![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > naddel12 | Structured version Visualization version GIF version |
Description: Natural addition to both sides of ordinal less-than. (Contributed by Scott Fenton, 7-Feb-2025.) |
Ref | Expression |
---|---|
naddel12 | ⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 +no 𝐵) ∈ (𝐶 +no 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 771 | . . . 4 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → 𝐵 ∈ 𝐷) | |
2 | onelon 6386 | . . . . . 6 ⊢ ((𝐷 ∈ On ∧ 𝐵 ∈ 𝐷) → 𝐵 ∈ On) | |
3 | 2 | ad2ant2l 744 | . . . . 5 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → 𝐵 ∈ On) |
4 | simplr 767 | . . . . 5 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → 𝐷 ∈ On) | |
5 | onelon 6386 | . . . . . 6 ⊢ ((𝐶 ∈ On ∧ 𝐴 ∈ 𝐶) → 𝐴 ∈ On) | |
6 | 5 | ad2ant2r 745 | . . . . 5 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → 𝐴 ∈ On) |
7 | naddel2 8683 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐷 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ∈ 𝐷 ↔ (𝐴 +no 𝐵) ∈ (𝐴 +no 𝐷))) | |
8 | 3, 4, 6, 7 | syl3anc 1371 | . . . 4 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐵 ∈ 𝐷 ↔ (𝐴 +no 𝐵) ∈ (𝐴 +no 𝐷))) |
9 | 1, 8 | mpbid 231 | . . 3 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐴 +no 𝐵) ∈ (𝐴 +no 𝐷)) |
10 | simprl 769 | . . . 4 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → 𝐴 ∈ 𝐶) | |
11 | simpll 765 | . . . . 5 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → 𝐶 ∈ On) | |
12 | naddel1 8682 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐴 ∈ 𝐶 ↔ (𝐴 +no 𝐷) ∈ (𝐶 +no 𝐷))) | |
13 | 6, 11, 4, 12 | syl3anc 1371 | . . . 4 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐴 ∈ 𝐶 ↔ (𝐴 +no 𝐷) ∈ (𝐶 +no 𝐷))) |
14 | 10, 13 | mpbid 231 | . . 3 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐴 +no 𝐷) ∈ (𝐶 +no 𝐷)) |
15 | naddcl 8672 | . . . . 5 ⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐶 +no 𝐷) ∈ On) | |
16 | 15 | adantr 481 | . . . 4 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐶 +no 𝐷) ∈ On) |
17 | ontr1 6407 | . . . 4 ⊢ ((𝐶 +no 𝐷) ∈ On → (((𝐴 +no 𝐵) ∈ (𝐴 +no 𝐷) ∧ (𝐴 +no 𝐷) ∈ (𝐶 +no 𝐷)) → (𝐴 +no 𝐵) ∈ (𝐶 +no 𝐷))) | |
18 | 16, 17 | syl 17 | . . 3 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (((𝐴 +no 𝐵) ∈ (𝐴 +no 𝐷) ∧ (𝐴 +no 𝐷) ∈ (𝐶 +no 𝐷)) → (𝐴 +no 𝐵) ∈ (𝐶 +no 𝐷))) |
19 | 9, 14, 18 | mp2and 697 | . 2 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐴 +no 𝐵) ∈ (𝐶 +no 𝐷)) |
20 | 19 | ex 413 | 1 ⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 +no 𝐵) ∈ (𝐶 +no 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 Oncon0 6361 (class class class)co 7405 +no cnadd 8660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-frecs 8262 df-nadd 8661 |
This theorem is referenced by: mulsproplem4 27564 mulsproplem5 27565 mulsproplem6 27566 mulsproplem7 27567 mulsproplem8 27568 |
Copyright terms: Public domain | W3C validator |