MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumless Structured version   Visualization version   GIF version

Theorem isumless 15859
Description: A finite sum of nonnegative numbers is less than or equal to its limit. (Contributed by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumless.1 𝑍 = (ℤ𝑀)
isumless.2 (𝜑𝑀 ∈ ℤ)
isumless.3 (𝜑𝐴 ∈ Fin)
isumless.4 (𝜑𝐴𝑍)
isumless.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
isumless.6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
isumless.7 ((𝜑𝑘𝑍) → 0 ≤ 𝐵)
isumless.8 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
isumless (𝜑 → Σ𝑘𝐴 𝐵 ≤ Σ𝑘𝑍 𝐵)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem isumless
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 isumless.4 . . 3 (𝜑𝐴𝑍)
21sselda 3958 . . . . 5 ((𝜑𝑘𝐴) → 𝑘𝑍)
3 isumless.6 . . . . . 6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
43recnd 11261 . . . . 5 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
52, 4syldan 591 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
65ralrimiva 3132 . . 3 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
7 isumless.1 . . . . . 6 𝑍 = (ℤ𝑀)
87eqimssi 4019 . . . . 5 𝑍 ⊆ (ℤ𝑀)
98orci 865 . . . 4 (𝑍 ⊆ (ℤ𝑀) ∨ 𝑍 ∈ Fin)
109a1i 11 . . 3 (𝜑 → (𝑍 ⊆ (ℤ𝑀) ∨ 𝑍 ∈ Fin))
11 sumss2 15740 . . 3 (((𝐴𝑍 ∧ ∀𝑘𝐴 𝐵 ∈ ℂ) ∧ (𝑍 ⊆ (ℤ𝑀) ∨ 𝑍 ∈ Fin)) → Σ𝑘𝐴 𝐵 = Σ𝑘𝑍 if(𝑘𝐴, 𝐵, 0))
121, 6, 10, 11syl21anc 837 . 2 (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑘𝑍 if(𝑘𝐴, 𝐵, 0))
13 isumless.2 . . 3 (𝜑𝑀 ∈ ℤ)
14 eleq1w 2817 . . . . . . 7 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
15 fveq2 6875 . . . . . . 7 (𝑗 = 𝑘 → (𝐹𝑗) = (𝐹𝑘))
1614, 15ifbieq1d 4525 . . . . . 6 (𝑗 = 𝑘 → if(𝑗𝐴, (𝐹𝑗), 0) = if(𝑘𝐴, (𝐹𝑘), 0))
17 eqid 2735 . . . . . 6 (𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0)) = (𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0))
18 fvex 6888 . . . . . . 7 (𝐹𝑘) ∈ V
19 c0ex 11227 . . . . . . 7 0 ∈ V
2018, 19ifex 4551 . . . . . 6 if(𝑘𝐴, (𝐹𝑘), 0) ∈ V
2116, 17, 20fvmpt 6985 . . . . 5 (𝑘𝑍 → ((𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0))‘𝑘) = if(𝑘𝐴, (𝐹𝑘), 0))
2221adantl 481 . . . 4 ((𝜑𝑘𝑍) → ((𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0))‘𝑘) = if(𝑘𝐴, (𝐹𝑘), 0))
23 isumless.5 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
2423ifeq1d 4520 . . . 4 ((𝜑𝑘𝑍) → if(𝑘𝐴, (𝐹𝑘), 0) = if(𝑘𝐴, 𝐵, 0))
2522, 24eqtrd 2770 . . 3 ((𝜑𝑘𝑍) → ((𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0))‘𝑘) = if(𝑘𝐴, 𝐵, 0))
26 0re 11235 . . . 4 0 ∈ ℝ
27 ifcl 4546 . . . 4 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑘𝐴, 𝐵, 0) ∈ ℝ)
283, 26, 27sylancl 586 . . 3 ((𝜑𝑘𝑍) → if(𝑘𝐴, 𝐵, 0) ∈ ℝ)
29 isumless.7 . . . 4 ((𝜑𝑘𝑍) → 0 ≤ 𝐵)
30 leid 11329 . . . . 5 (𝐵 ∈ ℝ → 𝐵𝐵)
31 breq1 5122 . . . . . 6 (𝐵 = if(𝑘𝐴, 𝐵, 0) → (𝐵𝐵 ↔ if(𝑘𝐴, 𝐵, 0) ≤ 𝐵))
32 breq1 5122 . . . . . 6 (0 = if(𝑘𝐴, 𝐵, 0) → (0 ≤ 𝐵 ↔ if(𝑘𝐴, 𝐵, 0) ≤ 𝐵))
3331, 32ifboth 4540 . . . . 5 ((𝐵𝐵 ∧ 0 ≤ 𝐵) → if(𝑘𝐴, 𝐵, 0) ≤ 𝐵)
3430, 33sylan 580 . . . 4 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → if(𝑘𝐴, 𝐵, 0) ≤ 𝐵)
353, 29, 34syl2anc 584 . . 3 ((𝜑𝑘𝑍) → if(𝑘𝐴, 𝐵, 0) ≤ 𝐵)
36 isumless.3 . . . 4 (𝜑𝐴 ∈ Fin)
377, 13, 36, 1, 25, 5fsumcvg3 15743 . . 3 (𝜑 → seq𝑀( + , (𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0))) ∈ dom ⇝ )
38 isumless.8 . . 3 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
397, 13, 25, 28, 23, 3, 35, 37, 38isumle 15858 . 2 (𝜑 → Σ𝑘𝑍 if(𝑘𝐴, 𝐵, 0) ≤ Σ𝑘𝑍 𝐵)
4012, 39eqbrtrd 5141 1 (𝜑 → Σ𝑘𝐴 𝐵 ≤ Σ𝑘𝑍 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2108  wral 3051  wss 3926  ifcif 4500   class class class wbr 5119  cmpt 5201  dom cdm 5654  cfv 6530  Fincfn 8957  cc 11125  cr 11126  0cc0 11127   + caddc 11130  cle 11268  cz 12586  cuz 12850  seqcseq 14017  cli 15498  Σcsu 15700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-z 12587  df-uz 12851  df-rp 13007  df-fz 13523  df-fzo 13670  df-fl 13807  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-rlim 15503  df-sum 15701
This theorem is referenced by:  isumltss  15862  climcnds  15865  harmonic  15873  mertenslem1  15898  prmreclem5  16938  ovoliunlem1  25453  ovoliun2  25457  esumpcvgval  34055  eulerpartlems  34338  geomcau  37729
  Copyright terms: Public domain W3C validator