Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsuctop Structured version   Visualization version   GIF version

Theorem onsuctop 34161
Description: A successor ordinal number is a topology. (Contributed by Chen-Pang He, 11-Oct-2015.)
Assertion
Ref Expression
onsuctop (𝐴 ∈ On → suc 𝐴 ∈ Top)

Proof of Theorem onsuctop
StepHypRef Expression
1 ontgsucval 34160 . 2 (𝐴 ∈ On → (topGen‘suc 𝐴) = suc 𝐴)
2 suceloni 7525 . . 3 (𝐴 ∈ On → suc 𝐴 ∈ On)
3 ontopbas 34156 . . 3 (suc 𝐴 ∈ On → suc 𝐴 ∈ TopBases)
4 tgcl 21659 . . 3 (suc 𝐴 ∈ TopBases → (topGen‘suc 𝐴) ∈ Top)
52, 3, 43syl 18 . 2 (𝐴 ∈ On → (topGen‘suc 𝐴) ∈ Top)
61, 5eqeltrrd 2854 1 (𝐴 ∈ On → suc 𝐴 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2112  Oncon0 6167  suc csuc 6169  cfv 6333  topGenctg 16759  Topctop 21583  TopBasesctb 21635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7457
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3698  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4419  df-pw 4494  df-sn 4521  df-pr 4523  df-tp 4525  df-op 4527  df-uni 4797  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-ord 6170  df-on 6171  df-suc 6173  df-iota 6292  df-fun 6335  df-fv 6341  df-topgen 16765  df-top 21584  df-bases 21636
This theorem is referenced by:  onsuctopon  34162  ordtop  34164  onsucconni  34165  onsucsuccmpi  34171
  Copyright terms: Public domain W3C validator