Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsuctop Structured version   Visualization version   GIF version

Theorem onsuctop 32939
Description: A successor ordinal number is a topology. (Contributed by Chen-Pang He, 11-Oct-2015.)
Assertion
Ref Expression
onsuctop (𝐴 ∈ On → suc 𝐴 ∈ Top)

Proof of Theorem onsuctop
StepHypRef Expression
1 ontgsucval 32938 . 2 (𝐴 ∈ On → (topGen‘suc 𝐴) = suc 𝐴)
2 suceloni 7248 . . 3 (𝐴 ∈ On → suc 𝐴 ∈ On)
3 ontopbas 32934 . . 3 (suc 𝐴 ∈ On → suc 𝐴 ∈ TopBases)
4 tgcl 21101 . . 3 (suc 𝐴 ∈ TopBases → (topGen‘suc 𝐴) ∈ Top)
52, 3, 43syl 18 . 2 (𝐴 ∈ On → (topGen‘suc 𝐴) ∈ Top)
61, 5eqeltrrd 2880 1 (𝐴 ∈ On → suc 𝐴 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2157  Oncon0 5942  suc csuc 5944  cfv 6102  topGenctg 16412  Topctop 21025  TopBasesctb 21077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3388  df-sbc 3635  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-pss 3786  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-tp 4374  df-op 4376  df-uni 4630  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5221  df-eprel 5226  df-po 5234  df-so 5235  df-fr 5272  df-we 5274  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-ord 5945  df-on 5946  df-suc 5948  df-iota 6065  df-fun 6104  df-fv 6110  df-topgen 16418  df-top 21026  df-bases 21078
This theorem is referenced by:  onsuctopon  32940  ordtop  32942  onsucconni  32943  onsucsuccmpi  32949
  Copyright terms: Public domain W3C validator