![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isumless | Structured version Visualization version GIF version |
Description: A finite sum of nonnegative numbers is less than or equal to its limit. (Contributed by Mario Carneiro, 24-Apr-2014.) |
Ref | Expression |
---|---|
isumless.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
isumless.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
isumless.3 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
isumless.4 | ⊢ (𝜑 → 𝐴 ⊆ 𝑍) |
isumless.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) |
isumless.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) |
isumless.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐵) |
isumless.8 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
Ref | Expression |
---|---|
isumless | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝑍 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumless.4 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝑍) | |
2 | 1 | sselda 4008 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝑍) |
3 | isumless.6 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) | |
4 | 3 | recnd 11318 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
5 | 2, 4 | syldan 590 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
6 | 5 | ralrimiva 3152 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
7 | isumless.1 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
8 | 7 | eqimssi 4069 | . . . . 5 ⊢ 𝑍 ⊆ (ℤ≥‘𝑀) |
9 | 8 | orci 864 | . . . 4 ⊢ (𝑍 ⊆ (ℤ≥‘𝑀) ∨ 𝑍 ∈ Fin) |
10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑍 ⊆ (ℤ≥‘𝑀) ∨ 𝑍 ∈ Fin)) |
11 | sumss2 15774 | . . 3 ⊢ (((𝐴 ⊆ 𝑍 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) ∧ (𝑍 ⊆ (ℤ≥‘𝑀) ∨ 𝑍 ∈ Fin)) → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝑍 if(𝑘 ∈ 𝐴, 𝐵, 0)) | |
12 | 1, 6, 10, 11 | syl21anc 837 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝑍 if(𝑘 ∈ 𝐴, 𝐵, 0)) |
13 | isumless.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
14 | eleq1w 2827 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) | |
15 | fveq2 6920 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (𝐹‘𝑗) = (𝐹‘𝑘)) | |
16 | 14, 15 | ifbieq1d 4572 | . . . . . 6 ⊢ (𝑗 = 𝑘 → if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0) = if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0)) |
17 | eqid 2740 | . . . . . 6 ⊢ (𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0)) = (𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0)) | |
18 | fvex 6933 | . . . . . . 7 ⊢ (𝐹‘𝑘) ∈ V | |
19 | c0ex 11284 | . . . . . . 7 ⊢ 0 ∈ V | |
20 | 18, 19 | ifex 4598 | . . . . . 6 ⊢ if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0) ∈ V |
21 | 16, 17, 20 | fvmpt 7029 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 → ((𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0))‘𝑘) = if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0)) |
22 | 21 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0))‘𝑘) = if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0)) |
23 | isumless.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) | |
24 | 23 | ifeq1d 4567 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
25 | 22, 24 | eqtrd 2780 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0))‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
26 | 0re 11292 | . . . 4 ⊢ 0 ∈ ℝ | |
27 | ifcl 4593 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℝ) | |
28 | 3, 26, 27 | sylancl 585 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℝ) |
29 | isumless.7 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐵) | |
30 | leid 11386 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 ≤ 𝐵) | |
31 | breq1 5169 | . . . . . 6 ⊢ (𝐵 = if(𝑘 ∈ 𝐴, 𝐵, 0) → (𝐵 ≤ 𝐵 ↔ if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵)) | |
32 | breq1 5169 | . . . . . 6 ⊢ (0 = if(𝑘 ∈ 𝐴, 𝐵, 0) → (0 ≤ 𝐵 ↔ if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵)) | |
33 | 31, 32 | ifboth 4587 | . . . . 5 ⊢ ((𝐵 ≤ 𝐵 ∧ 0 ≤ 𝐵) → if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵) |
34 | 30, 33 | sylan 579 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵) |
35 | 3, 29, 34 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵) |
36 | isumless.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
37 | 7, 13, 36, 1, 25, 5 | fsumcvg3 15777 | . . 3 ⊢ (𝜑 → seq𝑀( + , (𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0))) ∈ dom ⇝ ) |
38 | isumless.8 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | |
39 | 7, 13, 25, 28, 23, 3, 35, 37, 38 | isumle 15892 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ Σ𝑘 ∈ 𝑍 𝐵) |
40 | 12, 39 | eqbrtrd 5188 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝑍 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 ifcif 4548 class class class wbr 5166 ↦ cmpt 5249 dom cdm 5700 ‘cfv 6573 Fincfn 9003 ℂcc 11182 ℝcr 11183 0cc0 11184 + caddc 11187 ≤ cle 11325 ℤcz 12639 ℤ≥cuz 12903 seqcseq 14052 ⇝ cli 15530 Σcsu 15734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-rlim 15535 df-sum 15735 |
This theorem is referenced by: isumltss 15896 climcnds 15899 harmonic 15907 mertenslem1 15932 prmreclem5 16967 ovoliunlem1 25556 ovoliun2 25560 esumpcvgval 34042 eulerpartlems 34325 geomcau 37719 |
Copyright terms: Public domain | W3C validator |