (OBasis‘𝑊) → 𝐵𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  wss 3902  ifcif 4475  {csn 4576  cfv 6481  (class class class)co 7346  Basecbs 17117  Scalarcsca 17161  ·𝑖cip 17163  0gc0g 17340  1rcur 20097  PreHilcphl 21559  ocvcocv 21595  OBasiscobs 21637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-obs 21640
This theorem is referenced by:  obsne0  21660  obselocv  21663  obslbs  21665
  Copyright terms: Public domain W3C validator