MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  obselocv Structured version   Visualization version   GIF version

Theorem obselocv 20935
Description: A basis element is in the orthocomplement of a subset of the basis iff it is not in the subset. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypothesis
Ref Expression
obselocv.o = (ocv‘𝑊)
Assertion
Ref Expression
obselocv ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴 ∈ ( 𝐶) ↔ ¬ 𝐴𝐶))

Proof of Theorem obselocv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . . . 7 (0g𝑊) = (0g𝑊)
21obsne0 20932 . . . . . 6 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴𝐵) → 𝐴 ≠ (0g𝑊))
323adant2 1130 . . . . 5 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐴 ≠ (0g𝑊))
4 elin 3903 . . . . . . . 8 (𝐴 ∈ (𝐶 ∩ ( 𝐶)) ↔ (𝐴𝐶𝐴 ∈ ( 𝐶)))
5 obsrcl 20930 . . . . . . . . . . . . . 14 (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ PreHil)
653ad2ant1 1132 . . . . . . . . . . . . 13 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝑊 ∈ PreHil)
7 phllmod 20835 . . . . . . . . . . . . 13 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
86, 7syl 17 . . . . . . . . . . . 12 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝑊 ∈ LMod)
9 simp2 1136 . . . . . . . . . . . . 13 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐶𝐵)
10 eqid 2738 . . . . . . . . . . . . . . 15 (Base‘𝑊) = (Base‘𝑊)
1110obsss 20931 . . . . . . . . . . . . . 14 (𝐵 ∈ (OBasis‘𝑊) → 𝐵 ⊆ (Base‘𝑊))
12113ad2ant1 1132 . . . . . . . . . . . . 13 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐵 ⊆ (Base‘𝑊))
139, 12sstrd 3931 . . . . . . . . . . . 12 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐶 ⊆ (Base‘𝑊))
14 eqid 2738 . . . . . . . . . . . . 13 (LSpan‘𝑊) = (LSpan‘𝑊)
1510, 14lspssid 20247 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝐶 ⊆ (Base‘𝑊)) → 𝐶 ⊆ ((LSpan‘𝑊)‘𝐶))
168, 13, 15syl2anc 584 . . . . . . . . . . 11 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐶 ⊆ ((LSpan‘𝑊)‘𝐶))
1716ssrind 4169 . . . . . . . . . 10 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐶 ∩ ( 𝐶)) ⊆ (((LSpan‘𝑊)‘𝐶) ∩ ( 𝐶)))
18 obselocv.o . . . . . . . . . . . . . 14 = (ocv‘𝑊)
1910, 18, 14ocvlsp 20881 . . . . . . . . . . . . 13 ((𝑊 ∈ PreHil ∧ 𝐶 ⊆ (Base‘𝑊)) → ( ‘((LSpan‘𝑊)‘𝐶)) = ( 𝐶))
206, 13, 19syl2anc 584 . . . . . . . . . . . 12 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → ( ‘((LSpan‘𝑊)‘𝐶)) = ( 𝐶))
2120ineq2d 4146 . . . . . . . . . . 11 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (((LSpan‘𝑊)‘𝐶) ∩ ( ‘((LSpan‘𝑊)‘𝐶))) = (((LSpan‘𝑊)‘𝐶) ∩ ( 𝐶)))
22 eqid 2738 . . . . . . . . . . . . . 14 (LSubSp‘𝑊) = (LSubSp‘𝑊)
2310, 22, 14lspcl 20238 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝐶 ⊆ (Base‘𝑊)) → ((LSpan‘𝑊)‘𝐶) ∈ (LSubSp‘𝑊))
248, 13, 23syl2anc 584 . . . . . . . . . . . 12 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → ((LSpan‘𝑊)‘𝐶) ∈ (LSubSp‘𝑊))
2518, 22, 1ocvin 20879 . . . . . . . . . . . 12 ((𝑊 ∈ PreHil ∧ ((LSpan‘𝑊)‘𝐶) ∈ (LSubSp‘𝑊)) → (((LSpan‘𝑊)‘𝐶) ∩ ( ‘((LSpan‘𝑊)‘𝐶))) = {(0g𝑊)})
266, 24, 25syl2anc 584 . . . . . . . . . . 11 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (((LSpan‘𝑊)‘𝐶) ∩ ( ‘((LSpan‘𝑊)‘𝐶))) = {(0g𝑊)})
2721, 26eqtr3d 2780 . . . . . . . . . 10 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (((LSpan‘𝑊)‘𝐶) ∩ ( 𝐶)) = {(0g𝑊)})
2817, 27sseqtrd 3961 . . . . . . . . 9 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐶 ∩ ( 𝐶)) ⊆ {(0g𝑊)})
2928sseld 3920 . . . . . . . 8 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴 ∈ (𝐶 ∩ ( 𝐶)) → 𝐴 ∈ {(0g𝑊)}))
304, 29syl5bir 242 . . . . . . 7 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → ((𝐴𝐶𝐴 ∈ ( 𝐶)) → 𝐴 ∈ {(0g𝑊)}))
31 elsni 4578 . . . . . . 7 (𝐴 ∈ {(0g𝑊)} → 𝐴 = (0g𝑊))
3230, 31syl6 35 . . . . . 6 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → ((𝐴𝐶𝐴 ∈ ( 𝐶)) → 𝐴 = (0g𝑊)))
3332necon3ad 2956 . . . . 5 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴 ≠ (0g𝑊) → ¬ (𝐴𝐶𝐴 ∈ ( 𝐶))))
343, 33mpd 15 . . . 4 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → ¬ (𝐴𝐶𝐴 ∈ ( 𝐶)))
35 imnan 400 . . . 4 ((𝐴𝐶 → ¬ 𝐴 ∈ ( 𝐶)) ↔ ¬ (𝐴𝐶𝐴 ∈ ( 𝐶)))
3634, 35sylibr 233 . . 3 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴𝐶 → ¬ 𝐴 ∈ ( 𝐶)))
