MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  obsss Structured version   Visualization version   GIF version

Theorem obsss 21270
Description: An orthonormal basis is a subset of the base set. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypothesis
Ref Expression
obsss.v 𝑉 = (Baseβ€˜π‘Š)
Assertion
Ref Expression
obsss (𝐡 ∈ (OBasisβ€˜π‘Š) β†’ 𝐡 βŠ† 𝑉)

Proof of Theorem obsss
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 obsss.v . . 3 𝑉 = (Baseβ€˜π‘Š)
2 eqid 2732 . . 3 (Β·π‘–β€˜π‘Š) = (Β·π‘–β€˜π‘Š)
3 eqid 2732 . . 3 (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š)
4 eqid 2732 . . 3 (1rβ€˜(Scalarβ€˜π‘Š)) = (1rβ€˜(Scalarβ€˜π‘Š))
5 eqid 2732 . . 3 (0gβ€˜(Scalarβ€˜π‘Š)) = (0gβ€˜(Scalarβ€˜π‘Š))
6 eqid 2732 . . 3 (ocvβ€˜π‘Š) = (ocvβ€˜π‘Š)
7 eqid 2732 . . 3 (0gβ€˜π‘Š) = (0gβ€˜π‘Š)
81, 2, 3, 4, 5, 6, 7isobs 21266 . 2 (𝐡 ∈ (OBasisβ€˜π‘Š) ↔ (π‘Š ∈ PreHil ∧ 𝐡 βŠ† 𝑉 ∧ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯(Β·π‘–β€˜π‘Š)𝑦) = if(π‘₯ = 𝑦, (1rβ€˜(Scalarβ€˜π‘Š)), (0gβ€˜(Scalarβ€˜π‘Š))) ∧ ((ocvβ€˜π‘Š)β€˜π΅) = {(0gβ€˜π‘Š)})))
98simp2bi 1146 1 (𝐡 ∈ (OBasisβ€˜π‘Š) β†’ 𝐡 βŠ† 𝑉)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061   βŠ† wss 3947  ifcif 4527  {csn 4627  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  Scalarcsca 17196  Β·π‘–cip 17198  0gc0g 17381  1rcur 19998  PreHilcphl 21168  ocvcocv 21204  OBasiscobs 21248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fv 6548  df-ov 7408  df-obs 21251
This theorem is referenced by:  obsne0  21271  obselocv  21274  obslbs  21276
  Copyright terms: Public domain W3C validator