MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcpasc Structured version   Visualization version   GIF version

Theorem bcpasc 13675
Description: Pascal's rule for the binomial coefficient, generalized to all integers 𝐾. Equation 2 of [Gleason] p. 295. (Contributed by NM, 13-Jul-2005.) (Revised by Mario Carneiro, 10-Mar-2014.)
Assertion
Ref Expression
bcpasc ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))

Proof of Theorem bcpasc
StepHypRef Expression
1 peano2nn0 11931 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2 elfzp12 12980 . . . . . . 7 ((𝑁 + 1) ∈ (ℤ‘0) → (𝐾 ∈ (0...(𝑁 + 1)) ↔ (𝐾 = 0 ∨ 𝐾 ∈ ((0 + 1)...(𝑁 + 1)))))
3 nn0uz 12274 . . . . . . 7 0 = (ℤ‘0)
42, 3eleq2s 2931 . . . . . 6 ((𝑁 + 1) ∈ ℕ0 → (𝐾 ∈ (0...(𝑁 + 1)) ↔ (𝐾 = 0 ∨ 𝐾 ∈ ((0 + 1)...(𝑁 + 1)))))
51, 4syl 17 . . . . 5 (𝑁 ∈ ℕ0 → (𝐾 ∈ (0...(𝑁 + 1)) ↔ (𝐾 = 0 ∨ 𝐾 ∈ ((0 + 1)...(𝑁 + 1)))))
6 1p0e1 11755 . . . . . . . 8 (1 + 0) = 1
7 bcn0 13664 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁C0) = 1)
8 0z 11986 . . . . . . . . . . 11 0 ∈ ℤ
9 1z 12006 . . . . . . . . . . 11 1 ∈ ℤ
10 zsubcl 12018 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ 1 ∈ ℤ) → (0 − 1) ∈ ℤ)
118, 9, 10mp2an 690 . . . . . . . . . 10 (0 − 1) ∈ ℤ
12 0re 10637 . . . . . . . . . . . 12 0 ∈ ℝ
13 ltm1 11476 . . . . . . . . . . . 12 (0 ∈ ℝ → (0 − 1) < 0)
1412, 13ax-mp 5 . . . . . . . . . . 11 (0 − 1) < 0
1514orci 861 . . . . . . . . . 10 ((0 − 1) < 0 ∨ 𝑁 < (0 − 1))
16 bcval4 13661 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (0 − 1) ∈ ℤ ∧ ((0 − 1) < 0 ∨ 𝑁 < (0 − 1))) → (𝑁C(0 − 1)) = 0)
1711, 15, 16mp3an23 1449 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁C(0 − 1)) = 0)
187, 17oveq12d 7168 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((𝑁C0) + (𝑁C(0 − 1))) = (1 + 0))
19 bcn0 13664 . . . . . . . . 9 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1)C0) = 1)
201, 19syl 17 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((𝑁 + 1)C0) = 1)
216, 18, 203eqtr4a 2882 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝑁C0) + (𝑁C(0 − 1))) = ((𝑁 + 1)C0))
22 oveq2 7158 . . . . . . . . 9 (𝐾 = 0 → (𝑁C𝐾) = (𝑁C0))
23 oveq1 7157 . . . . . . . . . 10 (𝐾 = 0 → (𝐾 − 1) = (0 − 1))
2423oveq2d 7166 . . . . . . . . 9 (𝐾 = 0 → (𝑁C(𝐾 − 1)) = (𝑁C(0 − 1)))
2522, 24oveq12d 7168 . . . . . . . 8 (𝐾 = 0 → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁C0) + (𝑁C(0 − 1))))
26 oveq2 7158 . . . . . . . 8 (𝐾 = 0 → ((𝑁 + 1)C𝐾) = ((𝑁 + 1)C0))
2725, 26eqeq12d 2837 . . . . . . 7 (𝐾 = 0 → (((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾) ↔ ((𝑁C0) + (𝑁C(0 − 1))) = ((𝑁 + 1)C0)))
2821, 27syl5ibrcom 249 . . . . . 6 (𝑁 ∈ ℕ0 → (𝐾 = 0 → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)))
29 simpr 487 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐾 ∈ ((0 + 1)...(𝑁 + 1))) → 𝐾 ∈ ((0 + 1)...(𝑁 + 1)))
30 0p1e1 11753 . . . . . . . . . 10 (0 + 1) = 1
3130oveq1i 7160 . . . . . . . . 9 ((0 + 1)...(𝑁 + 1)) = (1...(𝑁 + 1))
3229, 31eleqtrdi 2923 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ ((0 + 1)...(𝑁 + 1))) → 𝐾 ∈ (1...(𝑁 + 1)))
33 nn0p1nn 11930 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
34 nnuz 12275 . . . . . . . . . . 11 ℕ = (ℤ‘1)
3533, 34eleqtrdi 2923 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (ℤ‘1))
36 fzm1 12981 . . . . . . . . . . 11 ((𝑁 + 1) ∈ (ℤ‘1) → (𝐾 ∈ (1...(𝑁 + 1)) ↔ (𝐾 ∈ (1...((𝑁 + 1) − 1)) ∨ 𝐾 = (𝑁 + 1))))
3736biimpa 479 . . . . . . . . . 10 (((𝑁 + 1) ∈ (ℤ‘1) ∧ 𝐾 ∈ (1...(𝑁 + 1))) → (𝐾 ∈ (1...((𝑁 + 1) − 1)) ∨ 𝐾 = (𝑁 + 1)))
3835, 37sylan 582 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐾 ∈ (1...(𝑁 + 1))) → (𝐾 ∈ (1...((𝑁 + 1) − 1)) ∨ 𝐾 = (𝑁 + 1)))
