Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnssborel Structured version   Visualization version   GIF version

Theorem opnssborel 44966
Description: Open sets of a generalized real Euclidean space are Borel sets (notice that this theorem is even more general, because 𝑋 is not required to be a set). (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
opnssborel.a 𝐴 = (TopOpenβ€˜(ℝ^β€˜π‘‹))
opnssborel.b 𝐡 = (SalGenβ€˜π΄)
Assertion
Ref Expression
opnssborel 𝐴 βŠ† 𝐡

Proof of Theorem opnssborel
StepHypRef Expression
1 opnssborel.a . . 3 𝐴 = (TopOpenβ€˜(ℝ^β€˜π‘‹))
21fvexi 6860 . 2 𝐴 ∈ V
3 opnssborel.b . . 3 𝐡 = (SalGenβ€˜π΄)
43sssalgen 44666 . 2 (𝐴 ∈ V β†’ 𝐴 βŠ† 𝐡)
52, 4ax-mp 5 1 𝐴 βŠ† 𝐡
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542   ∈ wcel 2107  Vcvv 3447   βŠ† wss 3914  β€˜cfv 6500  TopOpenctopn 17311  β„^crrx 24770  SalGencsalgen 44643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-iota 6452  df-fun 6502  df-fv 6508  df-salg 44640  df-salgen 44644
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator