Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oawordex3 Structured version   Visualization version   GIF version

Theorem oawordex3 43362
Description: When 𝐴 is the sum of a limit ordinal (or zero) and a natural number and 𝐵 is the sum of a larger limit ordinal and a smaller natural number, some ordinal sum of 𝐴 is equal to 𝐵. This is a specialization of oawordex 8613. (Contributed by RP, 14-Feb-2025.)
Hypotheses
Ref Expression
naddwordnex.a (𝜑𝐴 = ((ω ·o 𝐶) +o 𝑀))
naddwordnex.b (𝜑𝐵 = ((ω ·o 𝐷) +o 𝑁))
naddwordnex.c (𝜑𝐶𝐷)
naddwordnex.d (𝜑𝐷 ∈ On)
naddwordnex.m (𝜑𝑀 ∈ ω)
naddwordnex.n (𝜑𝑁𝑀)
Assertion
Ref Expression
oawordex3 (𝜑 → ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝑀(𝑥)   𝑁(𝑥)

Proof of Theorem oawordex3
StepHypRef Expression
1 naddwordnex.a . . 3 (𝜑𝐴 = ((ω ·o 𝐶) +o 𝑀))
2 naddwordnex.b . . 3 (𝜑𝐵 = ((ω ·o 𝐷) +o 𝑁))
3 naddwordnex.c . . 3 (𝜑𝐶𝐷)
4 naddwordnex.d . . 3 (𝜑𝐷 ∈ On)
5 naddwordnex.m . . 3 (𝜑𝑀 ∈ ω)
6 naddwordnex.n . . 3 (𝜑𝑁𝑀)
71, 2, 3, 4, 5, 6naddwordnexlem1 43359 . 2 (𝜑𝐴𝐵)
8 omelon 9715 . . . . . . 7 ω ∈ On
98a1i 11 . . . . . 6 (𝜑 → ω ∈ On)
10 onelon 6420 . . . . . . 7 ((𝐷 ∈ On ∧ 𝐶𝐷) → 𝐶 ∈ On)
114, 3, 10syl2anc 583 . . . . . 6 (𝜑𝐶 ∈ On)
12 omcl 8592 . . . . . 6 ((ω ∈ On ∧ 𝐶 ∈ On) → (ω ·o 𝐶) ∈ On)
139, 11, 12syl2anc 583 . . . . 5 (𝜑 → (ω ·o 𝐶) ∈ On)
14 nnon 7909 . . . . . 6 (𝑀 ∈ ω → 𝑀 ∈ On)
155, 14syl 17 . . . . 5 (𝜑𝑀 ∈ On)
16 oacl 8591 . . . . 5 (((ω ·o 𝐶) ∈ On ∧ 𝑀 ∈ On) → ((ω ·o 𝐶) +o 𝑀) ∈ On)
1713, 15, 16syl2anc 583 . . . 4 (𝜑 → ((ω ·o 𝐶) +o 𝑀) ∈ On)
181, 17eqeltrd 2844 . . 3 (𝜑𝐴 ∈ On)
19 omcl 8592 . . . . . 6 ((ω ∈ On ∧ 𝐷 ∈ On) → (ω ·o 𝐷) ∈ On)
209, 4, 19syl2anc 583 . . . . 5 (𝜑 → (ω ·o 𝐷) ∈ On)
216, 5jca 511 . . . . . . 7 (𝜑 → (𝑁𝑀𝑀 ∈ ω))
22 ontr1 6441 . . . . . . 7 (ω ∈ On → ((𝑁𝑀𝑀 ∈ ω) → 𝑁 ∈ ω))
239, 21, 22sylc 65 . . . . . 6 (𝜑𝑁 ∈ ω)
24 nnon 7909 . . . . . 6 (𝑁 ∈ ω → 𝑁 ∈ On)
2523, 24syl 17 . . . . 5 (𝜑𝑁 ∈ On)
26 oacl 8591 . . . . 5 (((ω ·o 𝐷) ∈ On ∧ 𝑁 ∈ On) → ((ω ·o 𝐷) +o 𝑁) ∈ On)
2720, 25, 26syl2anc 583 . . . 4 (𝜑 → ((ω ·o 𝐷) +o 𝑁) ∈ On)
282, 27eqeltrd 2844 . . 3 (𝜑𝐵 ∈ On)
29 oawordex 8613 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵))
3018, 28, 29syl2anc 583 . 2 (𝜑 → (𝐴𝐵 ↔ ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵))
317, 30mpbid 232 1 (𝜑 → ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  wss 3976  Oncon0 6395  (class class class)co 7448  ωcom 7903   +o coa 8519   ·o comu 8520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-oadd 8526  df-omul 8527
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator