![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opnssborel | Structured version Visualization version GIF version |
Description: Open sets of a generalized real Euclidean space are Borel sets (notice that this theorem is even more general, because 𝑋 is not required to be a set). (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
opnssborel.a | ⊢ 𝐴 = (TopOpen‘(ℝ^‘𝑋)) |
opnssborel.b | ⊢ 𝐵 = (SalGen‘𝐴) |
Ref | Expression |
---|---|
opnssborel | ⊢ 𝐴 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opnssborel.a | . . 3 ⊢ 𝐴 = (TopOpen‘(ℝ^‘𝑋)) | |
2 | 1 | fvexi 6544 | . 2 ⊢ 𝐴 ∈ V |
3 | opnssborel.b | . . 3 ⊢ 𝐵 = (SalGen‘𝐴) | |
4 | 3 | sssalgen 42114 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ⊆ 𝐵) |
5 | 2, 4 | ax-mp 5 | 1 ⊢ 𝐴 ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1520 ∈ wcel 2079 Vcvv 3432 ⊆ wss 3854 ‘cfv 6217 TopOpenctopn 16512 ℝ^crrx 23657 SalGencsalgen 42093 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-ral 3108 df-rex 3109 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-op 4473 df-uni 4740 df-int 4777 df-br 4957 df-opab 5019 df-mpt 5036 df-id 5340 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-iota 6181 df-fun 6219 df-fv 6225 df-salg 42090 df-salgen 42094 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |