| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oawordex3 | Structured version Visualization version GIF version | ||
| Description: When 𝐴 is the sum of a limit ordinal (or zero) and a natural number and 𝐵 is the sum of a larger limit ordinal and a smaller natural number, some ordinal sum of 𝐴 is equal to 𝐵. This is a specialization of oawordex 8524. (Contributed by RP, 14-Feb-2025.) |
| Ref | Expression |
|---|---|
| naddwordnex.a | ⊢ (𝜑 → 𝐴 = ((ω ·o 𝐶) +o 𝑀)) |
| naddwordnex.b | ⊢ (𝜑 → 𝐵 = ((ω ·o 𝐷) +o 𝑁)) |
| naddwordnex.c | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| naddwordnex.d | ⊢ (𝜑 → 𝐷 ∈ On) |
| naddwordnex.m | ⊢ (𝜑 → 𝑀 ∈ ω) |
| naddwordnex.n | ⊢ (𝜑 → 𝑁 ∈ 𝑀) |
| Ref | Expression |
|---|---|
| oawordex3 | ⊢ (𝜑 → ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | naddwordnex.a | . . 3 ⊢ (𝜑 → 𝐴 = ((ω ·o 𝐶) +o 𝑀)) | |
| 2 | naddwordnex.b | . . 3 ⊢ (𝜑 → 𝐵 = ((ω ·o 𝐷) +o 𝑁)) | |
| 3 | naddwordnex.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐷) | |
| 4 | naddwordnex.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ On) | |
| 5 | naddwordnex.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ω) | |
| 6 | naddwordnex.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ 𝑀) | |
| 7 | 1, 2, 3, 4, 5, 6 | naddwordnexlem1 43393 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| 8 | omelon 9606 | . . . . . . 7 ⊢ ω ∈ On | |
| 9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ω ∈ On) |
| 10 | onelon 6360 | . . . . . . 7 ⊢ ((𝐷 ∈ On ∧ 𝐶 ∈ 𝐷) → 𝐶 ∈ On) | |
| 11 | 4, 3, 10 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ On) |
| 12 | omcl 8503 | . . . . . 6 ⊢ ((ω ∈ On ∧ 𝐶 ∈ On) → (ω ·o 𝐶) ∈ On) | |
| 13 | 9, 11, 12 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (ω ·o 𝐶) ∈ On) |
| 14 | nnon 7851 | . . . . . 6 ⊢ (𝑀 ∈ ω → 𝑀 ∈ On) | |
| 15 | 5, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ On) |
| 16 | oacl 8502 | . . . . 5 ⊢ (((ω ·o 𝐶) ∈ On ∧ 𝑀 ∈ On) → ((ω ·o 𝐶) +o 𝑀) ∈ On) | |
| 17 | 13, 15, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((ω ·o 𝐶) +o 𝑀) ∈ On) |
| 18 | 1, 17 | eqeltrd 2829 | . . 3 ⊢ (𝜑 → 𝐴 ∈ On) |
| 19 | omcl 8503 | . . . . . 6 ⊢ ((ω ∈ On ∧ 𝐷 ∈ On) → (ω ·o 𝐷) ∈ On) | |
| 20 | 9, 4, 19 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (ω ·o 𝐷) ∈ On) |
| 21 | 6, 5 | jca 511 | . . . . . . 7 ⊢ (𝜑 → (𝑁 ∈ 𝑀 ∧ 𝑀 ∈ ω)) |
| 22 | ontr1 6382 | . . . . . . 7 ⊢ (ω ∈ On → ((𝑁 ∈ 𝑀 ∧ 𝑀 ∈ ω) → 𝑁 ∈ ω)) | |
| 23 | 9, 21, 22 | sylc 65 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ω) |
| 24 | nnon 7851 | . . . . . 6 ⊢ (𝑁 ∈ ω → 𝑁 ∈ On) | |
| 25 | 23, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ On) |
| 26 | oacl 8502 | . . . . 5 ⊢ (((ω ·o 𝐷) ∈ On ∧ 𝑁 ∈ On) → ((ω ·o 𝐷) +o 𝑁) ∈ On) | |
| 27 | 20, 25, 26 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((ω ·o 𝐷) +o 𝑁) ∈ On) |
| 28 | 2, 27 | eqeltrd 2829 | . . 3 ⊢ (𝜑 → 𝐵 ∈ On) |
| 29 | oawordex 8524 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵)) | |
| 30 | 18, 28, 29 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵)) |
| 31 | 7, 30 | mpbid 232 | 1 ⊢ (𝜑 → ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 ⊆ wss 3917 Oncon0 6335 (class class class)co 7390 ωcom 7845 +o coa 8434 ·o comu 8435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-oadd 8441 df-omul 8442 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |