Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnssborel Structured version   Visualization version   GIF version

Theorem opnssborel 46640
Description: Open sets of a generalized real Euclidean space are Borel sets (notice that this theorem is even more general, because 𝑋 is not required to be a set). (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
opnssborel.a 𝐴 = (TopOpen‘(ℝ^‘𝑋))
opnssborel.b 𝐵 = (SalGen‘𝐴)
Assertion
Ref Expression
opnssborel 𝐴𝐵

Proof of Theorem opnssborel
StepHypRef Expression
1 opnssborel.a . . 3 𝐴 = (TopOpen‘(ℝ^‘𝑋))
21fvexi 6875 . 2 𝐴 ∈ V
3 opnssborel.b . . 3 𝐵 = (SalGen‘𝐴)
43sssalgen 46340 . 2 (𝐴 ∈ V → 𝐴𝐵)
52, 4ax-mp 5 1 𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917  cfv 6514  TopOpenctopn 17391  ℝ^crrx 25290  SalGencsalgen 46317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-salg 46314  df-salgen 46318
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator