MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthdlem2 Structured version   Visualization version   GIF version

Theorem pthdlem2 29014
Description: Lemma 2 for pthd 29015. (Contributed by Alexander van der Vekens, 11-Nov-2017.) (Revised by AV, 10-Feb-2021.)
Hypotheses
Ref Expression
pthd.p (𝜑𝑃 ∈ Word V)
pthd.r 𝑅 = ((♯‘𝑃) − 1)
pthd.s (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
Assertion
Ref Expression
pthdlem2 (𝜑 → ((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ∅)
Distinct variable groups:   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗   𝜑,𝑖,𝑗

Proof of Theorem pthdlem2
StepHypRef Expression
1 pthd.p . . . 4 (𝜑𝑃 ∈ Word V)
2 lencl 14479 . . . 4 (𝑃 ∈ Word V → (♯‘𝑃) ∈ ℕ0)
3 df-ne 2941 . . . . 5 ((♯‘𝑃) ≠ 0 ↔ ¬ (♯‘𝑃) = 0)
4 elnnne0 12482 . . . . . 6 ((♯‘𝑃) ∈ ℕ ↔ ((♯‘𝑃) ∈ ℕ0 ∧ (♯‘𝑃) ≠ 0))
54simplbi2 501 . . . . 5 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) ≠ 0 → (♯‘𝑃) ∈ ℕ))
63, 5biimtrrid 242 . . . 4 ((♯‘𝑃) ∈ ℕ0 → (¬ (♯‘𝑃) = 0 → (♯‘𝑃) ∈ ℕ))
71, 2, 63syl 18 . . 3 (𝜑 → (¬ (♯‘𝑃) = 0 → (♯‘𝑃) ∈ ℕ))
8 eqid 2732 . . . . . . 7 0 = 0
98orci 863 . . . . . 6 (0 = 0 ∨ 0 = 𝑅)
10 pthd.r . . . . . . 7 𝑅 = ((♯‘𝑃) − 1)
11 pthd.s . . . . . . 7 (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
121, 10, 11pthdlem2lem 29013 . . . . . 6 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (0 = 0 ∨ 0 = 𝑅)) → (𝑃‘0) ∉ (𝑃 “ (1..^𝑅)))
139, 12mp3an3 1450 . . . . 5 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ) → (𝑃‘0) ∉ (𝑃 “ (1..^𝑅)))
14 eqid 2732 . . . . . . 7 𝑅 = 𝑅
1514olci 864 . . . . . 6 (𝑅 = 0 ∨ 𝑅 = 𝑅)
161, 10, 11pthdlem2lem 29013 . . . . . 6 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝑅 = 0 ∨ 𝑅 = 𝑅)) → (𝑃𝑅) ∉ (𝑃 “ (1..^𝑅)))
1715, 16mp3an3 1450 . . . . 5 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ) → (𝑃𝑅) ∉ (𝑃 “ (1..^𝑅)))
18 wrdffz 14481 . . . . . . . . 9 (𝑃 ∈ Word V → 𝑃:(0...((♯‘𝑃) − 1))⟶V)
191, 18syl 17 . . . . . . . 8 (𝜑𝑃:(0...((♯‘𝑃) − 1))⟶V)
2019adantr 481 . . . . . . 7 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ) → 𝑃:(0...((♯‘𝑃) − 1))⟶V)
2110oveq2i 7416 . . . . . . . 8 (0...𝑅) = (0...((♯‘𝑃) − 1))
2221feq2i 6706 . . . . . . 7 (𝑃:(0...𝑅)⟶V ↔ 𝑃:(0...((♯‘𝑃) − 1))⟶V)
2320, 22sylibr 233 . . . . . 6 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ) → 𝑃:(0...𝑅)⟶V)
24 nnm1nn0 12509 . . . . . . . 8 ((♯‘𝑃) ∈ ℕ → ((♯‘𝑃) − 1) ∈ ℕ0)
2510, 24eqeltrid 2837 . . . . . . 7 ((♯‘𝑃) ∈ ℕ → 𝑅 ∈ ℕ0)
2625adantl 482 . . . . . 6 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ) → 𝑅 ∈ ℕ0)
