MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  obselocv Structured version   Visualization version   GIF version

Theorem obselocv 21749
Description: A basis element is in the orthocomplement of a subset of the basis iff it is not in the subset. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypothesis
Ref Expression
obselocv.o = (ocv‘𝑊)
Assertion
Ref Expression
obselocv ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴 ∈ ( 𝐶) ↔ ¬ 𝐴𝐶))

Proof of Theorem obselocv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . . . 7 (0g𝑊) = (0g𝑊)
21obsne0 21746 . . . . . 6 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴𝐵) → 𝐴 ≠ (0g𝑊))
323adant2 1131 . . . . 5 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐴 ≠ (0g𝑊))
4 elin 3966 . . . . . . . 8 (𝐴 ∈ (𝐶 ∩ ( 𝐶)) ↔ (𝐴𝐶𝐴 ∈ ( 𝐶)))
5 obsrcl 21744 . . . . . . . . . . . . . 14 (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ PreHil)
653ad2ant1 1133 . . . . . . . . . . . . 13 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝑊 ∈ PreHil)
7 phllmod 21649 . . . . . . . . . . . . 13 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
86, 7syl 17 . . . . . . . . . . . 12 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝑊 ∈ LMod)
9 simp2 1137 . . . . . . . . . . . . 13 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐶𝐵)
10 eqid 2736 . . . . . . . . . . . . . . 15 (Base‘𝑊) = (Base‘𝑊)
1110obsss 21745 . . . . . . . . . . . . . 14 (𝐵 ∈ (OBasis‘𝑊) → 𝐵 ⊆ (Base‘𝑊))
12113ad2ant1 1133 . . . . . . . . . . . . 13 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐵 ⊆ (Base‘𝑊))
139, 12sstrd 3993 . . . . . . . . . . . 12 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐶 ⊆ (Base‘𝑊))
14 eqid 2736 . . . . . . . . . . . . 13 (LSpan‘𝑊) = (LSpan‘𝑊)
1510, 14lspssid 20984 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝐶 ⊆ (Base‘𝑊)) → 𝐶 ⊆ ((LSpan‘𝑊)‘𝐶))
168, 13, 15syl2anc 584 . . . . . . . . . . 11 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐶 ⊆ ((LSpan‘𝑊)‘𝐶))
1716ssrind 4243 . . . . . . . . . 10 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐶 ∩ ( 𝐶)) ⊆ (((LSpan‘𝑊)‘𝐶) ∩ ( 𝐶)))
18 obselocv.o . . . . . . . . . . . . . 14 = (ocv‘𝑊)
1910, 18, 14ocvlsp 21695 . . . . . . . . . . . . 13 ((𝑊 ∈ PreHil ∧ 𝐶 ⊆ (Base‘𝑊)) → ( ‘((LSpan‘𝑊)‘𝐶)) = ( 𝐶))
206, 13, 19syl2anc 584 . . . . . . . . . . . 12 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → ( ‘((LSpan‘𝑊)‘𝐶)) = ( 𝐶))
2120ineq2d 4219 . . . . . . . . . . 11 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (((LSpan‘𝑊)‘𝐶) ∩ ( ‘((LSpan‘𝑊)‘𝐶))) = (((LSpan‘𝑊)‘𝐶) ∩ ( 𝐶)))
22 eqid 2736 . . . . . . . . . . . . . 14 (LSubSp‘𝑊) = (LSubSp‘𝑊)
2310, 22, 14lspcl 20975 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝐶 ⊆ (Base‘𝑊)) → ((LSpan‘𝑊)‘𝐶) ∈ (LSubSp‘𝑊))
248, 13, 23syl2anc 584 . . . . . . . . . . . 12 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → ((LSpan‘𝑊)‘𝐶) ∈ (LSubSp‘𝑊))
2518, 22, 1ocvin 21693 . . . . . . . . . . . 12 ((𝑊 ∈ PreHil ∧ ((LSpan‘𝑊)‘𝐶) ∈ (LSubSp‘𝑊)) → (((LSpan‘𝑊)‘𝐶) ∩ ( ‘((LSpan‘𝑊)‘𝐶))) = {(0g𝑊)})
266, 24, 25syl2anc 584 . . . . . . . . . . 11 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (((LSpan‘𝑊)‘𝐶) ∩ ( ‘((LSpan‘𝑊)‘𝐶))) = {(0g𝑊)})
2721, 26eqtr3d 2778 . . . . . . . . . 10 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (((LSpan‘𝑊)‘𝐶) ∩ ( 𝐶)) = {(0g𝑊)})
2817, 27sseqtrd 4019 . . . . . . . . 9 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐶 ∩ ( 𝐶)) ⊆ {(0g𝑊)})
2928sseld 3981 . . . . . . . 8 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴 ∈ (𝐶 ∩ ( 𝐶)) → 𝐴 ∈ {(0g𝑊)}))
304, 29biimtrrid 243 . . . . . . 7 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → ((𝐴𝐶𝐴 ∈ ( 𝐶)) → 𝐴 ∈ {(0g𝑊)}))
31 elsni 4642 . . . . . . 7 (𝐴 ∈ {(0g𝑊)} → 𝐴 = (0g𝑊))
3230, 31syl6 35 . . . . . 6 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → ((𝐴𝐶𝐴 ∈ ( 𝐶)) → 𝐴 = (0g𝑊)))
3332necon3ad 2952 . . . . 5 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴 ≠ (0g𝑊) → ¬ (𝐴𝐶𝐴 ∈ ( 𝐶))))
343, 33mpd 15 . . . 4 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → ¬ (𝐴𝐶𝐴 ∈ ( 𝐶)))
35 imnan 399 . . . 4 ((𝐴𝐶 → ¬ 𝐴 ∈ ( 𝐶)) ↔ ¬ (𝐴𝐶𝐴 ∈ ( 𝐶)))
3634, 35sylibr 234 . . 3 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴𝐶 → ¬ 𝐴 ∈ ( 𝐶)))
3736con2d 134 . 2 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴 ∈ ( 𝐶) → ¬ 𝐴𝐶))
38 simpr 484 . . . . . . 7 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → 𝑥𝐶)
39 eleq1 2828 . . . . . . 7 (𝐴 = 𝑥 → (𝐴𝐶𝑥𝐶))
4038, 39syl5ibrcom 247 . . . . . 6 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → (𝐴 = 𝑥𝐴𝐶))
4140con3d 152 . . . . 5 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → (¬ 𝐴𝐶 → ¬ 𝐴 = 𝑥))
42 simpl1 1191 . . . . . . 7 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → 𝐵 ∈ (OBasis‘𝑊))
43 simpl3 1193 . . . . . . 7 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → 𝐴𝐵)
449sselda 3982 . . . . . . 7 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → 𝑥𝐵)
45 eqid 2736 . . . . . . . 8 (·𝑖𝑊) = (·𝑖𝑊)
46 eqid 2736 . . . . . . . 8 (Scalar‘𝑊) = (Scalar‘𝑊)
47 eqid 2736 . . . . . . . 8 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
48 eqid 2736 . . . . . . . 8 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
4910, 45, 46, 47, 48obsip 21742 . . . . . . 7 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴𝐵𝑥𝐵) → (𝐴(·𝑖𝑊)𝑥) = if(𝐴 = 𝑥, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))))
5042, 43, 44, 49syl3anc 1372 . . . . . 6 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → (𝐴(·𝑖𝑊)𝑥) = if(𝐴 = 𝑥, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))))
51 iffalse 4533 . . . . . . 7 𝐴 = 𝑥 → if(𝐴 = 𝑥, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
5251eqeq2d 2747 . . . . . 6 𝐴 = 𝑥 → ((𝐴(·𝑖𝑊)𝑥) = if(𝐴 = 𝑥, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))) ↔ (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
5350, 52syl5ibcom 245 . . . . 5 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → (¬ 𝐴 = 𝑥 → (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
5441, 53syld 47 . . . 4 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → (¬ 𝐴𝐶 → (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
5554ralrimdva 3153 . . 3 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (¬ 𝐴𝐶 → ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
56 simp3 1138 . . . . 5 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐴𝐵)
5712, 56sseldd 3983 . . . 4 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐴 ∈ (Base‘𝑊))
5810, 45, 46, 48, 18elocv 21687 . . . . . 6 (𝐴 ∈ ( 𝐶) ↔ (𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊) ∧ ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
59 df-3an 1088 . . . . . 6 ((𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊) ∧ ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))) ↔ ((𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊)) ∧ ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
6058, 59bitri 275 . . . . 5 (𝐴 ∈ ( 𝐶) ↔ ((𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊)) ∧ ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
6160baib 535 . . . 4 ((𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊)) → (𝐴 ∈ ( 𝐶) ↔ ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
6213, 57, 61syl2anc 584 . . 3 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴 ∈ ( 𝐶) ↔ ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
6355, 62sylibrd 259 . 2 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (¬ 𝐴𝐶𝐴 ∈ ( 𝐶)))
6437, 63impbid 212 1 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴 ∈ ( 𝐶) ↔ ¬ 𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  wral 3060  cin 3949  wss 3950  ifcif 4524  {csn 4625  cfv 6560  (class class class)co 7432  Basecbs 17248  Scalarcsca 17301  ·𝑖cip 17303  0gc0g 17485  1rcur 20179  LModclmod 20859  LSubSpclss 20930  LSpanclspn 20970  PreHilcphl 21643  ocvcocv 21679  OBasiscobs 21723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-0g 17487  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-grp 18955  df-minusg 18956  df-sbg 18957  df-ghm 19232  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-oppr 20335  df-dvdsr 20358  df-unit 20359  df-rhm 20473  df-drng 20732  df-staf 20841  df-srng 20842  df-lmod 20861  df-lss 20931  df-lsp 20971  df-lmhm 21022  df-lvec 21103  df-sra 21173  df-rgmod 21174  df-phl 21645  df-ocv 21682  df-obs 21726
This theorem is referenced by:  obs2ss  21750  obslbs  21751
  Copyright terms: Public domain W3C validator