MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  obsss Structured version   Visualization version   GIF version

Theorem obsss 21589
Description: An orthonormal basis is a subset of the base set. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypothesis
Ref Expression
obsss.v 𝑉 = (Baseβ€˜π‘Š)
Assertion
Ref Expression
obsss (𝐡 ∈ (OBasisβ€˜π‘Š) β†’ 𝐡 βŠ† 𝑉)

Proof of Theorem obsss
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 obsss.v . . 3 𝑉 = (Baseβ€˜π‘Š)
2 eqid 2724 . . 3 (Β·π‘–β€˜π‘Š) = (Β·π‘–β€˜π‘Š)
3 eqid 2724 . . 3 (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š)
4 eqid 2724 . . 3 (1rβ€˜(Scalarβ€˜π‘Š)) = (1rβ€˜(Scalarβ€˜π‘Š))
5 eqid 2724 . . 3 (0gβ€˜(Scalarβ€˜π‘Š)) = (0gβ€˜(Scalarβ€˜π‘Š))
6 eqid 2724 . . 3 (ocvβ€˜π‘Š) = (ocvβ€˜π‘Š)
7 eqid 2724 . . 3 (0gβ€˜π‘Š) = (0gβ€˜π‘Š)
81, 2, 3, 4, 5, 6, 7isobs 21585 . 2 (𝐡 ∈ (OBasisβ€˜π‘Š) ↔ (π‘Š ∈ PreHil ∧ 𝐡 βŠ† 𝑉 ∧ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯(Β·π‘–β€˜π‘Š)𝑦) = if(π‘₯ = 𝑦, (1rβ€˜(Scalarβ€˜π‘Š)), (0gβ€˜(Scalarβ€˜π‘Š))) ∧ ((ocvβ€˜π‘Š)β€˜π΅) = {(0gβ€˜π‘Š)})))
98simp2bi 1143 1 (𝐡 ∈ (OBasisβ€˜π‘Š) β†’ 𝐡 βŠ† 𝑉)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098  βˆ€wral 3053   βŠ† wss 3941  ifcif 4521  {csn 4621  β€˜cfv 6534  (class class class)co 7402  Basecbs 17145  Scalarcsca 17201  Β·π‘–cip 17203  0gc0g 17386  1rcur 20078  PreHilcphl 21487  ocvcocv 21523  OBasiscobs 21567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fv 6542  df-ov 7405  df-obs 21570
This theorem is referenced by:  obsne0  21590  obselocv  21593  obslbs  21595
  Copyright terms: Public domain W3C validator