Step | Hyp | Ref
| Expression |
1 | | eqid 2758 |
. . . . . . 7
⊢
(0g‘𝑊) = (0g‘𝑊) |
2 | 1 | obsne0 20503 |
. . . . . 6
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → 𝐴 ≠ (0g‘𝑊)) |
3 | 2 | 3adant2 1128 |
. . . . 5
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ≠ (0g‘𝑊)) |
4 | | elin 3876 |
. . . . . . . 8
⊢ (𝐴 ∈ (𝐶 ∩ ( ⊥ ‘𝐶)) ↔ (𝐴 ∈ 𝐶 ∧ 𝐴 ∈ ( ⊥ ‘𝐶))) |
5 | | obsrcl 20501 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ PreHil) |
6 | 5 | 3ad2ant1 1130 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝑊 ∈ PreHil) |
7 | | phllmod 20408 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
8 | 6, 7 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝑊 ∈ LMod) |
9 | | simp2 1134 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐶 ⊆ 𝐵) |
10 | | eqid 2758 |
. . . . . . . . . . . . . . 15
⊢
(Base‘𝑊) =
(Base‘𝑊) |
11 | 10 | obsss 20502 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ (OBasis‘𝑊) → 𝐵 ⊆ (Base‘𝑊)) |
12 | 11 | 3ad2ant1 1130 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐵 ⊆ (Base‘𝑊)) |
13 | 9, 12 | sstrd 3904 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐶 ⊆ (Base‘𝑊)) |
14 | | eqid 2758 |
. . . . . . . . . . . . 13
⊢
(LSpan‘𝑊) =
(LSpan‘𝑊) |
15 | 10, 14 | lspssid 19838 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ LMod ∧ 𝐶 ⊆ (Base‘𝑊)) → 𝐶 ⊆ ((LSpan‘𝑊)‘𝐶)) |
16 | 8, 13, 15 | syl2anc 587 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐶 ⊆ ((LSpan‘𝑊)‘𝐶)) |
17 | 16 | ssrind 4142 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → (𝐶 ∩ ( ⊥ ‘𝐶)) ⊆ (((LSpan‘𝑊)‘𝐶) ∩ ( ⊥ ‘𝐶))) |
18 | | obselocv.o |
. . . . . . . . . . . . . 14
⊢ ⊥ =
(ocv‘𝑊) |
19 | 10, 18, 14 | ocvlsp 20454 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ PreHil ∧ 𝐶 ⊆ (Base‘𝑊)) → ( ⊥
‘((LSpan‘𝑊)‘𝐶)) = ( ⊥ ‘𝐶)) |
20 | 6, 13, 19 | syl2anc 587 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → ( ⊥
‘((LSpan‘𝑊)‘𝐶)) = ( ⊥ ‘𝐶)) |
21 | 20 | ineq2d 4119 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → (((LSpan‘𝑊)‘𝐶) ∩ ( ⊥
‘((LSpan‘𝑊)‘𝐶))) = (((LSpan‘𝑊)‘𝐶) ∩ ( ⊥ ‘𝐶))) |
22 | | eqid 2758 |
. . . . . . . . . . . . . 14
⊢
(LSubSp‘𝑊) =
(LSubSp‘𝑊) |
23 | 10, 22, 14 | lspcl 19829 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ LMod ∧ 𝐶 ⊆ (Base‘𝑊)) → ((LSpan‘𝑊)‘𝐶) ∈ (LSubSp‘𝑊)) |
24 | 8, 13, 23 | syl2anc 587 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → ((LSpan‘𝑊)‘𝐶) ∈ (LSubSp‘𝑊)) |
25 | 18, 22, 1 | ocvin 20452 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ PreHil ∧
((LSpan‘𝑊)‘𝐶) ∈ (LSubSp‘𝑊)) → (((LSpan‘𝑊)‘𝐶) ∩ ( ⊥
‘((LSpan‘𝑊)‘𝐶))) = {(0g‘𝑊)}) |
26 | 6, 24, 25 | syl2anc 587 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → (((LSpan‘𝑊)‘𝐶) ∩ ( ⊥
‘((LSpan‘𝑊)‘𝐶))) = {(0g‘𝑊)}) |
27 | 21, 26 | eqtr3d 2795 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → (((LSpan‘𝑊)‘𝐶) ∩ ( ⊥ ‘𝐶)) = {(0g‘𝑊)}) |
28 | 17, 27 | sseqtrd 3934 |
. . . . . . . . 9
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → (𝐶 ∩ ( ⊥ ‘𝐶)) ⊆
{(0g‘𝑊)}) |
29 | 28 | sseld 3893 |
. . . . . . . 8
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → (𝐴 ∈ (𝐶 ∩ ( ⊥ ‘𝐶)) → 𝐴 ∈ {(0g‘𝑊)})) |
30 | 4, 29 | syl5bir 246 |
. . . . . . 7
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → ((𝐴 ∈ 𝐶 ∧ 𝐴 ∈ ( ⊥ ‘𝐶)) → 𝐴 ∈ {(0g‘𝑊)})) |
31 | | elsni 4542 |
. . . . . . 7
⊢ (𝐴 ∈
{(0g‘𝑊)}
→ 𝐴 =
(0g‘𝑊)) |
32 | 30, 31 | syl6 35 |
. . . . . 6
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → ((𝐴 ∈ 𝐶 ∧ 𝐴 ∈ ( ⊥ ‘𝐶)) → 𝐴 = (0g‘𝑊))) |
33 | 32 | necon3ad 2964 |
. . . . 5
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → (𝐴 ≠ (0g‘𝑊) → ¬ (𝐴 ∈ 𝐶 ∧ 𝐴 ∈ ( ⊥ ‘𝐶)))) |
34 | 3, 33 | mpd 15 |
. . . 4
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → ¬ (𝐴 ∈ 𝐶 ∧ 𝐴 ∈ ( ⊥ ‘𝐶))) |
35 | | imnan 403 |
. . . 4
⊢ ((𝐴 ∈ 𝐶 → ¬ 𝐴 ∈ ( ⊥ ‘𝐶)) ↔ ¬ (𝐴 ∈ 𝐶 ∧ 𝐴 ∈ ( ⊥ ‘𝐶))) |
36 | 34, 35 | sylibr 237 |
. . 3
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → (𝐴 ∈ 𝐶 → ¬ 𝐴 ∈ ( ⊥ ‘𝐶))) |
37 | 36 | con2d 136 |
. 2
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → (𝐴 ∈ ( ⊥ ‘𝐶) → ¬ 𝐴 ∈ 𝐶)) |
38 | | simpr 488 |
. . . . . . 7
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ 𝐶) |
39 | | eleq1 2839 |
. . . . . . 7
⊢ (𝐴 = 𝑥 → (𝐴 ∈ 𝐶 ↔ 𝑥 ∈ 𝐶)) |
40 | 38, 39 | syl5ibrcom 250 |
. . . . . 6
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶) → (𝐴 = 𝑥 → 𝐴 ∈ 𝐶)) |
41 | 40 | con3d 155 |
. . . . 5
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶) → (¬ 𝐴 ∈ 𝐶 → ¬ 𝐴 = 𝑥)) |
42 | | simpl1 1188 |
. . . . . . 7
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ (OBasis‘𝑊)) |
43 | | simpl3 1190 |
. . . . . . 7
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶) → 𝐴 ∈ 𝐵) |
44 | 9 | sselda 3894 |
. . . . . . 7
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ 𝐵) |
45 | | eqid 2758 |
. . . . . . . 8
⊢
(·𝑖‘𝑊) =
(·𝑖‘𝑊) |
46 | | eqid 2758 |
. . . . . . . 8
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
47 | | eqid 2758 |
. . . . . . . 8
⊢
(1r‘(Scalar‘𝑊)) =
(1r‘(Scalar‘𝑊)) |
48 | | eqid 2758 |
. . . . . . . 8
⊢
(0g‘(Scalar‘𝑊)) =
(0g‘(Scalar‘𝑊)) |
49 | 10, 45, 46, 47, 48 | obsip 20499 |
. . . . . . 7
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝐴(·𝑖‘𝑊)𝑥) = if(𝐴 = 𝑥, (1r‘(Scalar‘𝑊)),
(0g‘(Scalar‘𝑊)))) |
50 | 42, 43, 44, 49 | syl3anc 1368 |
. . . . . 6
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶) → (𝐴(·𝑖‘𝑊)𝑥) = if(𝐴 = 𝑥, (1r‘(Scalar‘𝑊)),
(0g‘(Scalar‘𝑊)))) |
51 | | iffalse 4432 |
. . . . . . 7
⊢ (¬
𝐴 = 𝑥 → if(𝐴 = 𝑥, (1r‘(Scalar‘𝑊)),
(0g‘(Scalar‘𝑊))) =
(0g‘(Scalar‘𝑊))) |
52 | 51 | eqeq2d 2769 |
. . . . . 6
⊢ (¬
𝐴 = 𝑥 → ((𝐴(·𝑖‘𝑊)𝑥) = if(𝐴 = 𝑥, (1r‘(Scalar‘𝑊)),
(0g‘(Scalar‘𝑊))) ↔ (𝐴(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)))) |
53 | 50, 52 | syl5ibcom 248 |
. . . . 5
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶) → (¬ 𝐴 = 𝑥 → (𝐴(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)))) |
54 | 41, 53 | syld 47 |
. . . 4
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶) → (¬ 𝐴 ∈ 𝐶 → (𝐴(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)))) |
55 | 54 | ralrimdva 3118 |
. . 3
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → (¬ 𝐴 ∈ 𝐶 → ∀𝑥 ∈ 𝐶 (𝐴(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)))) |
56 | | simp3 1135 |
. . . . 5
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐵) |
57 | 12, 56 | sseldd 3895 |
. . . 4
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (Base‘𝑊)) |
58 | 10, 45, 46, 48, 18 | elocv 20446 |
. . . . . 6
⊢ (𝐴 ∈ ( ⊥ ‘𝐶) ↔ (𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊) ∧ ∀𝑥 ∈ 𝐶 (𝐴(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)))) |
59 | | df-3an 1086 |
. . . . . 6
⊢ ((𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊) ∧ ∀𝑥 ∈ 𝐶 (𝐴(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊))) ↔ ((𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊)) ∧ ∀𝑥 ∈ 𝐶 (𝐴(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)))) |
60 | 58, 59 | bitri 278 |
. . . . 5
⊢ (𝐴 ∈ ( ⊥ ‘𝐶) ↔ ((𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊)) ∧ ∀𝑥 ∈ 𝐶 (𝐴(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)))) |
61 | 60 | baib 539 |
. . . 4
⊢ ((𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊)) → (𝐴 ∈ ( ⊥ ‘𝐶) ↔ ∀𝑥 ∈ 𝐶 (𝐴(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)))) |
62 | 13, 57, 61 | syl2anc 587 |
. . 3
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → (𝐴 ∈ ( ⊥ ‘𝐶) ↔ ∀𝑥 ∈ 𝐶 (𝐴(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)))) |
63 | 55, 62 | sylibrd 262 |
. 2
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → (¬ 𝐴 ∈ 𝐶 → 𝐴 ∈ ( ⊥ ‘𝐶))) |
64 | 37, 63 | impbid 215 |
1
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → (𝐴 ∈ ( ⊥ ‘𝐶) ↔ ¬ 𝐴 ∈ 𝐶)) |