MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddel12 Structured version   Visualization version   GIF version

Theorem naddel12 8695
Description: Natural addition to both sides of ordinal less-than. (Contributed by Scott Fenton, 7-Feb-2025.)
Assertion
Ref Expression
naddel12 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → ((𝐴𝐶𝐵𝐷) → (𝐴 +no 𝐵) ∈ (𝐶 +no 𝐷)))

Proof of Theorem naddel12
StepHypRef Expression
1 simprr 771 . . . 4 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → 𝐵𝐷)
2 onelon 6386 . . . . . 6 ((𝐷 ∈ On ∧ 𝐵𝐷) → 𝐵 ∈ On)
32ad2ant2l 744 . . . . 5 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → 𝐵 ∈ On)
4 simplr 767 . . . . 5 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → 𝐷 ∈ On)
5 onelon 6386 . . . . . 6 ((𝐶 ∈ On ∧ 𝐴𝐶) → 𝐴 ∈ On)
65ad2ant2r 745 . . . . 5 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → 𝐴 ∈ On)
7 naddel2 8683 . . . . 5 ((𝐵 ∈ On ∧ 𝐷 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐷 ↔ (𝐴 +no 𝐵) ∈ (𝐴 +no 𝐷)))
83, 4, 6, 7syl3anc 1371 . . . 4 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → (𝐵𝐷 ↔ (𝐴 +no 𝐵) ∈ (𝐴 +no 𝐷)))
91, 8mpbid 231 . . 3 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → (𝐴 +no 𝐵) ∈ (𝐴 +no 𝐷))
10 simprl 769 . . . 4 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → 𝐴𝐶)
11 simpll 765 . . . . 5 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → 𝐶 ∈ On)
12 naddel1 8682 . . . . 5 ((𝐴 ∈ On ∧ 𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐴𝐶 ↔ (𝐴 +no 𝐷) ∈ (𝐶 +no 𝐷)))
136, 11, 4, 12syl3anc 1371 . . . 4 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → (𝐴𝐶 ↔ (𝐴 +no 𝐷) ∈ (𝐶 +no 𝐷)))
1410, 13mpbid 231 . . 3 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → (𝐴 +no 𝐷) ∈ (𝐶 +no 𝐷))
15 naddcl 8672 . . . . 5 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐶 +no 𝐷) ∈ On)
1615adantr 481 . . . 4 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → (𝐶 +no 𝐷) ∈ On)
17 ontr1 6407 . . . 4 ((𝐶 +no 𝐷) ∈ On → (((𝐴 +no 𝐵) ∈ (𝐴 +no 𝐷) ∧ (𝐴 +no 𝐷) ∈ (𝐶 +no 𝐷)) → (𝐴 +no 𝐵) ∈ (𝐶 +no 𝐷)))
1816, 17syl 17 . . 3 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → (((𝐴 +no 𝐵) ∈ (𝐴 +no 𝐷) ∧ (𝐴 +no 𝐷) ∈ (𝐶 +no 𝐷)) → (𝐴 +no 𝐵) ∈ (𝐶 +no 𝐷)))
199, 14, 18mp2and 697 . 2 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → (𝐴 +no 𝐵) ∈ (𝐶 +no 𝐷))
2019ex 413 1 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → ((𝐴𝐶𝐵𝐷) → (𝐴 +no 𝐵) ∈ (𝐶 +no 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  Oncon0 6361  (class class class)co 7405   +no cnadd 8660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-frecs 8262  df-nadd 8661
This theorem is referenced by:  mulsproplem4  27564  mulsproplem5  27565  mulsproplem6  27566  mulsproplem7  27567  mulsproplem8  27568
  Copyright terms: Public domain W3C validator