MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthdlem2 Structured version   Visualization version   GIF version

Theorem pthdlem2 27557
Description: Lemma 2 for pthd 27558. (Contributed by Alexander van der Vekens, 11-Nov-2017.) (Revised by AV, 10-Feb-2021.)
Hypotheses
Ref Expression
pthd.p (𝜑𝑃 ∈ Word V)
pthd.r 𝑅 = ((♯‘𝑃) − 1)
pthd.s (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
Assertion
Ref Expression
pthdlem2 (𝜑 → ((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ∅)
Distinct variable groups:   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗   𝜑,𝑖,𝑗

Proof of Theorem pthdlem2
StepHypRef Expression
1 pthd.p . . . 4 (𝜑𝑃 ∈ Word V)
2 lencl 13876 . . . 4 (𝑃 ∈ Word V → (♯‘𝑃) ∈ ℕ0)
3 df-ne 2988 . . . . 5 ((♯‘𝑃) ≠ 0 ↔ ¬ (♯‘𝑃) = 0)
4 elnnne0 11899 . . . . . 6 ((♯‘𝑃) ∈ ℕ ↔ ((♯‘𝑃) ∈ ℕ0 ∧ (♯‘𝑃) ≠ 0))
54simplbi2 504 . . . . 5 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) ≠ 0 → (♯‘𝑃) ∈ ℕ))
63, 5syl5bir 246 . . . 4 ((♯‘𝑃) ∈ ℕ0 → (¬ (♯‘𝑃) = 0 → (♯‘𝑃) ∈ ℕ))
71, 2, 63syl 18 . . 3 (𝜑 → (¬ (♯‘𝑃) = 0 → (♯‘𝑃) ∈ ℕ))
8 eqid 2798 . . . . . . 7 0 = 0
98orci 862 . . . . . 6 (0 = 0 ∨ 0 = 𝑅)
10 pthd.r . . . . . . 7 𝑅 = ((♯‘𝑃) − 1)
11 pthd.s . . . . . . 7 (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
121, 10, 11pthdlem2lem 27556 . . . . . 6 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (0 = 0 ∨ 0 = 𝑅)) → (𝑃‘0) ∉ (𝑃 “ (1..^𝑅)))
139, 12mp3an3 1447 . . . . 5 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ) → (𝑃‘0) ∉ (𝑃 “ (1..^𝑅)))
14 eqid 2798 . . . . . . 7 𝑅 = 𝑅
1514olci 863 . . . . . 6 (𝑅 = 0 ∨ 𝑅 = 𝑅)
161, 10, 11pthdlem2lem 27556 . . . . . 6 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝑅 = 0 ∨ 𝑅 = 𝑅)) → (𝑃𝑅) ∉ (𝑃 “ (1..^𝑅)))
1715, 16mp3an3 1447 . . . . 5 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ) → (𝑃𝑅) ∉ (𝑃 “ (1..^𝑅)))
18 wrdffz 13878 . . . . . . . . 9 (𝑃 ∈ Word V → 𝑃:(0...((♯‘𝑃) − 1))⟶V)
191, 18syl 17 . . . . . . . 8 (𝜑𝑃:(0...((♯‘𝑃) − 1))⟶V)
2019adantr 484 . . . . . . 7 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ) → 𝑃:(0...((♯‘𝑃) − 1))⟶V)
2110oveq2i 7146 . . . . . . . 8 (0...𝑅) = (0...((♯‘𝑃) − 1))
2221feq2i 6479 . . . . . . 7 (𝑃:(0...𝑅)⟶V ↔ 𝑃:(0...((♯‘𝑃) − 1))⟶V)
2320, 22sylibr 237 . . . . . 6 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ) → 𝑃:(0...𝑅)⟶V)
24 nnm1nn0 11926 . . . . . . . 8 ((♯‘𝑃) ∈ ℕ → ((♯‘𝑃) − 1) ∈ ℕ0)
2510, 24eqeltrid 2894 . . . . . . 7 ((♯‘𝑃) ∈ ℕ → 𝑅 ∈ ℕ0)
2625adantl 485 . . . . . 6 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ) → 𝑅 ∈ ℕ0)
27 fvinim0ffz 13151 . . . . . 6 ((𝑃:(0...𝑅)⟶V ∧ 𝑅 ∈ ℕ0) → (((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ∅ ↔ ((𝑃‘0) ∉ (𝑃 “ (1..^𝑅)) ∧ (𝑃𝑅) ∉ (𝑃 “ (1..^𝑅)))))
