MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumless Structured version   Visualization version   GIF version

Theorem isumless 15198
Description: A finite sum of nonnegative numbers is less than or equal to its limit. (Contributed by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumless.1 𝑍 = (ℤ𝑀)
isumless.2 (𝜑𝑀 ∈ ℤ)
isumless.3 (𝜑𝐴 ∈ Fin)
isumless.4 (𝜑𝐴𝑍)
isumless.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
isumless.6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
isumless.7 ((𝜑𝑘𝑍) → 0 ≤ 𝐵)
isumless.8 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
isumless (𝜑 → Σ𝑘𝐴 𝐵 ≤ Σ𝑘𝑍 𝐵)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem isumless
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 isumless.4 . . 3 (𝜑𝐴𝑍)
21sselda 3953 . . . . 5 ((𝜑𝑘𝐴) → 𝑘𝑍)
3 isumless.6 . . . . . 6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
43recnd 10663 . . . . 5 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
52, 4syldan 594 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
65ralrimiva 3177 . . 3 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
7 isumless.1 . . . . . 6 𝑍 = (ℤ𝑀)
87eqimssi 4011 . . . . 5 𝑍 ⊆ (ℤ𝑀)
98orci 862 . . . 4 (𝑍 ⊆ (ℤ𝑀) ∨ 𝑍 ∈ Fin)
109a1i 11 . . 3 (𝜑 → (𝑍 ⊆ (ℤ𝑀) ∨ 𝑍 ∈ Fin))
11 sumss2 15081 . . 3 (((𝐴𝑍 ∧ ∀𝑘𝐴 𝐵 ∈ ℂ) ∧ (𝑍 ⊆ (ℤ𝑀) ∨ 𝑍 ∈ Fin)) → Σ𝑘𝐴 𝐵 = Σ𝑘𝑍 if(𝑘𝐴, 𝐵, 0))
121, 6, 10, 11syl21anc 836 . 2 (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑘𝑍 if(𝑘𝐴, 𝐵, 0))
13 isumless.2 . . 3 (𝜑𝑀 ∈ ℤ)
14 eleq1w 2898 . . . . . . 7 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
15 fveq2 6659 . . . . . . 7 (𝑗 = 𝑘 → (𝐹𝑗) = (𝐹𝑘))
1614, 15ifbieq1d 4473 . . . . . 6 (𝑗 = 𝑘 → if(𝑗𝐴, (𝐹𝑗), 0) = if(𝑘𝐴, (𝐹𝑘), 0))
17 eqid 2824 . . . . . 6 (𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0)) = (𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0))
18 fvex 6672 . . . . . . 7 (𝐹𝑘) ∈ V
19 c0ex 10629 . . . . . . 7 0 ∈ V
2018, 19ifex 4498 . . . . . 6 if(𝑘𝐴, (𝐹𝑘), 0) ∈ V
2116, 17, 20fvmpt 6757 . . . . 5 (𝑘𝑍 → ((𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0))‘𝑘) = if(𝑘𝐴, (𝐹𝑘), 0))
2221adantl 485 . . . 4 ((𝜑𝑘𝑍) → ((𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0))‘𝑘) = if(𝑘𝐴, (𝐹𝑘), 0))
23 isumless.5 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
2423ifeq1d 4468 . . . 4 ((𝜑𝑘𝑍) → if(𝑘𝐴, (𝐹𝑘), 0) = if(𝑘𝐴, 𝐵, 0))
2522, 24eqtrd 2859 . . 3 ((𝜑𝑘𝑍) → ((𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0))‘𝑘) = if(𝑘𝐴, 𝐵, 0))
26 0re 10637 . . . 4 0 ∈ ℝ
27 ifcl 4494 . . . 4 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑘𝐴, 𝐵, 0) ∈ ℝ)
283, 26, 27sylancl 589 . . 3 ((𝜑𝑘𝑍) → if(𝑘𝐴, 𝐵, 0) ∈ ℝ)
29 isumless.7 . . . 4 ((𝜑𝑘𝑍) → 0 ≤ 𝐵)
30 leid 10730 . . . . 5 (𝐵 ∈ ℝ → 𝐵𝐵)
31 breq1 5056 . . . . . 6 (𝐵 = if(𝑘𝐴, 𝐵, 0) → (𝐵𝐵 ↔ if(𝑘𝐴, 𝐵, 0) ≤ 𝐵))
32 breq1 5056 . . . . . 6 (0 = if(𝑘𝐴, 𝐵, 0) → (0 ≤ 𝐵 ↔ if(𝑘𝐴, 𝐵, 0) ≤ 𝐵))
3331, 32ifboth 4488 . . . . 5 ((𝐵𝐵 ∧ 0 ≤ 𝐵) → if(𝑘𝐴, 𝐵, 0) ≤ 𝐵)
3430, 33sylan 583 . . . 4 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → if(𝑘𝐴, 𝐵, 0) ≤ 𝐵)
353, 29, 34syl2anc 587 . . 3 ((𝜑𝑘𝑍) → if(𝑘𝐴, 𝐵, 0) ≤ 𝐵)
36 isumless.3 . . . 4 (𝜑𝐴 ∈ Fin)
377, 13, 36, 1, 25, 5fsumcvg3 15084 . . 3 (𝜑 → seq𝑀( + , (𝑗𝑍 ↦ if(𝑗𝐴, (𝐹𝑗), 0))) ∈ dom ⇝ )
38 isumless.8 . . 3 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
397, 13, 25, 28, 23, 3, 35, 37, 38isumle 15197 . 2 (𝜑 → Σ𝑘𝑍 if(𝑘𝐴, 𝐵, 0) ≤ Σ𝑘𝑍 𝐵)
4012, 39eqbrtrd 5075 1 (𝜑 → Σ𝑘𝐴 𝐵 ≤ Σ𝑘𝑍 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844   = wceq 1538  wcel 2115  wral 3133  wss 3919  ifcif 4450   class class class wbr 5053  cmpt 5133  dom cdm 5543  cfv 6344  Fincfn 8501  cc 10529  cr 10530  0cc0 10531   + caddc 10534  cle 10670  cz 11976  cuz 12238  seqcseq 13371  cli 14839  Σcsu 15040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-inf2 9097  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-se 5503  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-isom 6353  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-om 7572  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8899  df-inf 8900  df-oi 8967  df-card 9361  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11695  df-3 11696  df-n0 11893  df-z 11977  df-uz 12239  df-rp 12385  df-fz 12893  df-fzo 13036  df-fl 13164  df-seq 13372  df-exp 13433  df-hash 13694  df-cj 14456  df-re 14457  df-im 14458  df-sqrt 14592  df-abs 14593  df-clim 14843  df-rlim 14844  df-sum 15041
This theorem is referenced by:  isumltss  15201  climcnds  15204  harmonic  15212  mertenslem1  15238  prmreclem5  16252  ovoliunlem1  24104  ovoliun2  24108  esumpcvgval  31364  eulerpartlems  31645  geomcau  35109
  Copyright terms: Public domain W3C validator