Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsupintrab Structured version   Visualization version   GIF version

Theorem onsupintrab 43213
Description: The supremum of a set of ordinals is the intersection of every ordinal greater-than-or-equal to every member of the set. Definition 2.9 of [Schloeder] p. 5. (Contributed by RP, 23-Jan-2025.)
Assertion
Ref Expression
onsupintrab ((𝐴 ⊆ On ∧ 𝐴𝑉) → sup(𝐴, On, E ) = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥})
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑉
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem onsupintrab
StepHypRef Expression
1 onsupuni 43211 . 2 ((𝐴 ⊆ On ∧ 𝐴𝑉) → sup(𝐴, On, E ) = 𝐴)
2 onuniintrab 43208 . 2 ((𝐴 ⊆ On ∧ 𝐴𝑉) → 𝐴 = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥})
31, 2eqtrd 2764 1 ((𝐴 ⊆ On ∧ 𝐴𝑉) → sup(𝐴, On, E ) = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3402  wss 3911   cuni 4867   cint 4906   E cep 5530  Oncon0 6320  supcsup 9367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-tr 5210  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-ord 6323  df-on 6324  df-iota 6452  df-riota 7326  df-sup 9369
This theorem is referenced by:  onsupintrab2  43214
  Copyright terms: Public domain W3C validator