Proof of Theorem bcpasc
Step | Hyp | Ref
| Expression |
1 | | peano2nn0 12203 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
2 | | elfzp12 13264 |
. . . . . . 7
⊢ ((𝑁 + 1) ∈
(ℤ≥‘0) → (𝐾 ∈ (0...(𝑁 + 1)) ↔ (𝐾 = 0 ∨ 𝐾 ∈ ((0 + 1)...(𝑁 + 1))))) |
3 | | nn0uz 12549 |
. . . . . . 7
⊢
ℕ0 = (ℤ≥‘0) |
4 | 2, 3 | eleq2s 2857 |
. . . . . 6
⊢ ((𝑁 + 1) ∈ ℕ0
→ (𝐾 ∈
(0...(𝑁 + 1)) ↔ (𝐾 = 0 ∨ 𝐾 ∈ ((0 + 1)...(𝑁 + 1))))) |
5 | 1, 4 | syl 17 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (𝐾 ∈
(0...(𝑁 + 1)) ↔ (𝐾 = 0 ∨ 𝐾 ∈ ((0 + 1)...(𝑁 + 1))))) |
6 | | 1p0e1 12027 |
. . . . . . . 8
⊢ (1 + 0) =
1 |
7 | | bcn0 13952 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (𝑁C0) =
1) |
8 | | 0z 12260 |
. . . . . . . . . . 11
⊢ 0 ∈
ℤ |
9 | | 1z 12280 |
. . . . . . . . . . 11
⊢ 1 ∈
ℤ |
10 | | zsubcl 12292 |
. . . . . . . . . . 11
⊢ ((0
∈ ℤ ∧ 1 ∈ ℤ) → (0 − 1) ∈
ℤ) |
11 | 8, 9, 10 | mp2an 688 |
. . . . . . . . . 10
⊢ (0
− 1) ∈ ℤ |
12 | | 0re 10908 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℝ |
13 | | ltm1 11747 |
. . . . . . . . . . . 12
⊢ (0 ∈
ℝ → (0 − 1) < 0) |
14 | 12, 13 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (0
− 1) < 0 |
15 | 14 | orci 861 |
. . . . . . . . . 10
⊢ ((0
− 1) < 0 ∨ 𝑁
< (0 − 1)) |
16 | | bcval4 13949 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ (0 − 1) ∈ ℤ ∧ ((0 − 1) < 0 ∨ 𝑁 < (0 − 1))) →
(𝑁C(0 − 1)) =
0) |
17 | 11, 15, 16 | mp3an23 1451 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (𝑁C(0 − 1)) =
0) |
18 | 7, 17 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ ((𝑁C0) + (𝑁C(0 − 1))) = (1 +
0)) |
19 | | bcn0 13952 |
. . . . . . . . 9
⊢ ((𝑁 + 1) ∈ ℕ0
→ ((𝑁 + 1)C0) =
1) |
20 | 1, 19 | syl 17 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 1)C0) =
1) |
21 | 6, 18, 20 | 3eqtr4a 2805 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ ((𝑁C0) + (𝑁C(0 − 1))) = ((𝑁 + 1)C0)) |
22 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝐾 = 0 → (𝑁C𝐾) = (𝑁C0)) |
23 | | oveq1 7262 |
. . . . . . . . . 10
⊢ (𝐾 = 0 → (𝐾 − 1) = (0 −
1)) |
24 | 23 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝐾 = 0 → (𝑁C(𝐾 − 1)) = (𝑁C(0 − 1))) |
25 | 22, 24 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝐾 = 0 → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁C0) + (𝑁C(0 − 1)))) |
26 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝐾 = 0 → ((𝑁 + 1)C𝐾) = ((𝑁 + 1)C0)) |
27 | 25, 26 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝐾 = 0 → (((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾) ↔ ((𝑁C0) + (𝑁C(0 − 1))) = ((𝑁 + 1)C0))) |
28 | 21, 27 | syl5ibrcom 246 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (𝐾 = 0 →
((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))) |
29 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ((0 +
1)...(𝑁 + 1))) → 𝐾 ∈ ((0 + 1)...(𝑁 + 1))) |
30 | | 0p1e1 12025 |
. . . . . . . . . 10
⊢ (0 + 1) =
1 |
31 | 30 | oveq1i 7265 |
. . . . . . . . 9
⊢ ((0 +
1)...(𝑁 + 1)) = (1...(𝑁 + 1)) |
32 | 29, 31 | eleqtrdi 2849 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ((0 +
1)...(𝑁 + 1))) → 𝐾 ∈ (1...(𝑁 + 1))) |
33 | | nn0p1nn 12202 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ) |
