![]() |
Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsuctop | Structured version Visualization version GIF version |
Description: A successor ordinal number is a topology. (Contributed by Chen-Pang He, 11-Oct-2015.) |
Ref | Expression |
---|---|
onsuctop | ⊢ (𝐴 ∈ On → suc 𝐴 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ontgsucval 32938 | . 2 ⊢ (𝐴 ∈ On → (topGen‘suc 𝐴) = suc 𝐴) | |
2 | suceloni 7248 | . . 3 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
3 | ontopbas 32934 | . . 3 ⊢ (suc 𝐴 ∈ On → suc 𝐴 ∈ TopBases) | |
4 | tgcl 21101 | . . 3 ⊢ (suc 𝐴 ∈ TopBases → (topGen‘suc 𝐴) ∈ Top) | |
5 | 2, 3, 4 | 3syl 18 | . 2 ⊢ (𝐴 ∈ On → (topGen‘suc 𝐴) ∈ Top) |
6 | 1, 5 | eqeltrrd 2880 | 1 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 Oncon0 5942 suc csuc 5944 ‘cfv 6102 topGenctg 16412 Topctop 21025 TopBasesctb 21077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-sbc 3635 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-ord 5945 df-on 5946 df-suc 5948 df-iota 6065 df-fun 6104 df-fv 6110 df-topgen 16418 df-top 21026 df-bases 21078 |
This theorem is referenced by: onsuctopon 32940 ordtop 32942 onsucconni 32943 onsucsuccmpi 32949 |
Copyright terms: Public domain | W3C validator |