| Step | Hyp | Ref
| Expression |
| 1 | | nn0uz 12920 |
. . . 4
⊢
ℕ0 = (ℤ≥‘0) |
| 2 | | 0zd 12625 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ 0 ∈ ℤ) |
| 3 | | eqeq1 2741 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → (𝑘 = 0 ↔ 𝑛 = 0)) |
| 4 | | oveq2 7439 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → (1 / 𝑘) = (1 / 𝑛)) |
| 5 | 3, 4 | ifbieq2d 4552 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → if(𝑘 = 0, 0, (1 / 𝑘)) = if(𝑛 = 0, 0, (1 / 𝑛))) |
| 6 | | oveq2 7439 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → (𝐴↑𝑘) = (𝐴↑𝑛)) |
| 7 | 5, 6 | oveq12d 7449 |
. . . . . 6
⊢ (𝑘 = 𝑛 → (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴↑𝑛))) |
| 8 | | eqid 2737 |
. . . . . 6
⊢ (𝑘 ∈ ℕ0
↦ (if(𝑘 = 0, 0, (1 /
𝑘)) · (𝐴↑𝑘))) = (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘))) |
| 9 | | ovex 7464 |
. . . . . 6
⊢ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴↑𝑛)) ∈ V |
| 10 | 7, 8, 9 | fvmpt 7016 |
. . . . 5
⊢ (𝑛 ∈ ℕ0
→ ((𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))‘𝑛) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴↑𝑛))) |
| 11 | 10 | adantl 481 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈
ℕ0) → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))‘𝑛) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴↑𝑛))) |
| 12 | | 0cnd 11254 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈
ℕ0) ∧ 𝑛 = 0) → 0 ∈
ℂ) |
| 13 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈
ℕ0) → 𝑛 ∈ ℕ0) |
| 14 | | elnn0 12528 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ0
↔ (𝑛 ∈ ℕ
∨ 𝑛 =
0)) |
| 15 | 13, 14 | sylib 218 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈
ℕ0) → (𝑛 ∈ ℕ ∨ 𝑛 = 0)) |
| 16 | 15 | ord 865 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈
ℕ0) → (¬ 𝑛 ∈ ℕ → 𝑛 = 0)) |
| 17 | 16 | con1d 145 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈
ℕ0) → (¬ 𝑛 = 0 → 𝑛 ∈ ℕ)) |
| 18 | 17 | imp 406 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈
ℕ0) ∧ ¬ 𝑛 = 0) → 𝑛 ∈ ℕ) |
| 19 | 18 | nnrecred 12317 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈
ℕ0) ∧ ¬ 𝑛 = 0) → (1 / 𝑛) ∈ ℝ) |
| 20 | 19 | recnd 11289 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈
ℕ0) ∧ ¬ 𝑛 = 0) → (1 / 𝑛) ∈ ℂ) |
| 21 | 12, 20 | ifclda 4561 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈
ℕ0) → if(𝑛 = 0, 0, (1 / 𝑛)) ∈ ℂ) |
| 22 | | expcl 14120 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0)
→ (𝐴↑𝑛) ∈
ℂ) |
| 23 | 22 | adantlr 715 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈
ℕ0) → (𝐴↑𝑛) ∈ ℂ) |
| 24 | 21, 23 | mulcld 11281 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈
ℕ0) → (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴↑𝑛)) ∈ ℂ) |
| 25 | | logtayllem 26701 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ seq0( + , (𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))) ∈ dom ⇝ ) |
| 26 | 1, 2, 11, 24, 25 | isumclim2 15794 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ seq0( + , (𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))) ⇝ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴↑𝑛))) |
| 27 | | simpl 482 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ 𝐴 ∈
ℂ) |
| 28 | | 0cn 11253 |
. . . . . . . 8
⊢ 0 ∈
ℂ |
| 29 | | eqid 2737 |
. . . . . . . . 9
⊢ (abs
∘ − ) = (abs ∘ − ) |
| 30 | 29 | cnmetdval 24791 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 0 ∈
ℂ) → (𝐴(abs
∘ − )0) = (abs‘(𝐴 − 0))) |
| 31 | 27, 28, 30 | sylancl 586 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ (𝐴(abs ∘
− )0) = (abs‘(𝐴
− 0))) |
| 32 | | subid1 11529 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴) |
| 33 | 32 | adantr 480 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ (𝐴 − 0) =
𝐴) |
| 34 | 33 | fveq2d 6910 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ (abs‘(𝐴
− 0)) = (abs‘𝐴)) |
| 35 | 31, 34 | eqtrd 2777 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ (𝐴(abs ∘
− )0) = (abs‘𝐴)) |
| 36 | | simpr 484 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ (abs‘𝐴) <
1) |
| 37 | 35, 36 | eqbrtrd 5165 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ (𝐴(abs ∘
− )0) < 1) |
| 38 | | cnxmet 24793 |
. . . . . . 7
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) |
| 39 | | 1xr 11320 |
. . . . . . 7
⊢ 1 ∈
ℝ* |
| 40 | | elbl3 24402 |
. . . . . . 7
⊢ ((((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈
ℝ*) ∧ (0 ∈ ℂ ∧ 𝐴 ∈ ℂ)) → (𝐴 ∈ (0(ball‘(abs ∘ −
))1) ↔ (𝐴(abs ∘
− )0) < 1)) |
| 41 | 38, 39, 40 | mpanl12 702 |
. . . . . 6
⊢ ((0
∈ ℂ ∧ 𝐴
∈ ℂ) → (𝐴
∈ (0(ball‘(abs ∘ − ))1) ↔ (𝐴(abs ∘ − )0) <
1)) |
| 42 | 28, 27, 41 | sylancr 587 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ (𝐴 ∈
(0(ball‘(abs ∘ − ))1) ↔ (𝐴(abs ∘ − )0) <
1)) |
| 43 | 37, 42 | mpbird 257 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ 𝐴 ∈
(0(ball‘(abs ∘ − ))1)) |
| 44 | | tru 1544 |
. . . . . 6
⊢
⊤ |
| 45 | | eqid 2737 |
. . . . . . . 8
⊢
(0(ball‘(abs ∘ − ))1) = (0(ball‘(abs ∘
− ))1) |
| 46 | | 0cnd 11254 |
. . . . . . . 8
⊢ (⊤
→ 0 ∈ ℂ) |
| 47 | 39 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ 1 ∈ ℝ*) |
| 48 | | ax-1cn 11213 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℂ |
| 49 | | blssm 24428 |
. . . . . . . . . . . . . . 15
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ
∧ 1 ∈ ℝ*) → (0(ball‘(abs ∘ −
))1) ⊆ ℂ) |
| 50 | 38, 28, 39, 49 | mp3an 1463 |
. . . . . . . . . . . . . 14
⊢
(0(ball‘(abs ∘ − ))1) ⊆ ℂ |
| 51 | 50 | sseli 3979 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → 𝑦 ∈ ℂ) |
| 52 | | subcl 11507 |
. . . . . . . . . . . . 13
⊢ ((1
∈ ℂ ∧ 𝑦
∈ ℂ) → (1 − 𝑦) ∈ ℂ) |
| 53 | 48, 51, 52 | sylancr 587 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (1 − 𝑦) ∈ ℂ) |
| 54 | 51 | abscld 15475 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (abs‘𝑦) ∈ ℝ) |
| 55 | 29 | cnmetdval 24791 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℂ ∧ 0 ∈
ℂ) → (𝑦(abs
∘ − )0) = (abs‘(𝑦 − 0))) |
| 56 | 51, 28, 55 | sylancl 586 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (𝑦(abs ∘ − )0) = (abs‘(𝑦 − 0))) |
| 57 | 51 | subid1d 11609 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (𝑦 − 0) = 𝑦) |
| 58 | 57 | fveq2d 6910 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (abs‘(𝑦 − 0)) = (abs‘𝑦)) |
| 59 | 56, 58 | eqtrd 2777 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (𝑦(abs ∘ − )0) = (abs‘𝑦)) |
| 60 | | elbl3 24402 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈
ℝ*) ∧ (0 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↔ (𝑦(abs ∘
− )0) < 1)) |
| 61 | 38, 39, 60 | mpanl12 702 |
. . . . . . . . . . . . . . . . . 18
⊢ ((0
∈ ℂ ∧ 𝑦
∈ ℂ) → (𝑦
∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑦(abs ∘ − )0) <
1)) |
| 62 | 28, 51, 61 | sylancr 587 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↔ (𝑦(abs ∘
− )0) < 1)) |
| 63 | 62 | ibi 267 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (𝑦(abs ∘ − )0) <
1) |
| 64 | 59, 63 | eqbrtrrd 5167 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (abs‘𝑦) < 1) |
| 65 | 54, 64 | gtned 11396 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → 1 ≠ (abs‘𝑦)) |
| 66 | | abs1 15336 |
. . . . . . . . . . . . . . . 16
⊢
(abs‘1) = 1 |
| 67 | | fveq2 6906 |
. . . . . . . . . . . . . . . 16
⊢ (1 =
𝑦 → (abs‘1) =
(abs‘𝑦)) |
| 68 | 66, 67 | eqtr3id 2791 |
. . . . . . . . . . . . . . 15
⊢ (1 =
𝑦 → 1 =
(abs‘𝑦)) |
| 69 | 68 | necon3i 2973 |
. . . . . . . . . . . . . 14
⊢ (1 ≠
(abs‘𝑦) → 1 ≠
𝑦) |
| 70 | 65, 69 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → 1 ≠ 𝑦) |
| 71 | | subeq0 11535 |
. . . . . . . . . . . . . . 15
⊢ ((1
∈ ℂ ∧ 𝑦
∈ ℂ) → ((1 − 𝑦) = 0 ↔ 1 = 𝑦)) |
| 72 | 71 | necon3bid 2985 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ ℂ ∧ 𝑦
∈ ℂ) → ((1 − 𝑦) ≠ 0 ↔ 1 ≠ 𝑦)) |
