MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthdlem2 Structured version   Visualization version   GIF version

Theorem pthdlem2 29747
Description: Lemma 2 for pthd 29748. (Contributed by Alexander van der Vekens, 11-Nov-2017.) (Revised by AV, 10-Feb-2021.)
Hypotheses
Ref Expression
pthd.p (𝜑𝑃 ∈ Word V)
pthd.r 𝑅 = ((♯‘𝑃) − 1)
pthd.s (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
Assertion
Ref Expression
pthdlem2 (𝜑 → ((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ∅)
Distinct variable groups:   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗   𝜑,𝑖,𝑗

Proof of Theorem pthdlem2
StepHypRef Expression
1 pthd.p . . . 4 (𝜑𝑃 ∈ Word V)
2 lencl 14440 . . . 4 (𝑃 ∈ Word V → (♯‘𝑃) ∈ ℕ0)
3 df-ne 2929 . . . . 5 ((♯‘𝑃) ≠ 0 ↔ ¬ (♯‘𝑃) = 0)
4 elnnne0 12395 . . . . . 6 ((♯‘𝑃) ∈ ℕ ↔ ((♯‘𝑃) ∈ ℕ0 ∧ (♯‘𝑃) ≠ 0))
54simplbi2 500 . . . . 5 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) ≠ 0 → (♯‘𝑃) ∈ ℕ))
63, 5biimtrrid 243 . . . 4 ((♯‘𝑃) ∈ ℕ0 → (¬ (♯‘𝑃) = 0 → (♯‘𝑃) ∈ ℕ))
71, 2, 63syl 18 . . 3 (𝜑 → (¬ (♯‘𝑃) = 0 → (♯‘𝑃) ∈ ℕ))
8 eqid 2731 . . . . . . 7 0 = 0
98orci 865 . . . . . 6 (0 = 0 ∨ 0 = 𝑅)
10 pthd.r . . . . . . 7 𝑅 = ((♯‘𝑃) − 1)
11 pthd.s . . . . . . 7 (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
121, 10, 11pthdlem2lem 29746 . . . . . 6 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (0 = 0 ∨ 0 = 𝑅)) → (𝑃‘0) ∉ (𝑃 “ (1..^𝑅)))
139, 12mp3an3 1452 . . . . 5 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ) → (𝑃‘0) ∉ (𝑃 “ (1..^𝑅)))
14 eqid 2731 . . . . . . 7 𝑅 = 𝑅
1514olci 866 . . . . . 6 (𝑅 = 0 ∨ 𝑅 = 𝑅)
161, 10, 11pthdlem2lem 29746 . . . . . 6 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝑅 = 0 ∨ 𝑅 = 𝑅)) → (𝑃𝑅) ∉ (𝑃 “ (1..^𝑅)))
1715, 16mp3an3 1452 . . . . 5 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ) → (𝑃𝑅) ∉ (𝑃 “ (1..^𝑅)))
18 wrdffz 14442 . . . . . . . . 9 (𝑃 ∈ Word V → 𝑃:(0...((♯‘𝑃) − 1))⟶V)
191, 18syl 17 . . . . . . . 8 (𝜑𝑃:(0...((♯‘𝑃) − 1))⟶V)
2019adantr 480 . . . . . . 7 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ) → 𝑃:(0...((♯‘𝑃) − 1))⟶V)
2110oveq2i 7357 . . . . . . . 8 (0...𝑅) = (0...((♯‘𝑃) − 1))
2221feq2i 6643 . . . . . . 7 (𝑃:(0...𝑅)⟶V ↔ 𝑃:(0...((♯‘𝑃) − 1))⟶V)
2320, 22sylibr 234 . . . . . 6 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ) → 𝑃:(0...𝑅)⟶V)
24 nnm1nn0 12422 . . . . . . . 8 ((♯‘𝑃) ∈ ℕ → ((♯‘𝑃) − 1) ∈ ℕ0)
2510, 24eqeltrid 2835 . . . . . . 7 ((♯‘𝑃) ∈ ℕ → 𝑅 ∈ ℕ0)
2625adantl 481 . . . . . 6 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ) → 𝑅 ∈ ℕ0)
27 fvinim0ffz 13689 . . . . . 6 ((𝑃:(0...𝑅)⟶V ∧ 𝑅 ∈ ℕ0) → (((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ∅ ↔ ((𝑃‘0) ∉ (𝑃 “ (1..^𝑅)) ∧ (𝑃𝑅) ∉ (𝑃 “ (1..^𝑅)))))
