Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsuctop | Structured version Visualization version GIF version |
Description: A successor ordinal number is a topology. (Contributed by Chen-Pang He, 11-Oct-2015.) |
Ref | Expression |
---|---|
onsuctop | ⊢ (𝐴 ∈ On → suc 𝐴 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ontgsucval 34160 | . 2 ⊢ (𝐴 ∈ On → (topGen‘suc 𝐴) = suc 𝐴) | |
2 | suceloni 7525 | . . 3 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
3 | ontopbas 34156 | . . 3 ⊢ (suc 𝐴 ∈ On → suc 𝐴 ∈ TopBases) | |
4 | tgcl 21659 | . . 3 ⊢ (suc 𝐴 ∈ TopBases → (topGen‘suc 𝐴) ∈ Top) | |
5 | 2, 3, 4 | 3syl 18 | . 2 ⊢ (𝐴 ∈ On → (topGen‘suc 𝐴) ∈ Top) |
6 | 1, 5 | eqeltrrd 2854 | 1 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2112 Oncon0 6167 suc csuc 6169 ‘cfv 6333 topGenctg 16759 Topctop 21583 TopBasesctb 21635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7457 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-tp 4525 df-op 4527 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5428 df-eprel 5433 df-po 5441 df-so 5442 df-fr 5481 df-we 5483 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-ord 6170 df-on 6171 df-suc 6173 df-iota 6292 df-fun 6335 df-fv 6341 df-topgen 16765 df-top 21584 df-bases 21636 |
This theorem is referenced by: onsuctopon 34162 ordtop 34164 onsucconni 34165 onsucsuccmpi 34171 |
Copyright terms: Public domain | W3C validator |