| 73 | 48, 51, 72 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → ((1 − 𝑦) ≠ 0 ↔ 1 ≠ 𝑦)) |
| 74 | 70, 73 | mpbird 257 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (1 − 𝑦) ≠ 0) |
| 75 | 53, 74 | logcld 26612 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (log‘(1 − 𝑦)) ∈ ℂ) |
| 76 | 75 | negcld 11607 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → -(log‘(1 − 𝑦)) ∈ ℂ) |
| 77 | 76 | adantl 481 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑦
∈ (0(ball‘(abs ∘ − ))1)) → -(log‘(1 −
𝑦)) ∈
ℂ) |
| 78 | 77 | fmpttd 7135 |
. . . . . . . 8
⊢ (⊤
→ (𝑦 ∈
(0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦))):(0(ball‘(abs ∘
− ))1)⟶ℂ) |
| 79 | 51 | absge0d 15483 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → 0 ≤ (abs‘𝑦)) |
| 80 | 54 | rexrd 11311 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (abs‘𝑦) ∈
ℝ*) |
| 81 | | peano2re 11434 |
. . . . . . . . . . . . . . . 16
⊢
((abs‘𝑦)
∈ ℝ → ((abs‘𝑦) + 1) ∈ ℝ) |
| 82 | 54, 81 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → ((abs‘𝑦) + 1) ∈ ℝ) |
| 83 | 82 | rehalfcld 12513 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (((abs‘𝑦) + 1) / 2) ∈ ℝ) |
| 84 | 83 | rexrd 11311 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (((abs‘𝑦) + 1) / 2) ∈
ℝ*) |
| 85 | | iccssxr 13470 |
. . . . . . . . . . . . . . 15
⊢
(0[,]+∞) ⊆ ℝ* |
| 86 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 = 𝑗 → (𝑚 = 0 ↔ 𝑗 = 0)) |
| 87 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 = 𝑗 → (1 / 𝑚) = (1 / 𝑗)) |
| 88 | 86, 87 | ifbieq2d 4552 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 = 𝑗 → if(𝑚 = 0, 0, (1 / 𝑚)) = if(𝑗 = 0, 0, (1 / 𝑗))) |
| 89 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 ∈ ℕ0
↦ if(𝑚 = 0, 0, (1 /
𝑚))) = (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚))) |
| 90 | | c0ex 11255 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 0 ∈
V |
| 91 | | ovex 7464 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (1 /
𝑗) ∈
V |
| 92 | 90, 91 | ifex 4576 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ if(𝑗 = 0, 0, (1 / 𝑗)) ∈ V |
| 93 | 88, 89, 92 | fvmpt 7016 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ ℕ0
→ ((𝑚 ∈
ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑗) = if(𝑗 = 0, 0, (1 / 𝑗))) |
| 94 | 93 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ ℕ0
→ if(𝑗 = 0, 0, (1 /
𝑗)) = ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑗)) |
| 95 | 94 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ℕ0
→ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑥↑𝑗)) = (((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑗) · (𝑥↑𝑗))) |
| 96 | 95 | mpteq2ia 5245 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑥↑𝑗))) = (𝑗 ∈ ℕ0 ↦ (((𝑚 ∈ ℕ0
↦ if(𝑚 = 0, 0, (1 /
𝑚)))‘𝑗) · (𝑥↑𝑗))) |
| 97 | 96 | mpteq2i 5247 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑥↑𝑗)))) = (𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (((𝑚 ∈ ℕ0
↦ if(𝑚 = 0, 0, (1 /
𝑚)))‘𝑗) · (𝑥↑𝑗)))) |
| 98 | | 0cnd 11254 |
. . . . . . . . . . . . . . . . . 18
⊢
(((⊤ ∧ 𝑚
∈ ℕ0) ∧ 𝑚 = 0) → 0 ∈
ℂ) |
| 99 | | nn0cn 12536 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
ℂ) |
| 100 | 99 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
((⊤ ∧ 𝑚
∈ ℕ0) → 𝑚 ∈ ℂ) |
| 101 | | neqne 2948 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝑚 = 0 → 𝑚 ≠ 0) |
| 102 | | reccl 11929 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 ∈ ℂ ∧ 𝑚 ≠ 0) → (1 / 𝑚) ∈
ℂ) |
| 103 | 100, 101,
102 | syl2an 596 |
. . . . . . . . . . . . . . . . . 18
⊢
(((⊤ ∧ 𝑚
∈ ℕ0) ∧ ¬ 𝑚 = 0) → (1 / 𝑚) ∈ ℂ) |
| 104 | 98, 103 | ifclda 4561 |
. . . . . . . . . . . . . . . . 17
⊢
((⊤ ∧ 𝑚
∈ ℕ0) → if(𝑚 = 0, 0, (1 / 𝑚)) ∈ ℂ) |
| 105 | 104 | fmpttd 7135 |
. . . . . . . . . . . . . . . 16
⊢ (⊤
→ (𝑚 ∈
ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚))):ℕ0⟶ℂ) |
