![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > naddel12 | Structured version Visualization version GIF version |
Description: Natural addition to both sides of ordinal less-than. (Contributed by Scott Fenton, 7-Feb-2025.) |
Ref | Expression |
---|---|
naddel12 | ⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 +no 𝐵) ∈ (𝐶 +no 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 770 | . . . 4 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → 𝐵 ∈ 𝐷) | |
2 | onelon 6383 | . . . . . 6 ⊢ ((𝐷 ∈ On ∧ 𝐵 ∈ 𝐷) → 𝐵 ∈ On) | |
3 | 2 | ad2ant2l 743 | . . . . 5 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → 𝐵 ∈ On) |
4 | simplr 766 | . . . . 5 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → 𝐷 ∈ On) | |
5 | onelon 6383 | . . . . . 6 ⊢ ((𝐶 ∈ On ∧ 𝐴 ∈ 𝐶) → 𝐴 ∈ On) | |
6 | 5 | ad2ant2r 744 | . . . . 5 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → 𝐴 ∈ On) |
7 | naddel2 8689 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐷 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ∈ 𝐷 ↔ (𝐴 +no 𝐵) ∈ (𝐴 +no 𝐷))) | |
8 | 3, 4, 6, 7 | syl3anc 1368 | . . . 4 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐵 ∈ 𝐷 ↔ (𝐴 +no 𝐵) ∈ (𝐴 +no 𝐷))) |
9 | 1, 8 | mpbid 231 | . . 3 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐴 +no 𝐵) ∈ (𝐴 +no 𝐷)) |
10 | simprl 768 | . . . 4 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → 𝐴 ∈ 𝐶) | |
11 | simpll 764 | . . . . 5 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → 𝐶 ∈ On) | |
12 | naddel1 8688 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐴 ∈ 𝐶 ↔ (𝐴 +no 𝐷) ∈ (𝐶 +no 𝐷))) | |
13 | 6, 11, 4, 12 | syl3anc 1368 | . . . 4 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐴 ∈ 𝐶 ↔ (𝐴 +no 𝐷) ∈ (𝐶 +no 𝐷))) |
14 | 10, 13 | mpbid 231 | . . 3 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐴 +no 𝐷) ∈ (𝐶 +no 𝐷)) |
15 | naddcl 8678 | . . . . 5 ⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐶 +no 𝐷) ∈ On) | |
16 | 15 | adantr 480 | . . . 4 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐶 +no 𝐷) ∈ On) |
17 | ontr1 6404 | . . . 4 ⊢ ((𝐶 +no 𝐷) ∈ On → (((𝐴 +no 𝐵) ∈ (𝐴 +no 𝐷) ∧ (𝐴 +no 𝐷) ∈ (𝐶 +no 𝐷)) → (𝐴 +no 𝐵) ∈ (𝐶 +no 𝐷))) | |
18 | 16, 17 | syl 17 | . . 3 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (((𝐴 +no 𝐵) ∈ (𝐴 +no 𝐷) ∧ (𝐴 +no 𝐷) ∈ (𝐶 +no 𝐷)) → (𝐴 +no 𝐵) ∈ (𝐶 +no 𝐷))) |
19 | 9, 14, 18 | mp2and 696 | . 2 ⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐴 +no 𝐵) ∈ (𝐶 +no 𝐷)) |
20 | 19 | ex 412 | 1 ⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 +no 𝐵) ∈ (𝐶 +no 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2098 Oncon0 6358 (class class class)co 7405 +no cnadd 8666 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7974 df-2nd 7975 df-frecs 8267 df-nadd 8667 |
This theorem is referenced by: mulsproplem4 27974 mulsproplem5 27975 mulsproplem6 27976 mulsproplem7 27977 mulsproplem8 27978 |
Copyright terms: Public domain | W3C validator |