MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  obsss Structured version   Visualization version   GIF version

Theorem obsss 21698
Description: An orthonormal basis is a subset of the base set. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypothesis
Ref Expression
obsss.v 𝑉 = (Base‘𝑊)
Assertion
Ref Expression
obsss (𝐵 ∈ (OBasis‘𝑊) → 𝐵𝑉)

Proof of Theorem obsss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 obsss.v . . 3 𝑉 = (Base‘𝑊)
2 eqid 2734 . . 3 (·𝑖𝑊) = (·𝑖𝑊)
3 eqid 2734 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
4 eqid 2734 . . 3 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
5 eqid 2734 . . 3 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
6 eqid 2734 . . 3 (ocv‘𝑊) = (ocv‘𝑊)
7 eqid 2734 . . 3 (0g𝑊) = (0g𝑊)
81, 2, 3, 4, 5, 6, 7isobs 21694 . 2 (𝐵 ∈ (OBasis‘𝑊) ↔ (𝑊 ∈ PreHil ∧ 𝐵𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥(·𝑖𝑊)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))) ∧ ((ocv‘𝑊)‘𝐵) = {(0g𝑊)})))
98simp2bi 1146 1 (𝐵 ∈ (OBasis‘𝑊) → 𝐵𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3050  wss 3931  ifcif 4505  {csn 4606  cfv 6541  (class class class)co 7413  Basecbs 17229  Scalarcsca 17276  ·𝑖cip 17278  0gc0g 17455  1rcur 20146  PreHilcphl 21596  ocvcocv 21632  OBasiscobs 21676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fv 6549  df-ov 7416  df-obs 21679
This theorem is referenced by:  obsne0  21699  obselocv  21702  obslbs  21704
  Copyright terms: Public domain W3C validator