27 fvinim0ffz 13747 . . . . . 6 ((𝑃:(0...𝑅)⟶V ∧ 𝑅 ∈ ℕ0) → (((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ∅ ↔ ((𝑃‘0) ∉ (𝑃 “ (1..^𝑅)) ∧ (𝑃𝑅) ∉ (𝑃 “ (1..^𝑅)))))
2823, 26, 27syl2anc 584 . . . . 5 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ) → (((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ∅ ↔ ((𝑃‘0) ∉ (𝑃 “ (1..^𝑅)) ∧ (𝑃𝑅) ∉ (𝑃 “ (1..^𝑅)))))
2913, 17, 28mpbir2and 711 . . . 4 ((𝜑 ∧ (♯‘𝑃) ∈ ℕ) → ((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ∅)
3029ex 413 . . 3 (𝜑 → ((♯‘𝑃) ∈ ℕ → ((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ∅))
317, 30syld 47 . 2 (𝜑 → (¬ (♯‘𝑃) = 0 → ((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ∅))
32 oveq1 7412 . . . . . . . . 9 ((♯‘𝑃) = 0 → ((♯‘𝑃) − 1) = (0 − 1))
3310, 32eqtrid 2784 . . . . . . . 8 ((♯‘𝑃) = 0 → 𝑅 = (0 − 1))
3433oveq2d 7421 . . . . . . 7 ((♯‘𝑃) = 0 → (1..^𝑅) = (1..^(0 − 1)))
35 0le2 12310 . . . . . . . . . 10 0 ≤ 2
36 1p1e2 12333 . . . . . . . . . 10 (1 + 1) = 2
3735, 36breqtrri 5174 . . . . . . . . 9 0 ≤ (1 + 1)
38 0re 11212 . . . . . . . . . 10 0 ∈ ℝ
39 1re 11210 . . . . . . . . . 10 1 ∈ ℝ
4038, 39, 39lesubadd2i 11770 . . . . . . . . 9 ((0 − 1) ≤ 1 ↔ 0 ≤ (1 + 1))
4137, 40mpbir 230 . . . . . . . 8 (0 − 1) ≤ 1
42 1z 12588 . . . . . . . . 9 1 ∈ ℤ
43 0z 12565 . . . . . . . . . 10 0 ∈ ℤ
44 peano2zm 12601 . . . . . . . . . 10 (0 ∈ ℤ → (0 − 1) ∈ ℤ)
4543, 44ax-mp 5 . . . . . . . . 9 (0 − 1) ∈ ℤ
46 fzon 13649 . . . . . . . . 9 ((1 ∈ ℤ ∧ (0 − 1) ∈ ℤ) → ((0 − 1) ≤ 1 ↔ (1..^(0 − 1)) = ∅))
4742, 45, 46mp2an 690 . . . . . . . 8 ((0 − 1) ≤ 1 ↔ (1..^(0 − 1)) = ∅)
4841, 47mpbi 229 . . . . . . 7 (1..^(0 − 1)) = ∅
4934, 48eqtrdi 2788 . . . . . 6 ((♯‘𝑃) = 0 → (1..^𝑅) = ∅)
5049imaeq2d 6057 . . . . 5 ((♯‘𝑃) = 0 → (𝑃 “ (1..^𝑅)) = (𝑃 “ ∅))
51 ima0 6073 . . . . 5 (𝑃 “ ∅) = ∅
5250, 51eqtrdi 2788 . . . 4 ((♯‘𝑃) = 0 → (𝑃 “ (1..^𝑅)) = ∅)
5352ineq2d 4211 . . 3 ((♯‘𝑃) = 0 → ((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ((𝑃 “ {0, 𝑅}) ∩ ∅))
54 in0 4390 . . 3 ((𝑃 “ {0, 𝑅}) ∩ ∅) = ∅
5553, 54eqtrdi 2788 . 2 ((♯‘𝑃) = 0 → ((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ∅)
5631, 55pm2.61d2 181 1 (𝜑 → ((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2940  wnel 3046  wral 3061  Vcvv 3474  cin 3946  c0 4321  {cpr 4629   class class class wbr 5147  cima 5678  wf 6536  cfv 6540  (class class class)co 7405  0cc0 11106  1c1 11107   + caddc 11109  cle 11245  cmin 11440  cn 12208  2c2 12263  0cn0 12468  cz 12554  ...cfz 13480  ..^cfzo 13623  chash 14286  Word cword 14460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461
This theorem is referenced by:  pthd  29015
  Copyright terms: Public domain W3C validator