34 | | nnuz 12550 |
. . . . . . . . . . 11
⊢ ℕ =
(ℤ≥‘1) |
35 | 33, 34 | eleqtrdi 2849 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
(ℤ≥‘1)) |
36 | | fzm1 13265 |
. . . . . . . . . . 11
⊢ ((𝑁 + 1) ∈
(ℤ≥‘1) → (𝐾 ∈ (1...(𝑁 + 1)) ↔ (𝐾 ∈ (1...((𝑁 + 1) − 1)) ∨ 𝐾 = (𝑁 + 1)))) |
37 | 36 | biimpa 476 |
. . . . . . . . . 10
⊢ (((𝑁 + 1) ∈
(ℤ≥‘1) ∧ 𝐾 ∈ (1...(𝑁 + 1))) → (𝐾 ∈ (1...((𝑁 + 1) − 1)) ∨ 𝐾 = (𝑁 + 1))) |
38 | 35, 37 | sylan 579 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ (1...(𝑁 + 1))) → (𝐾 ∈ (1...((𝑁 + 1) − 1)) ∨ 𝐾 = (𝑁 + 1))) |
39 | | nn0cn 12173 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℂ) |
40 | | ax-1cn 10860 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℂ |
41 | | pncan 11157 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 + 1)
− 1) = 𝑁) |
42 | 39, 40, 41 | sylancl 585 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 1) − 1)
= 𝑁) |
43 | 42 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ0
→ (1...((𝑁 + 1)
− 1)) = (1...𝑁)) |
44 | 43 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ0
→ (𝐾 ∈
(1...((𝑁 + 1) − 1))
↔ 𝐾 ∈ (1...𝑁))) |
45 | 44 | biimpa 476 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ (1...((𝑁 + 1) − 1))) → 𝐾 ∈ (1...𝑁)) |
46 | | fz1ssfz0 13281 |
. . . . . . . . . . . . . 14
⊢
(1...𝑁) ⊆
(0...𝑁) |
47 | 46 | sseli 3913 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ∈ (0...𝑁)) |
48 | | bcp1n 13958 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C𝐾) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾)))) |
49 | 47, 48 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁 + 1)C𝐾) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾)))) |
50 | | bcrpcl 13950 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈
ℝ+) |
51 | 47, 50 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) ∈
ℝ+) |
52 | 51 | rpcnd 12703 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) ∈ ℂ) |
53 | | elfzuz2 13190 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ (1...𝑁) → 𝑁 ∈
(ℤ≥‘1)) |
54 | 53, 34 | eleqtrrdi 2850 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ (1...𝑁) → 𝑁 ∈ ℕ) |
55 | 54 | peano2nnd 11920 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ (1...𝑁) → (𝑁 + 1) ∈ ℕ) |
56 | 55 | nncnd 11919 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ (1...𝑁) → (𝑁 + 1) ∈ ℂ) |
57 | 54 | nncnd 11919 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ (1...𝑁) → 𝑁 ∈ ℂ) |
58 | | 1cnd 10901 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ (1...𝑁) → 1 ∈ ℂ) |
59 | | elfzelz 13185 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℤ) |
60 | 59 | zcnd 12356 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℂ) |
61 | 57, 58, 60 | addsubd 11283 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 𝐾) = ((𝑁 − 𝐾) + 1)) |
62 | | fznn0sub 13217 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ (1...𝑁) → (𝑁 − 𝐾) ∈
ℕ0) |
63 | | nn0p1nn 12202 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 − 𝐾) ∈ ℕ0 → ((𝑁 − 𝐾) + 1) ∈ ℕ) |
64 | 62, 63 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁 − 𝐾) + 1) ∈ ℕ) |
65 | 61, 64 | eqeltrd 2839 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℕ) |
66 | 65 | nncnd 11919 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℂ) |
67 | 65 | nnne0d 11953 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 𝐾) ≠ 0) |
68 | 52, 56, 66, 67 | div12d 11717 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) = ((𝑁 + 1) · ((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)))) |
69 | 65 | nnrpd 12699 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 𝐾) ∈
ℝ+) |
70 | 51, 69 | rpdivcld 12718 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) ∈
ℝ+) |
71 | 70 | rpcnd 12703 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) ∈ ℂ) |
72 | 56, 71 | mulcomd 10927 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) · ((𝑁C𝐾) / ((𝑁 + 1) − 𝐾))) = (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · (𝑁 + 1))) |
73 | 68, 72 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) = (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · (𝑁 + 1))) |
74 | 56, 60 | npcand 11266 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ (1...𝑁) → (((𝑁 + 1) − 𝐾) + 𝐾) = (𝑁 + 1)) |
75 | 74 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · (((𝑁 + 1) − 𝐾) + 𝐾)) = (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · (𝑁 + 1))) |
76 | 71, 66, 60 | adddid 10930 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · (((𝑁 + 1) − 𝐾) + 𝐾)) = ((((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · ((𝑁 + 1) − 𝐾)) + (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · 𝐾))) |
77 | 73, 75, 76 | 3eqtr2d 2784 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) = ((((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · ((𝑁 + 1) − 𝐾)) + (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · 𝐾))) |
78 | 52, 66, 67 | divcan1d 11682 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · ((𝑁 + 1) − 𝐾)) = (𝑁C𝐾)) |
79 | | elfznn 13214 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ) |
80 | 79 | nnne0d 11953 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ≠ 0) |
81 | 52, 66, 60, 67, 80 | divdiv2d 11713 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) / (((𝑁 + 1) − 𝐾) / 𝐾)) = (((𝑁C𝐾) · 𝐾) / ((𝑁 + 1) − 𝐾))) |
82 | | bcm1k 13957 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) = ((𝑁C(𝐾 − 1)) · ((𝑁 − (𝐾 − 1)) / 𝐾))) |
83 | 57, 60, 58 | subsub3d 11292 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ (1...𝑁) → (𝑁 − (𝐾 − 1)) = ((𝑁 + 1) − 𝐾)) |
84 | 83 | oveq1d 7270 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁 − (𝐾 − 1)) / 𝐾) = (((𝑁 + 1) − 𝐾) / 𝐾)) |
85 | 84 | oveq2d 7271 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁C(𝐾 − 1)) · ((𝑁 − (𝐾 − 1)) / 𝐾)) = ((𝑁C(𝐾 − 1)) · (((𝑁 + 1) − 𝐾) / 𝐾))) |
86 | 82, 85 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) = ((𝑁C(𝐾 − 1)) · (((𝑁 + 1) − 𝐾) / 𝐾))) |
87 | | fzelp1 13237 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ∈ (1...(𝑁 + 1))) |
88 | 55 | nnzd 12354 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐾 ∈ (1...𝑁) → (𝑁 + 1) ∈ ℤ) |
89 | | elfzm1b 13263 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐾 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) →
(𝐾 ∈ (1...(𝑁 + 1)) ↔ (𝐾 − 1) ∈ (0...((𝑁 + 1) − 1)))) |
90 | 59, 88, 89 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐾 ∈ (1...𝑁) → (𝐾 ∈ (1...(𝑁 + 1)) ↔ (𝐾 − 1) ∈ (0...((𝑁 + 1) − 1)))) |
91 | 87, 90 | mpbid 231 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐾 ∈ (1...𝑁) → (𝐾 − 1) ∈ (0...((𝑁 + 1) − 1))) |
92 | 57, 40, 41 | sylancl 585 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 1) = 𝑁) |
93 | 92 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐾 ∈ (1...𝑁) → (0...((𝑁 + 1) − 1)) = (0...𝑁)) |
94 | 91, 93 | eleqtrd 2841 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ (1...𝑁) → (𝐾 − 1) ∈ (0...𝑁)) |
95 | | bcrpcl 13950 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐾 − 1) ∈ (0...𝑁) → (𝑁C(𝐾 − 1)) ∈
ℝ+) |
96 | 94, 95 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ (1...𝑁) → (𝑁C(𝐾 − 1)) ∈
ℝ+) |
97 | 96 | rpcnd 12703 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ (1...𝑁) → (𝑁C(𝐾 − 1)) ∈
ℂ) |
98 | 79 | nnrpd 12699 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ∈
ℝ+) |
99 | 69, 98 | rpdivcld 12718 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ (1...𝑁) → (((𝑁 + 1) − 𝐾) / 𝐾) ∈
ℝ+) |
100 | 99 | rpcnd 12703 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ (1...𝑁) → (((𝑁 + 1) − 𝐾) / 𝐾) ∈ ℂ) |
101 | 99 | rpne0d 12706 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ (1...𝑁) → (((𝑁 + 1) − 𝐾) / 𝐾) ≠ 0) |
102 | 52, 97, 100, 101 | divmul3d 11715 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) / (((𝑁 + 1) − 𝐾) / 𝐾)) = (𝑁C(𝐾 − 1)) ↔ (𝑁C𝐾) = ((𝑁C(𝐾 − 1)) · (((𝑁 + 1) − 𝐾) / 𝐾)))) |
103 | 86, 102 | mpbird 256 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) / (((𝑁 + 1) − 𝐾) / 𝐾)) = (𝑁C(𝐾 − 1))) |
104 | 52, 60, 66, 67 | div23d 11718 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) · 𝐾) / ((𝑁 + 1) − 𝐾)) = (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · 𝐾)) |
105 | 81, 103, 104 | 3eqtr3rd 2787 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · 𝐾) = (𝑁C(𝐾 − 1))) |
106 | 78, 105 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ (1...𝑁) → ((((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · ((𝑁 + 1) − 𝐾)) + (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · 𝐾)) = ((𝑁C𝐾) + (𝑁C(𝐾 − 1)))) |
107 | 49, 77, 106 | 3eqtrrd 2783 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)) |
108 | 45, 107 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ (1...((𝑁 + 1) − 1))) →
((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)) |
109 | | oveq2 7263 |
. . . . . . . . . . . . 13
⊢ (𝐾 = (𝑁 + 1) → (𝑁C𝐾) = (𝑁C(𝑁 + 1))) |
110 | 33 | nnzd 12354 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℤ) |
111 | | nn0re 12172 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℝ) |
112 | 111 | ltp1d 11835 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ0
→ 𝑁 < (𝑁 + 1)) |
113 | 112 | olcd 870 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 1) < 0 ∨
𝑁 < (𝑁 + 1))) |
114 | | bcval4 13949 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ (𝑁 + 1) ∈
ℤ ∧ ((𝑁 + 1) <
0 ∨ 𝑁 < (𝑁 + 1))) → (𝑁C(𝑁 + 1)) = 0) |
115 | 110, 113,
114 | mpd3an23 1461 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ0
→ (𝑁C(𝑁 + 1)) = 0) |
116 | 109, 115 | sylan9eqr 2801 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 = (𝑁 + 1)) → (𝑁C𝐾) = 0) |
117 | | oveq1 7262 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 = (𝑁 + 1) → (𝐾 − 1) = ((𝑁 + 1) − 1)) |
118 | 117, 42 | sylan9eqr 2801 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 = (𝑁 + 1)) → (𝐾 − 1) = 𝑁) |
119 | 118 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 = (𝑁 + 1)) → (𝑁C(𝐾 − 1)) = (𝑁C𝑁)) |
120 | | bcnn 13954 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ0
→ (𝑁C𝑁) = 1) |
121 | 120 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 = (𝑁 + 1)) → (𝑁C𝑁) = 1) |
122 | 119, 121 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 = (𝑁 + 1)) → (𝑁C(𝐾 − 1)) = 1) |
123 | 116, 122 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 = (𝑁 + 1)) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = (0 + 1)) |
124 | | oveq2 7263 |
. . . . . . . . . . . 12
⊢ (𝐾 = (𝑁 + 1) → ((𝑁 + 1)C𝐾) = ((𝑁 + 1)C(𝑁 + 1))) |
125 | | bcnn 13954 |
. . . . . . . . . . . . 13
⊢ ((𝑁 + 1) ∈ ℕ0
→ ((𝑁 + 1)C(𝑁 + 1)) = 1) |
126 | 1, 125 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 1)C(𝑁 + 1)) = 1) |
127 | 124, 126 | sylan9eqr 2801 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 = (𝑁 + 1)) → ((𝑁 + 1)C𝐾) = 1) |
128 | 30, 123, 127 | 3eqtr4a 2805 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 = (𝑁 + 1)) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)) |
129 | 108, 128 | jaodan 954 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝐾 ∈
(1...((𝑁 + 1) − 1))
∨ 𝐾 = (𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)) |
130 | 38, 129 | syldan 590 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ (1...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)) |
131 | 32, 130 | syldan 590 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ((0 +
1)...(𝑁 + 1))) →
((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)) |
132 | 131 | ex 412 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (𝐾 ∈ ((0 +
1)...(𝑁 + 1)) →
((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))) |
133 | 28, 132 | jaod 855 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ ((𝐾 = 0 ∨ 𝐾 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))) |
134 | 5, 133 | sylbid 239 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (𝐾 ∈
(0...(𝑁 + 1)) →
((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))) |
135 | 134 | imp 406 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ (0...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)) |
136 | 135 | adantlr 711 |
. 2
⊢ (((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
∧ 𝐾 ∈ (0...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)) |
137 | | 00id 11080 |
. . 3
⊢ (0 + 0) =
0 |
138 | | fzelp1 13237 |
. . . . . 6
⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ (0...(𝑁 + 1))) |
139 | 138 | con3i 154 |
. . . . 5
⊢ (¬
𝐾 ∈ (0...(𝑁 + 1)) → ¬ 𝐾 ∈ (0...𝑁)) |
140 | | bcval3 13948 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ
∧ ¬ 𝐾 ∈
(0...𝑁)) → (𝑁C𝐾) = 0) |
141 | 140 | 3expa 1116 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
∧ ¬ 𝐾 ∈
(0...𝑁)) → (𝑁C𝐾) = 0) |
142 | 139, 141 | sylan2 592 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
∧ ¬ 𝐾 ∈
(0...(𝑁 + 1))) →
(𝑁C𝐾) = 0) |
143 | | simpll 763 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
∧ ¬ 𝐾 ∈
(0...(𝑁 + 1))) → 𝑁 ∈
ℕ0) |
144 | | simplr 765 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
∧ ¬ 𝐾 ∈
(0...(𝑁 + 1))) → 𝐾 ∈
ℤ) |
145 | | peano2zm 12293 |
. . . . . 6
⊢ (𝐾 ∈ ℤ → (𝐾 − 1) ∈
ℤ) |
146 | 144, 145 | syl 17 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
∧ ¬ 𝐾 ∈
(0...(𝑁 + 1))) →
(𝐾 − 1) ∈
ℤ) |
147 | 39 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
→ 𝑁 ∈
ℂ) |
148 | 147, 40, 41 | sylancl 585 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
→ ((𝑁 + 1) − 1)
= 𝑁) |
149 | 148 | oveq2d 7271 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
→ (0...((𝑁 + 1)
− 1)) = (0...𝑁)) |
150 | 149 | eleq2d 2824 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
→ ((𝐾 − 1)
∈ (0...((𝑁 + 1)
− 1)) ↔ (𝐾
− 1) ∈ (0...𝑁))) |
151 | | id 22 |
. . . . . . . . 9
⊢ (𝐾 ∈ ℤ → 𝐾 ∈
ℤ) |
152 | 1 | nn0zd 12353 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℤ) |
153 | 151, 152,
89 | syl2anr 596 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
→ (𝐾 ∈
(1...(𝑁 + 1)) ↔ (𝐾 − 1) ∈ (0...((𝑁 + 1) −
1)))) |
154 | | fz1ssfz0 13281 |
. . . . . . . . 9
⊢
(1...(𝑁 + 1))
⊆ (0...(𝑁 +
1)) |
155 | 154 | sseli 3913 |
. . . . . . . 8
⊢ (𝐾 ∈ (1...(𝑁 + 1)) → 𝐾 ∈ (0...(𝑁 + 1))) |
156 | 153, 155 | syl6bir 253 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
→ ((𝐾 − 1)
∈ (0...((𝑁 + 1)
− 1)) → 𝐾 ∈
(0...(𝑁 +
1)))) |
157 | 150, 156 | sylbird 259 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
→ ((𝐾 − 1)
∈ (0...𝑁) → 𝐾 ∈ (0...(𝑁 + 1)))) |
158 | 157 | con3dimp 408 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
∧ ¬ 𝐾 ∈
(0...(𝑁 + 1))) → ¬
(𝐾 − 1) ∈
(0...𝑁)) |
159 | | bcval3 13948 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐾 − 1) ∈
ℤ ∧ ¬ (𝐾
− 1) ∈ (0...𝑁))
→ (𝑁C(𝐾 − 1)) =
0) |
160 | 143, 146,
158, 159 | syl3anc 1369 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
∧ ¬ 𝐾 ∈
(0...(𝑁 + 1))) →
(𝑁C(𝐾 − 1)) = 0) |
161 | 142, 160 | oveq12d 7273 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
∧ ¬ 𝐾 ∈
(0...(𝑁 + 1))) →
((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = (0 + 0)) |
162 | 143, 1 | syl 17 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
∧ ¬ 𝐾 ∈
(0...(𝑁 + 1))) →
(𝑁 + 1) ∈
ℕ0) |
163 | | simpr 484 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
∧ ¬ 𝐾 ∈
(0...(𝑁 + 1))) → ¬
𝐾 ∈ (0...(𝑁 + 1))) |
164 | | bcval3 13948 |
. . . 4
⊢ (((𝑁 + 1) ∈ ℕ0
∧ 𝐾 ∈ ℤ
∧ ¬ 𝐾 ∈
(0...(𝑁 + 1))) →
((𝑁 + 1)C𝐾) = 0) |
165 | 162, 144,
163, 164 | syl3anc 1369 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
∧ ¬ 𝐾 ∈
(0...(𝑁 + 1))) →
((𝑁 + 1)C𝐾) = 0) |
166 | 137, 161,
165 | 3eqtr4a 2805 |
. 2
⊢ (((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
∧ ¬ 𝐾 ∈
(0...(𝑁 + 1))) →
((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)) |
167 | 136, 166 | pm2.61dan 809 |
1
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
→ ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)) |