![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > naddel12 | Structured version Visualization version GIF version |
Description: Natural addition to both sides of ordinal less-than. (Contributed by Scott Fenton, 7-Feb-2025.) |
Ref | Expression |
---|---|
naddel12 | ⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 +no 𝐵) ∈ (𝐶 +no 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 771 | . . . 4 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → 𝐵 ∈ 𝐷) | |
2 | onelon 6387 | . . . . . 6 ⊢ ((𝐷 ∈ On ∧ 𝐵 ∈ 𝐷) → 𝐵 ∈ On) | |
3 | 2 | ad2ant2l 744 | . . . . 5 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → 𝐵 ∈ On) |
4 | simplr 767 | . . . . 5 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → 𝐷 ∈ On) | |
5 | onelon 6387 | . . . . . 6 ⊢ ((𝐶 ∈ On ∧ 𝐴 ∈ 𝐶) → 𝐴 ∈ On) | |
6 | 5 | ad2ant2r 745 | . . . . 5 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → 𝐴 ∈ On) |
7 | naddel2 8705 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐷 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ∈ 𝐷 ↔ (𝐴 +no 𝐵) ∈ (𝐴 +no 𝐷))) | |
8 | 3, 4, 6, 7 | syl3anc 1368 | . . . 4 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐵 ∈ 𝐷 ↔ (𝐴 +no 𝐵) ∈ (𝐴 +no 𝐷))) |
9 | 1, 8 | mpbid 231 | . . 3 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐴 +no 𝐵) ∈ (𝐴 +no 𝐷)) |
10 | simprl 769 | . . . 4 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → 𝐴 ∈ 𝐶) | |
11 | simpll 765 | . . . . 5 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → 𝐶 ∈ On) | |
12 | naddel1 8704 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐴 ∈ 𝐶 ↔ (𝐴 +no 𝐷) ∈ (𝐶 +no 𝐷))) | |
13 | 6, 11, 4, 12 | syl3anc 1368 | . . . 4 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐴 ∈ 𝐶 ↔ (𝐴 +no 𝐷) ∈ (𝐶 +no 𝐷))) |
14 | 10, 13 | mpbid 231 | . . 3 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐴 +no 𝐷) ∈ (𝐶 +no 𝐷)) |
15 | naddcl 8694 | . . . . 5 ⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐶 +no 𝐷) ∈ On) | |
16 | 15 | adantr 479 | . . . 4 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐶 +no 𝐷) ∈ On) |
17 | ontr1 6408 | . . . 4 ⊢ ((𝐶 +no 𝐷) ∈ On → (((𝐴 +no 𝐵) ∈ (𝐴 +no 𝐷) ∧ (𝐴 +no 𝐷) ∈ (𝐶 +no 𝐷)) → (𝐴 +no 𝐵) ∈ (𝐶 +no 𝐷))) | |
18 | 16, 17 | syl 17 | . . 3 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (((𝐴 +no 𝐵) ∈ (𝐴 +no 𝐷) ∧ (𝐴 +no 𝐷) ∈ (𝐶 +no 𝐷)) → (𝐴 +no 𝐵) ∈ (𝐶 +no 𝐷))) |
19 | 9, 14, 18 | mp2and 697 | . 2 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐴 +no 𝐵) ∈ (𝐶 +no 𝐷)) |
20 | 19 | ex 411 | 1 ⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 +no 𝐵) ∈ (𝐶 +no 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 Oncon0 6362 (class class class)co 7414 +no cnadd 8682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4943 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-se 5626 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7989 df-2nd 7990 df-frecs 8283 df-nadd 8683 |
This theorem is referenced by: mulsproplem4 28035 mulsproplem5 28036 mulsproplem6 28037 mulsproplem7 28038 mulsproplem8 28039 |
Copyright terms: Public domain | W3C validator |