39 nn0cn 11901 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
40 ax-1cn 10589 . . . . . . . . . . . . . . 15 1 ∈ ℂ
41 pncan 10886 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
4239, 40, 41sylancl 588 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
4342oveq2d 7166 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (1...((𝑁 + 1) − 1)) = (1...𝑁))
4443eleq2d 2898 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (𝐾 ∈ (1...((𝑁 + 1) − 1)) ↔ 𝐾 ∈ (1...𝑁)))
4544biimpa 479 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐾 ∈ (1...((𝑁 + 1) − 1))) → 𝐾 ∈ (1...𝑁))
46 fz1ssfz0 12997 . . . . . . . . . . . . . 14 (1...𝑁) ⊆ (0...𝑁)
4746sseli 3962 . . . . . . . . . . . . 13 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ (0...𝑁))
48 bcp1n 13670 . . . . . . . . . . . . 13 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C𝐾) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))
4947, 48syl 17 . . . . . . . . . . . 12 (𝐾 ∈ (1...𝑁) → ((𝑁 + 1)C𝐾) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))
50 bcrpcl 13662 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℝ+)
5147, 50syl 17 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) ∈ ℝ+)
5251rpcnd 12427 . . . . . . . . . . . . . . 15 (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) ∈ ℂ)
53 elfzuz2 12906 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ (ℤ‘1))
5453, 34eleqtrrdi 2924 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ ℕ)
5554peano2nnd 11649 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → (𝑁 + 1) ∈ ℕ)
5655nncnd 11648 . . . . . . . . . . . . . . 15 (𝐾 ∈ (1...𝑁) → (𝑁 + 1) ∈ ℂ)
5754nncnd 11648 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ ℂ)
58 1cnd 10630 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (1...𝑁) → 1 ∈ ℂ)
59 elfzelz 12902 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℤ)
6059zcnd 12082 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℂ)
6157, 58, 60addsubd 11012 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 𝐾) = ((𝑁𝐾) + 1))
62 fznn0sub 12933 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (1...𝑁) → (𝑁𝐾) ∈ ℕ0)
63 nn0p1nn 11930 . . . . . . . . . . . . . . . . . 18 ((𝑁𝐾) ∈ ℕ0 → ((𝑁𝐾) + 1) ∈ ℕ)
6462, 63syl 17 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (1...𝑁) → ((𝑁𝐾) + 1) ∈ ℕ)
6561, 64eqeltrd 2913 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℕ)
6665nncnd 11648 . . . . . . . . . . . . . . 15 (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℂ)
6765nnne0d 11681 . . . . . . . . . . . . . . 15 (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 𝐾) ≠ 0)
6852, 56, 66, 67div12d 11446 . . . . . . . . . . . . . 14 (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) = ((𝑁 + 1) · ((𝑁C𝐾) / ((𝑁 + 1) − 𝐾))))
6965nnrpd 12423 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℝ+)
7051, 69rpdivcld 12442 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) ∈ ℝ+)
7170rpcnd 12427 . . . . . . . . . . . . . . 15 (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) ∈ ℂ)
7256, 71mulcomd 10656 . . . . . . . . . . . . . 14 (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) · ((𝑁C𝐾) / ((𝑁 + 1) − 𝐾))) = (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · (𝑁 + 1)))
7368, 72eqtrd 2856 . . . . . . . . . . . . 13 (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) = (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · (𝑁 + 1)))
7456, 60npcand 10995 . . . . . . . . . . . . . 14 (𝐾 ∈ (1...𝑁) → (((𝑁 + 1) − 𝐾) + 𝐾) = (𝑁 + 1))
7574oveq2d 7166 . . . . . . . . . . . . 13 (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · (((𝑁 + 1) − 𝐾) + 𝐾)) = (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · (𝑁 + 1)))
7671, 66, 60adddid 10659 . . . . . . . . . . . . 13 (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · (((𝑁 + 1) − 𝐾) + 𝐾)) = ((((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · ((𝑁 + 1) − 𝐾)) + (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · 𝐾)))
7773, 75, 763eqtr2d 2862 . . . . . . . . . . . 12 (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) = ((((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · ((𝑁 + 1) − 𝐾)) + (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · 𝐾)))
7852, 66, 67divcan1d 11411 . . . . . . . . . . . . 13 (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · ((𝑁 + 1) − 𝐾)) = (𝑁C𝐾))
79 elfznn 12930 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ)
8079nnne0d 11681 . . . . . . . . . . . . . . 15 (𝐾 ∈ (1...𝑁) → 𝐾 ≠ 0)
8152, 66, 60, 67, 80divdiv2d 11442 . . . . . . . . . . . . . 14 (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) / (((𝑁 + 1) − 𝐾) / 𝐾)) = (((𝑁C𝐾) · 𝐾) / ((𝑁 + 1) − 𝐾)))
82 bcm1k 13669 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) = ((𝑁C(𝐾 − 1)) · ((𝑁 − (𝐾 − 1)) / 𝐾)))
8357, 60, 58subsub3d 11021 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (1...𝑁) → (𝑁 − (𝐾 − 1)) = ((𝑁 + 1) − 𝐾))
8483oveq1d 7165 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (1...𝑁) → ((𝑁 − (𝐾 − 1)) / 𝐾) = (((𝑁 + 1) − 𝐾) / 𝐾))
8584oveq2d 7166 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → ((𝑁C(𝐾 − 1)) · ((𝑁 − (𝐾 − 1)) / 𝐾)) = ((𝑁C(𝐾 − 1)) · (((𝑁 + 1) − 𝐾) / 𝐾)))
8682, 85eqtrd 2856 . . . . . . . . . . . . . . 15 (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) = ((𝑁C(𝐾 − 1)) · (((𝑁 + 1) − 𝐾) / 𝐾)))
87 fzelp1 12953 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ (1...(𝑁 + 1)))
8855nnzd 12080 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ (1...𝑁) → (𝑁 + 1) ∈ ℤ)
89 elfzm1b 12979 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝐾 ∈ (1...(𝑁 + 1)) ↔ (𝐾 − 1) ∈ (0...((𝑁 + 1) − 1))))
9059, 88, 89syl2anc 586 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ (1...𝑁) → (𝐾 ∈ (1...(𝑁 + 1)) ↔ (𝐾 − 1) ∈ (0...((𝑁 + 1) − 1))))
9187, 90mpbid 234 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ (1...𝑁) → (𝐾 − 1) ∈ (0...((𝑁 + 1) − 1)))
9257, 40, 41sylancl 588 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 1) = 𝑁)
9392oveq2d 7166 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ (1...𝑁) → (0...((𝑁 + 1) − 1)) = (0...𝑁))
9491, 93eleqtrd 2915 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (1...𝑁) → (𝐾 − 1) ∈ (0...𝑁))
95 bcrpcl 13662 . . . . . . . . . . . . . . . . . 18 ((𝐾 − 1) ∈ (0...𝑁) → (𝑁C(𝐾 − 1)) ∈ ℝ+)
9694, 95syl 17 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (1...𝑁) → (𝑁C(𝐾 − 1)) ∈ ℝ+)
9796rpcnd 12427 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → (𝑁C(𝐾 − 1)) ∈ ℂ)
9879nnrpd 12423 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℝ+)
9969, 98rpdivcld 12442 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (1...𝑁) → (((𝑁 + 1) − 𝐾) / 𝐾) ∈ ℝ+)
10099rpcnd 12427 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → (((𝑁 + 1) − 𝐾) / 𝐾) ∈ ℂ)
10199rpne0d 12430 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → (((𝑁 + 1) − 𝐾) / 𝐾) ≠ 0)
10252, 97, 100, 101divmul3d 11444 . . . . . . . . . . . . . . 15 (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) / (((𝑁 + 1) − 𝐾) / 𝐾)) = (𝑁C(𝐾 − 1)) ↔ (𝑁C𝐾) = ((𝑁C(𝐾 − 1)) · (((𝑁 + 1) − 𝐾) / 𝐾))))
10386, 102mpbird 259 . . . . . . . . . . . . . 14 (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) / (((𝑁 + 1) − 𝐾) / 𝐾)) = (𝑁C(𝐾 − 1)))
10452, 60, 66, 67div23d 11447 . . . . . . . . . . . . . 14 (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) · 𝐾) / ((𝑁 + 1) − 𝐾)) = (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · 𝐾))
10581, 103, 1043eqtr3rd 2865 . . . . . . . . . . . . 13 (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · 𝐾) = (𝑁C(𝐾 − 1)))
10678, 105oveq12d 7168 . . . . . . . . . . . 12 (𝐾 ∈ (1...𝑁) → ((((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · ((𝑁 + 1) − 𝐾)) + (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · 𝐾)) = ((𝑁C𝐾) + (𝑁C(𝐾 − 1))))
10749, 77, 1063eqtrrd 2861 . . . . . . . . . . 11 (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
10845, 107syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐾 ∈ (1...((𝑁 + 1) − 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
109 oveq2 7158 . . . . . . . . . . . . 13 (𝐾 = (𝑁 + 1) → (𝑁C𝐾) = (𝑁C(𝑁 + 1)))
11033nnzd 12080 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
111 nn0re 11900 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
112111ltp1d 11564 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0𝑁 < (𝑁 + 1))
113112olcd 870 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → ((𝑁 + 1) < 0 ∨ 𝑁 < (𝑁 + 1)))
114 bcval4 13661 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℤ ∧ ((𝑁 + 1) < 0 ∨ 𝑁 < (𝑁 + 1))) → (𝑁C(𝑁 + 1)) = 0)
115110, 113, 114mpd3an23 1459 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑁C(𝑁 + 1)) = 0)
116109, 115sylan9eqr 2878 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝐾 = (𝑁 + 1)) → (𝑁C𝐾) = 0)
117 oveq1 7157 . . . . . . . . . . . . . . 15 (𝐾 = (𝑁 + 1) → (𝐾 − 1) = ((𝑁 + 1) − 1))
118117, 42sylan9eqr 2878 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝐾 = (𝑁 + 1)) → (𝐾 − 1) = 𝑁)
119118oveq2d 7166 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝐾 = (𝑁 + 1)) → (𝑁C(𝐾 − 1)) = (𝑁C𝑁))
120 bcnn 13666 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁C𝑁) = 1)
121120adantr 483 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝐾 = (𝑁 + 1)) → (𝑁C𝑁) = 1)
122119, 121eqtrd 2856 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝐾 = (𝑁 + 1)) → (𝑁C(𝐾 − 1)) = 1)
123116, 122oveq12d 7168 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐾 = (𝑁 + 1)) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = (0 + 1))
124 oveq2 7158 . . . . . . . . . . . 12 (𝐾 = (𝑁 + 1) → ((𝑁 + 1)C𝐾) = ((𝑁 + 1)C(𝑁 + 1)))
125 bcnn 13666 . . . . . . . . . . . . 13 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1)C(𝑁 + 1)) = 1)
1261, 125syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → ((𝑁 + 1)C(𝑁 + 1)) = 1)
127124, 126sylan9eqr 2878 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐾 = (𝑁 + 1)) → ((𝑁 + 1)C𝐾) = 1)
12830, 123, 1273eqtr4a 2882 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐾 = (𝑁 + 1)) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
129108, 128jaodan 954 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝐾 ∈ (1...((𝑁 + 1) − 1)) ∨ 𝐾 = (𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
13038, 129syldan 593 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ (1...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
13132, 130syldan 593 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
132131ex 415 . . . . . 6 (𝑁 ∈ ℕ0 → (𝐾 ∈ ((0 + 1)...(𝑁 + 1)) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)))
13328, 132jaod 855 . . . . 5 (𝑁 ∈ ℕ0 → ((𝐾 = 0 ∨ 𝐾 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)))
1345, 133sylbid 242 . . . 4 (𝑁 ∈ ℕ0 → (𝐾 ∈ (0...(𝑁 + 1)) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)))
135134imp 409 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ (0...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
