MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddel12 Structured version   Visualization version   GIF version

Theorem naddel12 8664
Description: Natural addition to both sides of ordinal less-than. (Contributed by Scott Fenton, 7-Feb-2025.)
Assertion
Ref Expression
naddel12 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → ((𝐴𝐶𝐵𝐷) → (𝐴 +no 𝐵) ∈ (𝐶 +no 𝐷)))

Proof of Theorem naddel12
StepHypRef Expression
1 simprr 772 . . . 4 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → 𝐵𝐷)
2 onelon 6357 . . . . . 6 ((𝐷 ∈ On ∧ 𝐵𝐷) → 𝐵 ∈ On)
32ad2ant2l 746 . . . . 5 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → 𝐵 ∈ On)
4 simplr 768 . . . . 5 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → 𝐷 ∈ On)
5 onelon 6357 . . . . . 6 ((𝐶 ∈ On ∧ 𝐴𝐶) → 𝐴 ∈ On)
65ad2ant2r 747 . . . . 5 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → 𝐴 ∈ On)
7 naddel2 8652 . . . . 5 ((𝐵 ∈ On ∧ 𝐷 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐷 ↔ (𝐴 +no 𝐵) ∈ (𝐴 +no 𝐷)))
83, 4, 6, 7syl3anc 1373 . . . 4 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → (𝐵𝐷 ↔ (𝐴 +no 𝐵) ∈ (𝐴 +no 𝐷)))
91, 8mpbid 232 . . 3 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → (𝐴 +no 𝐵) ∈ (𝐴 +no 𝐷))
10 simprl 770 . . . 4 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → 𝐴𝐶)
11 simpll 766 . . . . 5 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → 𝐶 ∈ On)
12 naddel1 8651 . . . . 5 ((𝐴 ∈ On ∧ 𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐴𝐶 ↔ (𝐴 +no 𝐷) ∈ (𝐶 +no 𝐷)))
136, 11, 4, 12syl3anc 1373 . . . 4 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → (𝐴𝐶 ↔ (𝐴 +no 𝐷) ∈ (𝐶 +no 𝐷)))
1410, 13mpbid 232 . . 3 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → (𝐴 +no 𝐷) ∈ (𝐶 +no 𝐷))
15 naddcl 8641 . . . . 5 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐶 +no 𝐷) ∈ On)
1615adantr 480 . . . 4 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → (𝐶 +no 𝐷) ∈ On)
17 ontr1 6379 . . . 4 ((𝐶 +no 𝐷) ∈ On → (((𝐴 +no 𝐵) ∈ (𝐴 +no 𝐷) ∧ (𝐴 +no 𝐷) ∈ (𝐶 +no 𝐷)) → (𝐴 +no 𝐵) ∈ (𝐶 +no 𝐷)))
1816, 17syl 17 . . 3 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → (((𝐴 +no 𝐵) ∈ (𝐴 +no 𝐷) ∧ (𝐴 +no 𝐷) ∈ (𝐶 +no 𝐷)) → (𝐴 +no 𝐵) ∈ (𝐶 +no 𝐷)))
199, 14, 18mp2and 699 . 2 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → (𝐴 +no 𝐵) ∈ (𝐶 +no 𝐷))
2019ex 412 1 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → ((𝐴𝐶𝐵𝐷) → (𝐴 +no 𝐵) ∈ (𝐶 +no 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  Oncon0 6332  (class class class)co 7387   +no cnadd 8629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-frecs 8260  df-nadd 8630
This theorem is referenced by:  mulsproplem4  28022  mulsproplem5  28023  mulsproplem6  28024  mulsproplem7  28025  mulsproplem8  28026
  Copyright terms: Public domain W3C validator