Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsupintrab Structured version   Visualization version   GIF version

Theorem onsupintrab 43192
Description: The supremum of a set of ordinals is the intersection of every ordinal greater-than-or-equal to every member of the set. Definition 2.9 of [Schloeder] p. 5. (Contributed by RP, 23-Jan-2025.)
Assertion
Ref Expression
onsupintrab ((𝐴 ⊆ On ∧ 𝐴𝑉) → sup(𝐴, On, E ) = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥})
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑉
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem onsupintrab
StepHypRef Expression
1 onsupuni 43190 . 2 ((𝐴 ⊆ On ∧ 𝐴𝑉) → sup(𝐴, On, E ) = 𝐴)
2 onuniintrab 43187 . 2 ((𝐴 ⊆ On ∧ 𝐴𝑉) → 𝐴 = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥})
31, 2eqtrd 2780 1 ((𝐴 ⊆ On ∧ 𝐴𝑉) → sup(𝐴, On, E ) = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  wss 3976   cuni 4931   cint 4970   E cep 5598  Oncon0 6395  supcsup 9509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-iota 6525  df-riota 7404  df-sup 9511
This theorem is referenced by:  onsupintrab2  43193
  Copyright terms: Public domain W3C validator