2823, 26, 27syl2anc 587 . . . . 5 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ) → (((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ∅ ↔ ((𝑃‘0) ∉ (𝑃 “ (1..^𝑅)) ∧ (𝑃𝑅) ∉ (𝑃 “ (1..^𝑅)))))
2913, 17, 28mpbir2and 712 . . . 4 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ) → ((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ∅)
3029ex 416 . . 3 (𝜑 → ((♯‘𝑃) ∈ ℕ → ((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ∅))
317, 30syld 47 . 2 (𝜑 → (¬ (♯‘𝑃) = 0 → ((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ∅))
32 oveq1 7142 . . . . . . . . 9 ((♯‘𝑃) = 0 → ((♯‘𝑃) − 1) = (0 − 1))
3310, 32syl5eq 2845 . . . . . . . 8 ((♯‘𝑃) = 0 → 𝑅 = (0 − 1))
3433oveq2d 7151 . . . . . . 7 ((♯‘𝑃) = 0 → (1..^𝑅) = (1..^(0 − 1)))
35 0le2 11727 . . . . . . . . . 10 0 ≤ 2
36 1p1e2 11750 . . . . . . . . . 10 (1 + 1) = 2
3735, 36breqtrri 5057 . . . . . . . . 9 0 ≤ (1 + 1)
38 0re 10632 . . . . . . . . . 10 0 ∈ ℝ
39 1re 10630 . . . . . . . . . 10 1 ∈ ℝ
4038, 39, 39lesubadd2i 11189 . . . . . . . . 9 ((0 − 1) ≤ 1 ↔ 0 ≤ (1 + 1))
4137, 40mpbir 234 . . . . . . . 8 (0 − 1) ≤ 1
42 1z 12000 . . . . . . . . 9 1 ∈ ℤ
43 0z 11980 . . . . . . . . . 10 0 ∈ ℤ
44 peano2zm 12013 . . . . . . . . . 10 (0 ∈ ℤ → (0 − 1) ∈ ℤ)
4543, 44ax-mp 5 . . . . . . . . 9 (0 − 1) ∈ ℤ
46 fzon 13053 . . . . . . . . 9 ((1 ∈ ℤ ∧ (0 − 1) ∈ ℤ) → ((0 − 1) ≤ 1 ↔ (1..^(0 − 1)) = ∅))
4742, 45, 46mp2an 691 . . . . . . . 8 ((0 − 1) ≤ 1 ↔ (1..^(0 − 1)) = ∅)
4841, 47mpbi 233 . . . . . . 7 (1..^(0 − 1)) = ∅
4934, 48eqtrdi 2849 . . . . . 6 ((♯‘𝑃) = 0 → (1..^𝑅) = ∅)
5049imaeq2d 5896 . . . . 5 ((♯‘𝑃) = 0 → (𝑃 “ (1..^𝑅)) = (𝑃 “ ∅))
51 ima0 5912 . . . . 5 (𝑃 “ ∅) = ∅
5250, 51eqtrdi 2849 . . . 4 ((♯‘𝑃) = 0 → (𝑃 “ (1..^𝑅)) = ∅)
5352ineq2d 4139 . . 3 ((♯‘𝑃) = 0 → ((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ((𝑃 “ {0, 𝑅}) ∩ ∅))
54 in0 4299 . . 3 ((𝑃 “ {0, 𝑅}) ∩ ∅) = ∅
5553, 54eqtrdi 2849 . 2 ((♯‘𝑃) = 0 → ((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ∅)
5631, 55pm2.61d2 184 1 (𝜑 → ((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wne 2987  wnel 3091  wral 3106  Vcvv 3441  cin 3880  c0 4243  {cpr 4527   class class class wbr 5030  cima 5522  wf 6320  cfv 6324  (class class class)co 7135  0cc0 10526  1c1 10527   + caddc 10529  cle 10665  cmin 10859  cn 11625  2c2 11680  0cn0 11885  cz 11969  ...cfz 12885  ..^cfzo 13028  chash 13686  Word cword 13857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858
This theorem is referenced by:  pthd  27558
  Copyright terms: Public domain W3C validator