136135adantlr 713 . 2 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (0...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
137 00id 10809 . . 3 (0 + 0) = 0
138 fzelp1 12953 . . . . . 6 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ (0...(𝑁 + 1)))
139138con3i 157 . . . . 5 𝐾 ∈ (0...(𝑁 + 1)) → ¬ 𝐾 ∈ (0...𝑁))
140 bcval3 13660 . . . . . 6 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
1411403expa 1114 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
142139, 141sylan2 594 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → (𝑁C𝐾) = 0)
143 simpll 765 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → 𝑁 ∈ ℕ0)
144 simplr 767 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → 𝐾 ∈ ℤ)
145 peano2zm 12019 . . . . . 6 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ)
146144, 145syl 17 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → (𝐾 − 1) ∈ ℤ)
14739adantr 483 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → 𝑁 ∈ ℂ)
148147, 40, 41sylancl 588 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝑁 + 1) − 1) = 𝑁)
149148oveq2d 7166 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (0...((𝑁 + 1) − 1)) = (0...𝑁))
150149eleq2d 2898 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝐾 − 1) ∈ (0...((𝑁 + 1) − 1)) ↔ (𝐾 − 1) ∈ (0...𝑁)))
151 id 22 . . . . . . . . 9 (𝐾 ∈ ℤ → 𝐾 ∈ ℤ)
1521nn0zd 12079 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
153151, 152, 89syl2anr 598 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝐾 ∈ (1...(𝑁 + 1)) ↔ (𝐾 − 1) ∈ (0...((𝑁 + 1) − 1))))
154 fz1ssfz0 12997 . . . . . . . . 9 (1...(𝑁 + 1)) ⊆ (0...(𝑁 + 1))
155154sseli 3962 . . . . . . . 8 (𝐾 ∈ (1...(𝑁 + 1)) → 𝐾 ∈ (0...(𝑁 + 1)))
156153, 155syl6bir 256 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝐾 − 1) ∈ (0...((𝑁 + 1) − 1)) → 𝐾 ∈ (0...(𝑁 + 1))))
157150, 156sylbird 262 . . . . . 6 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝐾 − 1) ∈ (0...𝑁) → 𝐾 ∈ (0...(𝑁 + 1))))
158157con3dimp 411 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → ¬ (𝐾 − 1) ∈ (0...𝑁))
159 bcval3 13660 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐾 − 1) ∈ ℤ ∧ ¬ (𝐾 − 1) ∈ (0...𝑁)) → (𝑁C(𝐾 − 1)) = 0)
160143, 146, 158, 159syl3anc 1367 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → (𝑁C(𝐾 − 1)) = 0)
161142, 160oveq12d 7168 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = (0 + 0))
162143, 1syl 17 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → (𝑁 + 1) ∈ ℕ0)
163 simpr 487 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → ¬ 𝐾 ∈ (0...(𝑁 + 1)))
164 bcval3 13660 . . . 4 (((𝑁 + 1) ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → ((𝑁 + 1)C𝐾) = 0)
165162, 144, 163, 164syl3anc 1367 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → ((𝑁 + 1)C𝐾) = 0)
166137, 161, 1653eqtr4a 2882 . 2 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
167136, 166pm2.61dan 811 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110   class class class wbr 5058  cfv 6349  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536   < clt 10669  cmin 10864   / cdiv 11291  cn 11632  0cn0 11891  cz 11975  cuz 12237  +crp 12383  ...cfz 12886  Ccbc 13656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-seq 13364  df-fac 13628  df-bc 13657
This theorem is referenced by:  bccl  13676  bcn2m1  13678  bcn2p1  13679  hashbclem  13804  binomlem  15178  bcxmas  15184  binomfallfaclem2  15388  srgbinomlem  19288  bcp1ctr  25849  ex-bc  28225  bccolsum  32966  fwddifnp1  33621  dvnmul  42221  bcpascm1  44393
  Copyright terms: Public domain W3C validator