Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oawordex3 Structured version   Visualization version   GIF version

Theorem oawordex3 43393
Description: When 𝐴 is the sum of a limit ordinal (or zero) and a natural number and 𝐵 is the sum of a larger limit ordinal and a smaller natural number, some ordinal sum of 𝐴 is equal to 𝐵. This is a specialization of oawordex 8475. (Contributed by RP, 14-Feb-2025.)
Hypotheses
Ref Expression
naddwordnex.a (𝜑𝐴 = ((ω ·o 𝐶) +o 𝑀))
naddwordnex.b (𝜑𝐵 = ((ω ·o 𝐷) +o 𝑁))
naddwordnex.c (𝜑𝐶𝐷)
naddwordnex.d (𝜑𝐷 ∈ On)
naddwordnex.m (𝜑𝑀 ∈ ω)
naddwordnex.n (𝜑𝑁𝑀)
Assertion
Ref Expression
oawordex3 (𝜑 → ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝑀(𝑥)   𝑁(𝑥)

Proof of Theorem oawordex3
StepHypRef Expression
1 naddwordnex.a . . 3 (𝜑𝐴 = ((ω ·o 𝐶) +o 𝑀))
2 naddwordnex.b . . 3 (𝜑𝐵 = ((ω ·o 𝐷) +o 𝑁))
3 naddwordnex.c . . 3 (𝜑𝐶𝐷)
4 naddwordnex.d . . 3 (𝜑𝐷 ∈ On)
5 naddwordnex.m . . 3 (𝜑𝑀 ∈ ω)
6 naddwordnex.n . . 3 (𝜑𝑁𝑀)
71, 2, 3, 4, 5, 6naddwordnexlem1 43390 . 2 (𝜑𝐴𝐵)
8 omelon 9542 . . . . . . 7 ω ∈ On
98a1i 11 . . . . . 6 (𝜑 → ω ∈ On)
10 onelon 6332 . . . . . . 7 ((𝐷 ∈ On ∧ 𝐶𝐷) → 𝐶 ∈ On)
114, 3, 10syl2anc 584 . . . . . 6 (𝜑𝐶 ∈ On)
12 omcl 8454 . . . . . 6 ((ω ∈ On ∧ 𝐶 ∈ On) → (ω ·o 𝐶) ∈ On)
139, 11, 12syl2anc 584 . . . . 5 (𝜑 → (ω ·o 𝐶) ∈ On)
14 nnon 7805 . . . . . 6 (𝑀 ∈ ω → 𝑀 ∈ On)
155, 14syl 17 . . . . 5 (𝜑𝑀 ∈ On)
16 oacl 8453 . . . . 5 (((ω ·o 𝐶) ∈ On ∧ 𝑀 ∈ On) → ((ω ·o 𝐶) +o 𝑀) ∈ On)
1713, 15, 16syl2anc 584 . . . 4 (𝜑 → ((ω ·o 𝐶) +o 𝑀) ∈ On)
181, 17eqeltrd 2828 . . 3 (𝜑𝐴 ∈ On)
19 omcl 8454 . . . . . 6 ((ω ∈ On ∧ 𝐷 ∈ On) → (ω ·o 𝐷) ∈ On)
209, 4, 19syl2anc 584 . . . . 5 (𝜑 → (ω ·o 𝐷) ∈ On)
216, 5jca 511 . . . . . . 7 (𝜑 → (𝑁𝑀𝑀 ∈ ω))
22 ontr1 6354 . . . . . . 7 (ω ∈ On → ((𝑁𝑀𝑀 ∈ ω) → 𝑁 ∈ ω))
239, 21, 22sylc 65 . . . . . 6 (𝜑𝑁 ∈ ω)
24 nnon 7805 . . . . . 6 (𝑁 ∈ ω → 𝑁 ∈ On)
2523, 24syl 17 . . . . 5 (𝜑𝑁 ∈ On)
26 oacl 8453 . . . . 5 (((ω ·o 𝐷) ∈ On ∧ 𝑁 ∈ On) → ((ω ·o 𝐷) +o 𝑁) ∈ On)
2720, 25, 26syl2anc 584 . . . 4 (𝜑 → ((ω ·o 𝐷) +o 𝑁) ∈ On)
282, 27eqeltrd 2828 . . 3 (𝜑𝐵 ∈ On)
29 oawordex 8475 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵))
3018, 28, 29syl2anc 584 . 2 (𝜑 → (𝐴𝐵 ↔ ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵))
317, 30mpbid 232 1 (𝜑 → ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  wss 3903  Oncon0 6307  (class class class)co 7349  ωcom 7799   +o coa 8385   ·o comu 8386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-oadd 8392  df-omul 8393
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator