MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  obselocv Structured version   Visualization version   GIF version

Theorem obselocv 21274
Description: A basis element is in the orthocomplement of a subset of the basis iff it is not in the subset. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypothesis
Ref Expression
obselocv.o = (ocv‘𝑊)
Assertion
Ref Expression
obselocv ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴 ∈ ( 𝐶) ↔ ¬ 𝐴𝐶))

Proof of Theorem obselocv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . . . . . 7 (0g𝑊) = (0g𝑊)
21obsne0 21271 . . . . . 6 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴𝐵) → 𝐴 ≠ (0g𝑊))
323adant2 1131 . . . . 5 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐴 ≠ (0g𝑊))
4 elin 3963 . . . . . . . 8 (𝐴 ∈ (𝐶 ∩ ( 𝐶)) ↔ (𝐴𝐶𝐴 ∈ ( 𝐶)))
5 obsrcl 21269 . . . . . . . . . . . . . 14 (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ PreHil)
653ad2ant1 1133 . . . . . . . . . . . . 13 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝑊 ∈ PreHil)
7 phllmod 21174 . . . . . . . . . . . . 13 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
86, 7syl 17 . . . . . . . . . . . 12 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝑊 ∈ LMod)
9 simp2 1137 . . . . . . . . . . . . 13 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐶𝐵)
10 eqid 2732 . . . . . . . . . . . . . . 15 (Base‘𝑊) = (Base‘𝑊)
1110obsss 21270 . . . . . . . . . . . . . 14 (𝐵 ∈ (OBasis‘𝑊) → 𝐵 ⊆ (Base‘𝑊))
12113ad2ant1 1133 . . . . . . . . . . . . 13 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐵 ⊆ (Base‘𝑊))
139, 12sstrd 3991 . . . . . . . . . . . 12 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐶 ⊆ (Base‘𝑊))
14 eqid 2732 . . . . . . . . . . . . 13 (LSpan‘𝑊) = (LSpan‘𝑊)
1510, 14lspssid 20588 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝐶 ⊆ (Base‘𝑊)) → 𝐶 ⊆ ((LSpan‘𝑊)‘𝐶))
168, 13, 15syl2anc 584 . . . . . . . . . . 11 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐶 ⊆ ((LSpan‘𝑊)‘𝐶))
1716ssrind 4234 . . . . . . . . . 10 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐶 ∩ ( 𝐶)) ⊆ (((LSpan‘𝑊)‘𝐶) ∩ ( 𝐶)))
18 obselocv.o . . . . . . . . . . . . . 14 = (ocv‘𝑊)
1910, 18, 14ocvlsp 21220 . . . . . . . . . . . . 13 ((𝑊 ∈ PreHil ∧ 𝐶 ⊆ (Base‘𝑊)) → ( ‘((LSpan‘𝑊)‘𝐶)) = ( 𝐶))
206, 13, 19syl2anc 584 . . . . . . . . . . . 12 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → ( ‘((LSpan‘𝑊)‘𝐶)) = ( 𝐶))
2120ineq2d 4211 . . . . . . . . . . 11 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (((LSpan‘𝑊)‘𝐶) ∩ ( ‘((LSpan‘𝑊)‘𝐶))) = (((LSpan‘𝑊)‘𝐶) ∩ ( 𝐶)))
22 eqid 2732 . . . . . . . . . . . . . 14 (LSubSp‘𝑊) = (LSubSp‘𝑊)
2310, 22, 14lspcl 20579 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝐶 ⊆ (Base‘𝑊)) → ((LSpan‘𝑊)‘𝐶) ∈ (LSubSp‘𝑊))
248, 13, 23syl2anc 584 . . . . . . . . . . . 12 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → ((LSpan‘𝑊)‘𝐶) ∈ (LSubSp‘𝑊))
2518, 22, 1ocvin 21218 . . . . . . . . . . . 12 ((𝑊 ∈ PreHil ∧ ((LSpan‘𝑊)‘𝐶) ∈ (LSubSp‘𝑊)) → (((LSpan‘𝑊)‘𝐶) ∩ ( ‘((LSpan‘𝑊)‘𝐶))) = {(0g𝑊)})
266, 24, 25syl2anc 584 . . . . . . . . . . 11 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (((LSpan‘𝑊)‘𝐶) ∩ ( ‘((LSpan‘𝑊)‘𝐶))) = {(0g𝑊)})
2721, 26eqtr3d 2774 . . . . . . . . . 10 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (((LSpan‘𝑊)‘𝐶) ∩ ( 𝐶)) = {(0g𝑊)})
2817, 27sseqtrd 4021 . . . . . . . . 9 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐶 ∩ ( 𝐶)) ⊆ {(0g𝑊)})
2928sseld 3980 . . . . . . . 8 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴 ∈ (𝐶 ∩ ( 𝐶)) → 𝐴 ∈ {(0g𝑊)}))
304, 29biimtrrid 242 . . . . . . 7 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → ((𝐴𝐶𝐴 ∈ ( 𝐶)) → 𝐴 ∈ {(0g𝑊)}))
31 elsni 4644 . . . . . . 7 (𝐴 ∈ {(0g𝑊)} → 𝐴 = (0g𝑊))
3230, 31syl6 35 . . . . . 6 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → ((𝐴𝐶𝐴 ∈ ( 𝐶)) → 𝐴 = (0g𝑊)))
3332necon3ad 2953 . . . . 5 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴 ≠ (0g𝑊) → ¬ (𝐴𝐶𝐴 ∈ ( 𝐶))))
343, 33mpd 15 . . . 4 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → ¬ (𝐴𝐶𝐴 ∈ ( 𝐶)))
35 imnan 400 . . . 4 ((𝐴𝐶 → ¬ 𝐴 ∈ ( 𝐶)) ↔ ¬ (𝐴𝐶𝐴 ∈ ( 𝐶)))
3634, 35sylibr 233 . . 3 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴𝐶 → ¬ 𝐴 ∈ ( 𝐶)))
