| Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onsuctop | Structured version Visualization version GIF version | ||
| Description: A successor ordinal number is a topology. (Contributed by Chen-Pang He, 11-Oct-2015.) |
| Ref | Expression |
|---|---|
| onsuctop | ⊢ (𝐴 ∈ On → suc 𝐴 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ontgsucval 36434 | . 2 ⊢ (𝐴 ∈ On → (topGen‘suc 𝐴) = suc 𝐴) | |
| 2 | onsuc 7832 | . . 3 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
| 3 | ontopbas 36430 | . . 3 ⊢ (suc 𝐴 ∈ On → suc 𝐴 ∈ TopBases) | |
| 4 | tgcl 22977 | . . 3 ⊢ (suc 𝐴 ∈ TopBases → (topGen‘suc 𝐴) ∈ Top) | |
| 5 | 2, 3, 4 | 3syl 18 | . 2 ⊢ (𝐴 ∈ On → (topGen‘suc 𝐴) ∈ Top) |
| 6 | 1, 5 | eqeltrrd 2841 | 1 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 Oncon0 6383 suc csuc 6385 ‘cfv 6560 topGenctg 17483 Topctop 22900 TopBasesctb 22953 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-ord 6386 df-on 6387 df-suc 6389 df-iota 6513 df-fun 6562 df-fv 6568 df-topgen 17489 df-top 22901 df-bases 22954 |
| This theorem is referenced by: onsuctopon 36436 ordtop 36438 onsucconni 36439 onsucsuccmpi 36445 |
| Copyright terms: Public domain | W3C validator |