Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > opnssborel | Structured version Visualization version GIF version |
Description: Open sets of a generalized real Euclidean space are Borel sets (notice that this theorem is even more general, because 𝑋 is not required to be a set). (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
opnssborel.a | ⊢ 𝐴 = (TopOpen‘(ℝ^‘𝑋)) |
opnssborel.b | ⊢ 𝐵 = (SalGen‘𝐴) |
Ref | Expression |
---|---|
opnssborel | ⊢ 𝐴 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opnssborel.a | . . 3 ⊢ 𝐴 = (TopOpen‘(ℝ^‘𝑋)) | |
2 | 1 | fvexi 6670 | . 2 ⊢ 𝐴 ∈ V |
3 | opnssborel.b | . . 3 ⊢ 𝐵 = (SalGen‘𝐴) | |
4 | 3 | sssalgen 43331 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ⊆ 𝐵) |
5 | 2, 4 | ax-mp 5 | 1 ⊢ 𝐴 ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2112 Vcvv 3410 ⊆ wss 3859 ‘cfv 6333 TopOpenctopn 16743 ℝ^crrx 24073 SalGencsalgen 43310 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7457 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-op 4527 df-uni 4797 df-int 4837 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5428 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-iota 6292 df-fun 6335 df-fv 6341 df-salg 43307 df-salgen 43311 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |