| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isumless | Structured version Visualization version GIF version | ||
| Description: A finite sum of nonnegative numbers is less than or equal to its limit. (Contributed by Mario Carneiro, 24-Apr-2014.) |
| Ref | Expression |
|---|---|
| isumless.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| isumless.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| isumless.3 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| isumless.4 | ⊢ (𝜑 → 𝐴 ⊆ 𝑍) |
| isumless.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) |
| isumless.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) |
| isumless.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐵) |
| isumless.8 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
| Ref | Expression |
|---|---|
| isumless | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝑍 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumless.4 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝑍) | |
| 2 | 1 | sselda 3937 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝑍) |
| 3 | isumless.6 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) | |
| 4 | 3 | recnd 11162 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
| 5 | 2, 4 | syldan 591 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 6 | 5 | ralrimiva 3121 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
| 7 | isumless.1 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 8 | 7 | eqimssi 3998 | . . . . 5 ⊢ 𝑍 ⊆ (ℤ≥‘𝑀) |
| 9 | 8 | orci 865 | . . . 4 ⊢ (𝑍 ⊆ (ℤ≥‘𝑀) ∨ 𝑍 ∈ Fin) |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑍 ⊆ (ℤ≥‘𝑀) ∨ 𝑍 ∈ Fin)) |
| 11 | sumss2 15651 | . . 3 ⊢ (((𝐴 ⊆ 𝑍 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) ∧ (𝑍 ⊆ (ℤ≥‘𝑀) ∨ 𝑍 ∈ Fin)) → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝑍 if(𝑘 ∈ 𝐴, 𝐵, 0)) | |
| 12 | 1, 6, 10, 11 | syl21anc 837 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝑍 if(𝑘 ∈ 𝐴, 𝐵, 0)) |
| 13 | isumless.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 14 | eleq1w 2811 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) | |
| 15 | fveq2 6826 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (𝐹‘𝑗) = (𝐹‘𝑘)) | |
| 16 | 14, 15 | ifbieq1d 4503 | . . . . . 6 ⊢ (𝑗 = 𝑘 → if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0) = if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0)) |
| 17 | eqid 2729 | . . . . . 6 ⊢ (𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0)) = (𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0)) | |
| 18 | fvex 6839 | . . . . . . 7 ⊢ (𝐹‘𝑘) ∈ V | |
| 19 | c0ex 11128 | . . . . . . 7 ⊢ 0 ∈ V | |
| 20 | 18, 19 | ifex 4529 | . . . . . 6 ⊢ if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0) ∈ V |
| 21 | 16, 17, 20 | fvmpt 6934 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 → ((𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0))‘𝑘) = if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0)) |
| 22 | 21 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0))‘𝑘) = if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0)) |
| 23 | isumless.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) | |
| 24 | 23 | ifeq1d 4498 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
| 25 | 22, 24 | eqtrd 2764 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0))‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
| 26 | 0re 11136 | . . . 4 ⊢ 0 ∈ ℝ | |
| 27 | ifcl 4524 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℝ) | |
| 28 | 3, 26, 27 | sylancl 586 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℝ) |
| 29 | isumless.7 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐵) | |
| 30 | leid 11230 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 ≤ 𝐵) | |
| 31 | breq1 5098 | . . . . . 6 ⊢ (𝐵 = if(𝑘 ∈ 𝐴, 𝐵, 0) → (𝐵 ≤ 𝐵 ↔ if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵)) | |
| 32 | breq1 5098 | . . . . . 6 ⊢ (0 = if(𝑘 ∈ 𝐴, 𝐵, 0) → (0 ≤ 𝐵 ↔ if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵)) | |
| 33 | 31, 32 | ifboth 4518 | . . . . 5 ⊢ ((𝐵 ≤ 𝐵 ∧ 0 ≤ 𝐵) → if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵) |
| 34 | 30, 33 | sylan 580 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵) |
| 35 | 3, 29, 34 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵) |
| 36 | isumless.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 37 | 7, 13, 36, 1, 25, 5 | fsumcvg3 15654 | . . 3 ⊢ (𝜑 → seq𝑀( + , (𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0))) ∈ dom ⇝ ) |
| 38 | isumless.8 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | |
| 39 | 7, 13, 25, 28, 23, 3, 35, 37, 38 | isumle 15769 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ Σ𝑘 ∈ 𝑍 𝐵) |
| 40 | 12, 39 | eqbrtrd 5117 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝑍 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3905 ifcif 4478 class class class wbr 5095 ↦ cmpt 5176 dom cdm 5623 ‘cfv 6486 Fincfn 8879 ℂcc 11026 ℝcr 11027 0cc0 11028 + caddc 11031 ≤ cle 11169 ℤcz 12489 ℤ≥cuz 12753 seqcseq 13926 ⇝ cli 15409 Σcsu 15611 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-fz 13429 df-fzo 13576 df-fl 13714 df-seq 13927 df-exp 13987 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 df-rlim 15414 df-sum 15612 |
| This theorem is referenced by: isumltss 15773 climcnds 15776 harmonic 15784 mertenslem1 15809 prmreclem5 16850 ovoliunlem1 25419 ovoliun2 25423 esumpcvgval 34044 eulerpartlems 34327 geomcau 37738 |
| Copyright terms: Public domain | W3C validator |