Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oawordex3 Structured version   Visualization version   GIF version

Theorem oawordex3 43382
Description: When 𝐴 is the sum of a limit ordinal (or zero) and a natural number and 𝐵 is the sum of a larger limit ordinal and a smaller natural number, some ordinal sum of 𝐴 is equal to 𝐵. This is a specialization of oawordex 8498. (Contributed by RP, 14-Feb-2025.)
Hypotheses
Ref Expression
naddwordnex.a (𝜑𝐴 = ((ω ·o 𝐶) +o 𝑀))
naddwordnex.b (𝜑𝐵 = ((ω ·o 𝐷) +o 𝑁))
naddwordnex.c (𝜑𝐶𝐷)
naddwordnex.d (𝜑𝐷 ∈ On)
naddwordnex.m (𝜑𝑀 ∈ ω)
naddwordnex.n (𝜑𝑁𝑀)
Assertion
Ref Expression
oawordex3 (𝜑 → ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝑀(𝑥)   𝑁(𝑥)

Proof of Theorem oawordex3
StepHypRef Expression
1 naddwordnex.a . . 3 (𝜑𝐴 = ((ω ·o 𝐶) +o 𝑀))
2 naddwordnex.b . . 3 (𝜑𝐵 = ((ω ·o 𝐷) +o 𝑁))
3 naddwordnex.c . . 3 (𝜑𝐶𝐷)
4 naddwordnex.d . . 3 (𝜑𝐷 ∈ On)
5 naddwordnex.m . . 3 (𝜑𝑀 ∈ ω)
6 naddwordnex.n . . 3 (𝜑𝑁𝑀)
71, 2, 3, 4, 5, 6naddwordnexlem1 43379 . 2 (𝜑𝐴𝐵)
8 omelon 9575 . . . . . . 7 ω ∈ On
98a1i 11 . . . . . 6 (𝜑 → ω ∈ On)
10 onelon 6345 . . . . . . 7 ((𝐷 ∈ On ∧ 𝐶𝐷) → 𝐶 ∈ On)
114, 3, 10syl2anc 584 . . . . . 6 (𝜑𝐶 ∈ On)
12 omcl 8477 . . . . . 6 ((ω ∈ On ∧ 𝐶 ∈ On) → (ω ·o 𝐶) ∈ On)
139, 11, 12syl2anc 584 . . . . 5 (𝜑 → (ω ·o 𝐶) ∈ On)
14 nnon 7828 . . . . . 6 (𝑀 ∈ ω → 𝑀 ∈ On)
155, 14syl 17 . . . . 5 (𝜑𝑀 ∈ On)
16 oacl 8476 . . . . 5 (((ω ·o 𝐶) ∈ On ∧ 𝑀 ∈ On) → ((ω ·o 𝐶) +o 𝑀) ∈ On)
1713, 15, 16syl2anc 584 . . . 4 (𝜑 → ((ω ·o 𝐶) +o 𝑀) ∈ On)
181, 17eqeltrd 2828 . . 3 (𝜑𝐴 ∈ On)
19 omcl 8477 . . . . . 6 ((ω ∈ On ∧ 𝐷 ∈ On) → (ω ·o 𝐷) ∈ On)
209, 4, 19syl2anc 584 . . . . 5 (𝜑 → (ω ·o 𝐷) ∈ On)
216, 5jca 511 . . . . . . 7 (𝜑 → (𝑁𝑀𝑀 ∈ ω))
22 ontr1 6367 . . . . . . 7 (ω ∈ On → ((𝑁𝑀𝑀 ∈ ω) → 𝑁 ∈ ω))
239, 21, 22sylc 65 . . . . . 6 (𝜑𝑁 ∈ ω)
24 nnon 7828 . . . . . 6 (𝑁 ∈ ω → 𝑁 ∈ On)
2523, 24syl 17 . . . . 5 (𝜑𝑁 ∈ On)
26 oacl 8476 . . . . 5 (((ω ·o 𝐷) ∈ On ∧ 𝑁 ∈ On) → ((ω ·o 𝐷) +o 𝑁) ∈ On)
2720, 25, 26syl2anc 584 . . . 4 (𝜑 → ((ω ·o 𝐷) +o 𝑁) ∈ On)
282, 27eqeltrd 2828 . . 3 (𝜑𝐵 ∈ On)
29 oawordex 8498 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵))
3018, 28, 29syl2anc 584 . 2 (𝜑 → (𝐴𝐵 ↔ ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵))
317, 30mpbid 232 1 (𝜑 → ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  wss 3911  Oncon0 6320  (class class class)co 7369  ωcom 7822   +o coa 8408   ·o comu 8409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-oadd 8415  df-omul 8416
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator