![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > obsss | Structured version Visualization version GIF version |
Description: An orthonormal basis is a subset of the base set. (Contributed by Mario Carneiro, 23-Oct-2015.) |
Ref | Expression |
---|---|
obsss.v | ⊢ 𝑉 = (Base‘𝑊) |
Ref | Expression |
---|---|
obsss | ⊢ (𝐵 ∈ (OBasis‘𝑊) → 𝐵 ⊆ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | obsss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
2 | eqid 2740 | . . 3 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
3 | eqid 2740 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
4 | eqid 2740 | . . 3 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
5 | eqid 2740 | . . 3 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
6 | eqid 2740 | . . 3 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
7 | eqid 2740 | . . 3 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
8 | 1, 2, 3, 4, 5, 6, 7 | isobs 21765 | . 2 ⊢ (𝐵 ∈ (OBasis‘𝑊) ↔ (𝑊 ∈ PreHil ∧ 𝐵 ⊆ 𝑉 ∧ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(·𝑖‘𝑊)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))) ∧ ((ocv‘𝑊)‘𝐵) = {(0g‘𝑊)}))) |
9 | 8 | simp2bi 1146 | 1 ⊢ (𝐵 ∈ (OBasis‘𝑊) → 𝐵 ⊆ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 ifcif 4548 {csn 4648 ‘cfv 6575 (class class class)co 7450 Basecbs 17260 Scalarcsca 17316 ·𝑖cip 17318 0gc0g 17501 1rcur 20210 PreHilcphl 21667 ocvcocv 21703 OBasiscobs 21747 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fv 6583 df-ov 7453 df-obs 21750 |
This theorem is referenced by: obsne0 21770 obselocv 21773 obslbs 21775 |
Copyright terms: Public domain | W3C validator |