3736con2d 134 . 2 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴 ∈ ( 𝐶) → ¬ 𝐴𝐶))
38 simpr 485 . . . . . . 7 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → 𝑥𝐶)
39 eleq1 2826 . . . . . . 7 (𝐴 = 𝑥 → (𝐴𝐶𝑥𝐶))
4038, 39syl5ibrcom 246 . . . . . 6 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → (𝐴 = 𝑥𝐴𝐶))
4140con3d 152 . . . . 5 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → (¬ 𝐴𝐶 → ¬ 𝐴 = 𝑥))
42 simpl1 1190 . . . . . . 7 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → 𝐵 ∈ (OBasis‘𝑊))
43 simpl3 1192 . . . . . . 7 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → 𝐴𝐵)
449sselda 3921 . . . . . . 7 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → 𝑥𝐵)
45 eqid 2738 . . . . . . . 8 (·𝑖𝑊) = (·𝑖𝑊)
46 eqid 2738 . . . . . . . 8 (Scalar‘𝑊) = (Scalar‘𝑊)
47 eqid 2738 . . . . . . . 8 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
48 eqid 2738 . . . . . . . 8 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
4910, 45, 46, 47, 48obsip 20928 . . . . . . 7 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴𝐵𝑥𝐵) → (𝐴(·𝑖𝑊)𝑥) = if(𝐴 = 𝑥, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))))
5042, 43, 44, 49syl3anc 1370 . . . . . 6 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → (𝐴(·𝑖𝑊)𝑥) = if(𝐴 = 𝑥, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))))
51 iffalse 4468 . . . . . . 7 𝐴 = 𝑥 → if(𝐴 = 𝑥, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
5251eqeq2d 2749 . . . . . 6 𝐴 = 𝑥 → ((𝐴(·𝑖𝑊)𝑥) = if(𝐴 = 𝑥, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))) ↔ (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
5350, 52syl5ibcom 244 . . . . 5 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → (¬ 𝐴 = 𝑥 → (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
5441, 53syld 47 . . . 4 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → (¬ 𝐴𝐶 → (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
5554ralrimdva 3106 . . 3 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (¬ 𝐴𝐶 → ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
56 simp3 1137 . . . . 5 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐴𝐵)
5712, 56sseldd 3922 . . . 4 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐴 ∈ (Base‘𝑊))
5810, 45, 46, 48, 18elocv 20873 . . . . . 6 (𝐴 ∈ ( 𝐶) ↔ (𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊) ∧ ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
59 df-3an 1088 . . . . . 6 ((𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊) ∧ ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))) ↔ ((𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊)) ∧ ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
6058, 59bitri 274 . . . . 5 (𝐴 ∈ ( 𝐶) ↔ ((𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊)) ∧ ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
6160baib 536 . . . 4 ((𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊)) → (𝐴 ∈ ( 𝐶) ↔ ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
6213, 57, 61syl2anc 584 . . 3 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴 ∈ ( 𝐶) ↔ ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
6355, 62sylibrd 258 . 2 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (¬ 𝐴𝐶𝐴 ∈ ( 𝐶)))
6437, 63impbid 211 1 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴 ∈ ( 𝐶) ↔ ¬ 𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  cin 3886  wss 3887  ifcif 4459  {csn 4561  cfv 6433  (class class class)co 7275  Basecbs 16912  Scalarcsca 16965  ·𝑖cip 16967  0gc0g 17150  1rcur 19737  LModclmod 20123  LSubSpclss 20193  LSpanclspn 20233  PreHilcphl 20829  ocvcocv 20865  OBasiscobs 20909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-grp 18580  df-minusg 18581  df-sbg 18582  df-ghm 18832  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-rnghom 19959  df-drng 19993  df-staf 20105  df-srng 20106  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lmhm 20284  df-lvec 20365  df-sra 20434  df-rgmod 20435  df-phl 20831  df-ocv 20868  df-obs 20912
This theorem is referenced by:  obs2ss  20936  obslbs  20937
  Copyright terms: Public domain W3C validator