3736con2d 134 . 2 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴 ∈ ( 𝐶) → ¬ 𝐴𝐶))
38 simpr 485 . . . . . . 7 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → 𝑥𝐶)
39 eleq1 2821 . . . . . . 7 (𝐴 = 𝑥 → (𝐴𝐶𝑥𝐶))
4038, 39syl5ibrcom 246 . . . . . 6 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → (𝐴 = 𝑥𝐴𝐶))
4140con3d 152 . . . . 5 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → (¬ 𝐴𝐶 → ¬ 𝐴 = 𝑥))
42 simpl1 1191 . . . . . . 7 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → 𝐵 ∈ (OBasis‘𝑊))
43 simpl3 1193 . . . . . . 7 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → 𝐴𝐵)
449sselda 3981 . . . . . . 7 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → 𝑥𝐵)
45 eqid 2732 . . . . . . . 8 (·𝑖𝑊) = (·𝑖𝑊)
46 eqid 2732 . . . . . . . 8 (Scalar‘𝑊) = (Scalar‘𝑊)
47 eqid 2732 . . . . . . . 8 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
48 eqid 2732 . . . . . . . 8 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
4910, 45, 46, 47, 48obsip 21267 . . . . . . 7 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴𝐵𝑥𝐵) → (𝐴(·𝑖𝑊)𝑥) = if(𝐴 = 𝑥, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))))
5042, 43, 44, 49syl3anc 1371 . . . . . 6 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → (𝐴(·𝑖𝑊)𝑥) = if(𝐴 = 𝑥, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))))
51 iffalse 4536 . . . . . . 7 𝐴 = 𝑥 → if(𝐴 = 𝑥, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
5251eqeq2d 2743 . . . . . 6 𝐴 = 𝑥 → ((𝐴(·𝑖𝑊)𝑥) = if(𝐴 = 𝑥, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))) ↔ (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
5350, 52syl5ibcom 244 . . . . 5 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → (¬ 𝐴 = 𝑥 → (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
5441, 53syld 47 . . . 4 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → (¬ 𝐴𝐶 → (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
5554ralrimdva 3154 . . 3 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (¬ 𝐴𝐶 → ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
56 simp3 1138 . . . . 5 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐴𝐵)
5712, 56sseldd 3982 . . . 4 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐴 ∈ (Base‘𝑊))
5810, 45, 46, 48, 18elocv 21212 . . . . . 6 (𝐴 ∈ ( 𝐶) ↔ (𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊) ∧ ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
59 df-3an 1089 . . . . . 6 ((𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊) ∧ ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))) ↔ ((𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊)) ∧ ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
6058, 59bitri 274 . . . . 5 (𝐴 ∈ ( 𝐶) ↔ ((𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊)) ∧ ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
6160baib 536 . . . 4 ((𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊)) → (𝐴 ∈ ( 𝐶) ↔ ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
6213, 57, 61syl2anc 584 . . 3 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴 ∈ ( 𝐶) ↔ ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
6355, 62sylibrd 258 . 2 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (¬ 𝐴𝐶𝐴 ∈ ( 𝐶)))
6437, 63impbid 211 1 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴 ∈ ( 𝐶) ↔ ¬ 𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061  cin 3946  wss 3947  ifcif 4527  {csn 4627  cfv 6540  (class class class)co 7405  Basecbs 17140  Scalarcsca 17196  ·𝑖cip 17198  0gc0g 17381  1rcur 19998  LModclmod 20463  LSubSpclss 20534  LSpanclspn 20574  PreHilcphl 21168  ocvcocv 21204  OBasiscobs 21248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-grp 18818  df-minusg 18819  df-sbg 18820  df-ghm 19084  df-mgp 19982  df-ur 19999  df-ring 20051  df-oppr 20142  df-dvdsr 20163  df-unit 20164  df-rnghom 20243  df-drng 20309  df-staf 20445  df-srng 20446  df-lmod 20465  df-lss 20535  df-lsp 20575  df-lmhm 20625  df-lvec 20706  df-sra 20777  df-rgmod 20778  df-phl 21170  df-ocv 21207  df-obs 21251
This theorem is referenced by:  obs2ss  21275  obslbs  21276
  Copyright terms: Public domain W3C validator