![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oawordex3 | Structured version Visualization version GIF version |
Description: When 𝐴 is the sum of a limit ordinal (or zero) and a natural number and 𝐵 is the sum of a larger limit ordinal and a smaller natural number, some ordinal sum of 𝐴 is equal to 𝐵. This is a specialization of oawordex 8613. (Contributed by RP, 14-Feb-2025.) |
Ref | Expression |
---|---|
naddwordnex.a | ⊢ (𝜑 → 𝐴 = ((ω ·o 𝐶) +o 𝑀)) |
naddwordnex.b | ⊢ (𝜑 → 𝐵 = ((ω ·o 𝐷) +o 𝑁)) |
naddwordnex.c | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
naddwordnex.d | ⊢ (𝜑 → 𝐷 ∈ On) |
naddwordnex.m | ⊢ (𝜑 → 𝑀 ∈ ω) |
naddwordnex.n | ⊢ (𝜑 → 𝑁 ∈ 𝑀) |
Ref | Expression |
---|---|
oawordex3 | ⊢ (𝜑 → ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | naddwordnex.a | . . 3 ⊢ (𝜑 → 𝐴 = ((ω ·o 𝐶) +o 𝑀)) | |
2 | naddwordnex.b | . . 3 ⊢ (𝜑 → 𝐵 = ((ω ·o 𝐷) +o 𝑁)) | |
3 | naddwordnex.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐷) | |
4 | naddwordnex.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ On) | |
5 | naddwordnex.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ω) | |
6 | naddwordnex.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ 𝑀) | |
7 | 1, 2, 3, 4, 5, 6 | naddwordnexlem1 43359 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
8 | omelon 9715 | . . . . . . 7 ⊢ ω ∈ On | |
9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ω ∈ On) |
10 | onelon 6420 | . . . . . . 7 ⊢ ((𝐷 ∈ On ∧ 𝐶 ∈ 𝐷) → 𝐶 ∈ On) | |
11 | 4, 3, 10 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ On) |
12 | omcl 8592 | . . . . . 6 ⊢ ((ω ∈ On ∧ 𝐶 ∈ On) → (ω ·o 𝐶) ∈ On) | |
13 | 9, 11, 12 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → (ω ·o 𝐶) ∈ On) |
14 | nnon 7909 | . . . . . 6 ⊢ (𝑀 ∈ ω → 𝑀 ∈ On) | |
15 | 5, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ On) |
16 | oacl 8591 | . . . . 5 ⊢ (((ω ·o 𝐶) ∈ On ∧ 𝑀 ∈ On) → ((ω ·o 𝐶) +o 𝑀) ∈ On) | |
17 | 13, 15, 16 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ((ω ·o 𝐶) +o 𝑀) ∈ On) |
18 | 1, 17 | eqeltrd 2844 | . . 3 ⊢ (𝜑 → 𝐴 ∈ On) |
19 | omcl 8592 | . . . . . 6 ⊢ ((ω ∈ On ∧ 𝐷 ∈ On) → (ω ·o 𝐷) ∈ On) | |
20 | 9, 4, 19 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → (ω ·o 𝐷) ∈ On) |
21 | 6, 5 | jca 511 | . . . . . . 7 ⊢ (𝜑 → (𝑁 ∈ 𝑀 ∧ 𝑀 ∈ ω)) |
22 | ontr1 6441 | . . . . . . 7 ⊢ (ω ∈ On → ((𝑁 ∈ 𝑀 ∧ 𝑀 ∈ ω) → 𝑁 ∈ ω)) | |
23 | 9, 21, 22 | sylc 65 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ω) |
24 | nnon 7909 | . . . . . 6 ⊢ (𝑁 ∈ ω → 𝑁 ∈ On) | |
25 | 23, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ On) |
26 | oacl 8591 | . . . . 5 ⊢ (((ω ·o 𝐷) ∈ On ∧ 𝑁 ∈ On) → ((ω ·o 𝐷) +o 𝑁) ∈ On) | |
27 | 20, 25, 26 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ((ω ·o 𝐷) +o 𝑁) ∈ On) |
28 | 2, 27 | eqeltrd 2844 | . . 3 ⊢ (𝜑 → 𝐵 ∈ On) |
29 | oawordex 8613 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵)) | |
30 | 18, 28, 29 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵)) |
31 | 7, 30 | mpbid 232 | 1 ⊢ (𝜑 → ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ⊆ wss 3976 Oncon0 6395 (class class class)co 7448 ωcom 7903 +o coa 8519 ·o comu 8520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-inf2 9710 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-oadd 8526 df-omul 8527 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |