MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddel12 Structured version   Visualization version   GIF version

Theorem naddel12 8615
Description: Natural addition to both sides of ordinal less-than. (Contributed by Scott Fenton, 7-Feb-2025.)
Assertion
Ref Expression
naddel12 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → ((𝐴𝐶𝐵𝐷) → (𝐴 +no 𝐵) ∈ (𝐶 +no 𝐷)))

Proof of Theorem naddel12
StepHypRef Expression
1 simprr 772 . . . 4 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → 𝐵𝐷)
2 onelon 6331 . . . . . 6 ((𝐷 ∈ On ∧ 𝐵𝐷) → 𝐵 ∈ On)
32ad2ant2l 746 . . . . 5 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → 𝐵 ∈ On)
4 simplr 768 . . . . 5 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → 𝐷 ∈ On)
5 onelon 6331 . . . . . 6 ((𝐶 ∈ On ∧ 𝐴𝐶) → 𝐴 ∈ On)
65ad2ant2r 747 . . . . 5 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → 𝐴 ∈ On)
7 naddel2 8603 . . . . 5 ((𝐵 ∈ On ∧ 𝐷 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐷 ↔ (𝐴 +no 𝐵) ∈ (𝐴 +no 𝐷)))
83, 4, 6, 7syl3anc 1373 . . . 4 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → (𝐵𝐷 ↔ (𝐴 +no 𝐵) ∈ (𝐴 +no 𝐷)))
91, 8mpbid 232 . . 3 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → (𝐴 +no 𝐵) ∈ (𝐴 +no 𝐷))
10 simprl 770 . . . 4 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → 𝐴𝐶)
11 simpll 766 . . . . 5 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → 𝐶 ∈ On)
12 naddel1 8602 . . . . 5 ((𝐴 ∈ On ∧ 𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐴𝐶 ↔ (𝐴 +no 𝐷) ∈ (𝐶 +no 𝐷)))
136, 11, 4, 12syl3anc 1373 . . . 4 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → (𝐴𝐶 ↔ (𝐴 +no 𝐷) ∈ (𝐶 +no 𝐷)))
1410, 13mpbid 232 . . 3 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → (𝐴 +no 𝐷) ∈ (𝐶 +no 𝐷))
15 naddcl 8592 . . . . 5 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐶 +no 𝐷) ∈ On)
1615adantr 480 . . . 4 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → (𝐶 +no 𝐷) ∈ On)
17 ontr1 6353 . . . 4 ((𝐶 +no 𝐷) ∈ On → (((𝐴 +no 𝐵) ∈ (𝐴 +no 𝐷) ∧ (𝐴 +no 𝐷) ∈ (𝐶 +no 𝐷)) → (𝐴 +no 𝐵) ∈ (𝐶 +no 𝐷)))
1816, 17syl 17 . . 3 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → (((𝐴 +no 𝐵) ∈ (𝐴 +no 𝐷) ∧ (𝐴 +no 𝐷) ∈ (𝐶 +no 𝐷)) → (𝐴 +no 𝐵) ∈ (𝐶 +no 𝐷)))
199, 14, 18mp2and 699 . 2 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐴𝐶𝐵𝐷)) → (𝐴 +no 𝐵) ∈ (𝐶 +no 𝐷))
2019ex 412 1 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → ((𝐴𝐶𝐵𝐷) → (𝐴 +no 𝐵) ∈ (𝐶 +no 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  Oncon0 6306  (class class class)co 7346   +no cnadd 8580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-frecs 8211  df-nadd 8581
This theorem is referenced by:  mulsproplem4  28058  mulsproplem5  28059  mulsproplem6  28060  mulsproplem7  28061  mulsproplem8  28062
  Copyright terms: Public domain W3C validator