Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > opnssborel | Structured version Visualization version GIF version |
Description: Open sets of a generalized real Euclidean space are Borel sets (notice that this theorem is even more general, because 𝑋 is not required to be a set). (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
opnssborel.a | ⊢ 𝐴 = (TopOpen‘(ℝ^‘𝑋)) |
opnssborel.b | ⊢ 𝐵 = (SalGen‘𝐴) |
Ref | Expression |
---|---|
opnssborel | ⊢ 𝐴 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opnssborel.a | . . 3 ⊢ 𝐴 = (TopOpen‘(ℝ^‘𝑋)) | |
2 | 1 | fvexi 6806 | . 2 ⊢ 𝐴 ∈ V |
3 | opnssborel.b | . . 3 ⊢ 𝐵 = (SalGen‘𝐴) | |
4 | 3 | sssalgen 43909 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ⊆ 𝐵) |
5 | 2, 4 | ax-mp 5 | 1 ⊢ 𝐴 ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2101 Vcvv 3434 ⊆ wss 3889 ‘cfv 6447 TopOpenctopn 17160 ℝ^crrx 24575 SalGencsalgen 43888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-int 4883 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-iota 6399 df-fun 6449 df-fv 6455 df-salg 43885 df-salgen 43889 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |