Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isumless | Structured version Visualization version GIF version |
Description: A finite sum of nonnegative numbers is less than or equal to its limit. (Contributed by Mario Carneiro, 24-Apr-2014.) |
Ref | Expression |
---|---|
isumless.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
isumless.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
isumless.3 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
isumless.4 | ⊢ (𝜑 → 𝐴 ⊆ 𝑍) |
isumless.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) |
isumless.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) |
isumless.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐵) |
isumless.8 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
Ref | Expression |
---|---|
isumless | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝑍 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumless.4 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝑍) | |
2 | 1 | sselda 3926 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝑍) |
3 | isumless.6 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) | |
4 | 3 | recnd 11004 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
5 | 2, 4 | syldan 591 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
6 | 5 | ralrimiva 3110 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
7 | isumless.1 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
8 | 7 | eqimssi 3984 | . . . . 5 ⊢ 𝑍 ⊆ (ℤ≥‘𝑀) |
9 | 8 | orci 862 | . . . 4 ⊢ (𝑍 ⊆ (ℤ≥‘𝑀) ∨ 𝑍 ∈ Fin) |
10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑍 ⊆ (ℤ≥‘𝑀) ∨ 𝑍 ∈ Fin)) |
11 | sumss2 15436 | . . 3 ⊢ (((𝐴 ⊆ 𝑍 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) ∧ (𝑍 ⊆ (ℤ≥‘𝑀) ∨ 𝑍 ∈ Fin)) → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝑍 if(𝑘 ∈ 𝐴, 𝐵, 0)) | |
12 | 1, 6, 10, 11 | syl21anc 835 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝑍 if(𝑘 ∈ 𝐴, 𝐵, 0)) |
13 | isumless.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
14 | eleq1w 2823 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) | |
15 | fveq2 6771 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (𝐹‘𝑗) = (𝐹‘𝑘)) | |
16 | 14, 15 | ifbieq1d 4489 | . . . . . 6 ⊢ (𝑗 = 𝑘 → if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0) = if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0)) |
17 | eqid 2740 | . . . . . 6 ⊢ (𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0)) = (𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0)) | |
18 | fvex 6784 | . . . . . . 7 ⊢ (𝐹‘𝑘) ∈ V | |
19 | c0ex 10970 | . . . . . . 7 ⊢ 0 ∈ V | |
20 | 18, 19 | ifex 4515 | . . . . . 6 ⊢ if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0) ∈ V |
21 | 16, 17, 20 | fvmpt 6872 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 → ((𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0))‘𝑘) = if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0)) |
22 | 21 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0))‘𝑘) = if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0)) |
23 | isumless.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) | |
24 | 23 | ifeq1d 4484 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
25 | 22, 24 | eqtrd 2780 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0))‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
26 | 0re 10978 | . . . 4 ⊢ 0 ∈ ℝ | |
27 | ifcl 4510 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℝ) | |
28 | 3, 26, 27 | sylancl 586 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℝ) |
29 | isumless.7 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐵) | |
30 | leid 11071 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 ≤ 𝐵) | |
31 | breq1 5082 | . . . . . 6 ⊢ (𝐵 = if(𝑘 ∈ 𝐴, 𝐵, 0) → (𝐵 ≤ 𝐵 ↔ if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵)) | |
32 | breq1 5082 | . . . . . 6 ⊢ (0 = if(𝑘 ∈ 𝐴, 𝐵, 0) → (0 ≤ 𝐵 ↔ if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵)) | |
33 | 31, 32 | ifboth 4504 | . . . . 5 ⊢ ((𝐵 ≤ 𝐵 ∧ 0 ≤ 𝐵) → if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵) |
34 | 30, 33 | sylan 580 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵) |
35 | 3, 29, 34 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵) |
36 | isumless.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
37 | 7, 13, 36, 1, 25, 5 | fsumcvg3 15439 | . . 3 ⊢ (𝜑 → seq𝑀( + , (𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0))) ∈ dom ⇝ ) |
38 | isumless.8 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | |
39 | 7, 13, 25, 28, 23, 3, 35, 37, 38 | isumle 15554 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ Σ𝑘 ∈ 𝑍 𝐵) |
40 | 12, 39 | eqbrtrd 5101 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝑍 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 844 = wceq 1542 ∈ wcel 2110 ∀wral 3066 ⊆ wss 3892 ifcif 4465 class class class wbr 5079 ↦ cmpt 5162 dom cdm 5590 ‘cfv 6432 Fincfn 8716 ℂcc 10870 ℝcr 10871 0cc0 10872 + caddc 10875 ≤ cle 11011 ℤcz 12319 ℤ≥cuz 12581 seqcseq 13719 ⇝ cli 15191 Σcsu 15395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-inf2 9377 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-er 8481 df-pm 8601 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-sup 9179 df-inf 9180 df-oi 9247 df-card 9698 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12582 df-rp 12730 df-fz 13239 df-fzo 13382 df-fl 13510 df-seq 13720 df-exp 13781 df-hash 14043 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-clim 15195 df-rlim 15196 df-sum 15396 |
This theorem is referenced by: isumltss 15558 climcnds 15561 harmonic 15569 mertenslem1 15594 prmreclem5 16619 ovoliunlem1 24664 ovoliun2 24668 esumpcvgval 32042 eulerpartlems 32323 geomcau 35913 |
Copyright terms: Public domain | W3C validator |