2823, 26, 27syl2anc 584 . . . . 5 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ) → (((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ∅ ↔ ((𝑃‘0) ∉ (𝑃 “ (1..^𝑅)) ∧ (𝑃𝑅) ∉ (𝑃 “ (1..^𝑅)))))
2913, 17, 28mpbir2and 713 . . . 4 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ) → ((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ∅)
3029ex 412 . . 3 (𝜑 → ((♯‘𝑃) ∈ ℕ → ((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ∅))
317, 30syld 47 . 2 (𝜑 → (¬ (♯‘𝑃) = 0 → ((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ∅))
32 oveq1 7353 . . . . . . . . 9 ((♯‘𝑃) = 0 → ((♯‘𝑃) − 1) = (0 − 1))
3310, 32eqtrid 2778 . . . . . . . 8 ((♯‘𝑃) = 0 → 𝑅 = (0 − 1))
3433oveq2d 7362 . . . . . . 7 ((♯‘𝑃) = 0 → (1..^𝑅) = (1..^(0 − 1)))
35 0le2 12227 . . . . . . . . . 10 0 ≤ 2
36 1p1e2 12245 . . . . . . . . . 10 (1 + 1) = 2
3735, 36breqtrri 5118 . . . . . . . . 9 0 ≤ (1 + 1)
38 0re 11114 . . . . . . . . . 10 0 ∈ ℝ
39 1re 11112 . . . . . . . . . 10 1 ∈ ℝ
4038, 39, 39lesubadd2i 11677 . . . . . . . . 9 ((0 − 1) ≤ 1 ↔ 0 ≤ (1 + 1))
4137, 40mpbir 231 . . . . . . . 8 (0 − 1) ≤ 1
42 1z 12502 . . . . . . . . 9 1 ∈ ℤ
43 0z 12479 . . . . . . . . . 10 0 ∈ ℤ
44 peano2zm 12515 . . . . . . . . . 10 (0 ∈ ℤ → (0 − 1) ∈ ℤ)
4543, 44ax-mp 5 . . . . . . . . 9 (0 − 1) ∈ ℤ
46 fzon 13580 . . . . . . . . 9 ((1 ∈ ℤ ∧ (0 − 1) ∈ ℤ) → ((0 − 1) ≤ 1 ↔ (1..^(0 − 1)) = ∅))
4742, 45, 46mp2an 692 . . . . . . . 8 ((0 − 1) ≤ 1 ↔ (1..^(0 − 1)) = ∅)
4841, 47mpbi 230 . . . . . . 7 (1..^(0 − 1)) = ∅
4934, 48eqtrdi 2782 . . . . . 6 ((♯‘𝑃) = 0 → (1..^𝑅) = ∅)
5049imaeq2d 6009 . . . . 5 ((♯‘𝑃) = 0 → (𝑃 “ (1..^𝑅)) = (𝑃 “ ∅))
51 ima0 6026 . . . . 5 (𝑃 “ ∅) = ∅
5250, 51eqtrdi 2782 . . . 4 ((♯‘𝑃) = 0 → (𝑃 “ (1..^𝑅)) = ∅)
5352ineq2d 4170 . . 3 ((♯‘𝑃) = 0 → ((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ((𝑃 “ {0, 𝑅}) ∩ ∅))
54 in0 4345 . . 3 ((𝑃 “ {0, 𝑅}) ∩ ∅) = ∅
5553, 54eqtrdi 2782 . 2 ((♯‘𝑃) = 0 → ((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ∅)
5631, 55pm2.61d2 181 1 (𝜑 → ((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  wnel 3032  wral 3047  Vcvv 3436  cin 3901  c0 4283  {cpr 4578   class class class wbr 5091  cima 5619  wf 6477  cfv 6481  (class class class)co 7346  0cc0 11006  1c1 11007   + caddc 11009  cle 11147  cmin 11344  cn 12125  2c2 12180  0cn0 12381  cz 12468  ...cfz 13407  ..^cfzo 13554  chash 14237  Word cword 14420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421
This theorem is referenced by:  pthd  29748
  Copyright terms: Public domain W3C validator