MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthdlem2 Structured version   Visualization version   GIF version

Theorem pthdlem2 28037
Description: Lemma 2 for pthd 28038. (Contributed by Alexander van der Vekens, 11-Nov-2017.) (Revised by AV, 10-Feb-2021.)
Hypotheses
Ref Expression
pthd.p (𝜑𝑃 ∈ Word V)
pthd.r 𝑅 = ((♯‘𝑃) − 1)
pthd.s (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
Assertion
Ref Expression
pthdlem2 (𝜑 → ((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ∅)
Distinct variable groups:   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗   𝜑,𝑖,𝑗

Proof of Theorem pthdlem2
StepHypRef Expression
1 pthd.p . . . 4 (𝜑𝑃 ∈ Word V)
2 lencl 14164 . . . 4 (𝑃 ∈ Word V → (♯‘𝑃) ∈ ℕ0)
3 df-ne 2943 . . . . 5 ((♯‘𝑃) ≠ 0 ↔ ¬ (♯‘𝑃) = 0)
4 elnnne0 12177 . . . . . 6 ((♯‘𝑃) ∈ ℕ ↔ ((♯‘𝑃) ∈ ℕ0 ∧ (♯‘𝑃) ≠ 0))
54simplbi2 500 . . . . 5 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) ≠ 0 → (♯‘𝑃) ∈ ℕ))
63, 5syl5bir 242 . . . 4 ((♯‘𝑃) ∈ ℕ0 → (¬ (♯‘𝑃) = 0 → (♯‘𝑃) ∈ ℕ))
71, 2, 63syl 18 . . 3 (𝜑 → (¬ (♯‘𝑃) = 0 → (♯‘𝑃) ∈ ℕ))
8 eqid 2738 . . . . . . 7 0 = 0
98orci 861 . . . . . 6 (0 = 0 ∨ 0 = 𝑅)
10 pthd.r . . . . . . 7 𝑅 = ((♯‘𝑃) − 1)
11 pthd.s . . . . . . 7 (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
121, 10, 11pthdlem2lem 28036 . . . . . 6 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (0 = 0 ∨ 0 = 𝑅)) → (𝑃‘0) ∉ (𝑃 “ (1..^𝑅)))
139, 12mp3an3 1448 . . . . 5 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ) → (𝑃‘0) ∉ (𝑃 “ (1..^𝑅)))
14 eqid 2738 . . . . . . 7 𝑅 = 𝑅
1514olci 862 . . . . . 6 (𝑅 = 0 ∨ 𝑅 = 𝑅)
161, 10, 11pthdlem2lem 28036 . . . . . 6 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝑅 = 0 ∨ 𝑅 = 𝑅)) → (𝑃𝑅) ∉ (𝑃 “ (1..^𝑅)))
1715, 16mp3an3 1448 . . . . 5 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ) → (𝑃𝑅) ∉ (𝑃 “ (1..^𝑅)))
18 wrdffz 14166 . . . . . . . . 9 (𝑃 ∈ Word V → 𝑃:(0...((♯‘𝑃) − 1))⟶V)
191, 18syl 17 . . . . . . . 8 (𝜑𝑃:(0...((♯‘𝑃) − 1))⟶V)
2019adantr 480 . . . . . . 7 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ) → 𝑃:(0...((♯‘𝑃) − 1))⟶V)
2110oveq2i 7266 . . . . . . . 8 (0...𝑅) = (0...((♯‘𝑃) − 1))
2221feq2i 6576 . . . . . . 7 (𝑃:(0...𝑅)⟶V ↔ 𝑃:(0...((♯‘𝑃) − 1))⟶V)
2320, 22sylibr 233 . . . . . 6 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ) → 𝑃:(0...𝑅)⟶V)
24 nnm1nn0 12204 . . . . . . . 8 ((♯‘𝑃) ∈ ℕ → ((♯‘𝑃) − 1) ∈ ℕ0)
2510, 24eqeltrid 2843 . . . . . . 7 ((♯‘𝑃) ∈ ℕ → 𝑅 ∈ ℕ0)
2625adantl 481 . . . . . 6 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ) → 𝑅 ∈ ℕ0)
27 fvinim0ffz 13434 . . . . . 6 ((𝑃:(0...𝑅)⟶V ∧ 𝑅 ∈ ℕ0) → (((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ∅ ↔ ((𝑃‘0) ∉ (𝑃 “ (1..^𝑅)) ∧ (𝑃𝑅) ∉ (𝑃 “ (1..^𝑅)))))
2823, 26, 27syl2anc 583 . . . . 5 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ) → (((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ∅ ↔ ((𝑃‘0) ∉ (𝑃 “ (1..^𝑅)) ∧ (𝑃𝑅) ∉ (𝑃 “ (1..^𝑅)))))
2913, 17, 28mpbir2and 709 . . . 4 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ) → ((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ∅)
3029ex 412 . . 3 (𝜑 → ((♯‘𝑃) ∈ ℕ → ((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ∅))
317, 30syld 47 . 2 (𝜑 → (¬ (♯‘𝑃) = 0 → ((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ∅))
32 oveq1 7262 . . . . . . . . 9 ((♯‘𝑃) = 0 → ((♯‘𝑃) − 1) = (0 − 1))
3310, 32syl5eq 2791 . . . . . . . 8 ((♯‘𝑃) = 0 → 𝑅 = (0 − 1))
3433oveq2d 7271 . . . . . . 7 ((♯‘𝑃) = 0 → (1..^𝑅) = (1..^(0 − 1)))
35 0le2 12005 . . . . . . . . . 10 0 ≤ 2
36 1p1e2 12028 . . . . . . . . . 10 (1 + 1) = 2
3735, 36breqtrri 5097 . . . . . . . . 9 0 ≤ (1 + 1)
38 0re 10908 . . . . . . . . . 10 0 ∈ ℝ
39 1re 10906 . . . . . . . . . 10 1 ∈ ℝ
4038, 39, 39lesubadd2i 11465 . . . . . . . . 9 ((0 − 1) ≤ 1 ↔ 0 ≤ (1 + 1))
4137, 40mpbir 230 . . . . . . . 8 (0 − 1) ≤ 1
42 1z 12280 . . . . . . . . 9 1 ∈ ℤ
43 0z 12260 . . . . . . . . . 10 0 ∈ ℤ
44 peano2zm 12293 . . . . . . . . . 10 (0 ∈ ℤ → (0 − 1) ∈ ℤ)
4543, 44ax-mp 5 . . . . . . . . 9 (0 − 1) ∈ ℤ
46 fzon 13336 . . . . . . . . 9 ((1 ∈ ℤ ∧ (0 − 1) ∈ ℤ) → ((0 − 1) ≤ 1 ↔ (1..^(0 − 1)) = ∅))
4742, 45, 46mp2an 688 . . . . . . . 8 ((0 − 1) ≤ 1 ↔ (1..^(0 − 1)) = ∅)
4841, 47mpbi 229 . . . . . . 7 (1..^(0 − 1)) = ∅
4934, 48eqtrdi 2795 . . . . . 6 ((♯‘𝑃) = 0 → (1..^𝑅) = ∅)
5049imaeq2d 5958 . . . . 5 ((♯‘𝑃) = 0 → (𝑃 “ (1..^𝑅)) = (𝑃 “ ∅))
51 ima0 5974 . . . . 5 (𝑃 “ ∅) = ∅
5250, 51eqtrdi 2795 . . . 4 ((♯‘𝑃) = 0 → (𝑃 “ (1..^𝑅)) = ∅)
5352ineq2d 4143 . . 3 ((♯‘𝑃) = 0 → ((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ((𝑃 “ {0, 𝑅}) ∩ ∅))
54 in0 4322 . . 3 ((𝑃 “ {0, 𝑅}) ∩ ∅) = ∅
5553, 54eqtrdi 2795 . 2 ((♯‘𝑃) = 0 → ((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ∅)
5631, 55pm2.61d2 181 1 (𝜑 → ((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  wnel 3048  wral 3063  Vcvv 3422  cin 3882  c0 4253  {cpr 4560   class class class wbr 5070  cima 5583  wf 6414  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805  cle 10941  cmin 11135  cn 11903  2c2 11958  0cn0 12163  cz 12249  ...cfz 13168  ..^cfzo 13311  chash 13972  Word cword 14145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146
This theorem is referenced by:  pthd  28038
  Copyright terms: Public domain W3C validator