| 106 | | recn 11245 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑟 ∈ ℝ → 𝑟 ∈
ℂ) |
| 107 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 = 𝑟 → (𝑥↑𝑗) = (𝑟↑𝑗)) |
| 108 | 107 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = 𝑟 → (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗)) = (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗))) |
| 109 | 108 | mpteq2dv 5244 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 𝑟 → (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗))) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) |
| 110 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑥↑𝑗)))) = (𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗)))) |
| 111 | | nn0ex 12532 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
ℕ0 ∈ V |
| 112 | 111 | mptex 7243 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗))) ∈ V |
| 113 | 109, 110,
112 | fvmpt 7016 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑟 ∈ ℂ → ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑥↑𝑗))))‘𝑟) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) |
| 114 | 106, 113 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑟 ∈ ℝ → ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑥↑𝑗))))‘𝑟) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) |
| 115 | 114 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑟 ∈ ℝ → (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗))) = ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗))))‘𝑟)) |
| 116 | 115 | seqeq3d 14050 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑟 ∈ ℝ → seq0( + ,
(𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) = seq0( + , ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗))))‘𝑟))) |
| 117 | 116 | eleq1d 2826 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 ∈ ℝ → (seq0( +
, (𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ ↔ seq0( + ,
((𝑥 ∈ ℂ ↦
(𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗))))‘𝑟)) ∈ dom ⇝ )) |
| 118 | 117 | rabbiia 3440 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑟 ∈ ℝ ∣ seq0( +
, (𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ } = {𝑟 ∈ ℝ ∣ seq0( +
, ((𝑥 ∈ ℂ
↦ (𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗))))‘𝑟)) ∈ dom ⇝ } |
| 119 | 118 | supeq1i 9487 |
. . . . . . . . . . . . . . . 16
⊢
sup({𝑟 ∈
ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ) = sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑥↑𝑗))))‘𝑟)) ∈ dom ⇝ }, ℝ*,
< ) |
| 120 | 97, 105, 119 | radcnvcl 26460 |
. . . . . . . . . . . . . . 15
⊢ (⊤
→ sup({𝑟 ∈
ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ) ∈ (0[,]+∞)) |
| 121 | 85, 120 | sselid 3981 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ sup({𝑟 ∈
ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ) ∈ ℝ*) |
| 122 | 44, 121 | mp1i 13 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ) ∈ ℝ*) |
| 123 | | 1re 11261 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℝ |
| 124 | | avglt1 12504 |
. . . . . . . . . . . . . . 15
⊢
(((abs‘𝑦)
∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝑦) < 1 ↔ (abs‘𝑦) < (((abs‘𝑦) + 1) / 2))) |
| 125 | 54, 123, 124 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → ((abs‘𝑦) < 1 ↔ (abs‘𝑦) < (((abs‘𝑦) + 1) / 2))) |
| 126 | 64, 125 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (abs‘𝑦) < (((abs‘𝑦) + 1) / 2)) |
| 127 | | 0red 11264 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → 0 ∈ ℝ) |
| 128 | 127, 54, 83, 79, 126 | lelttrd 11419 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → 0 < (((abs‘𝑦) + 1) / 2)) |
| 129 | 127, 83, 128 | ltled 11409 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → 0 ≤ (((abs‘𝑦) + 1) / 2)) |
| 130 | 83, 129 | absidd 15461 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (abs‘(((abs‘𝑦) + 1) / 2)) = (((abs‘𝑦) + 1) / 2)) |
| 131 | 44, 105 | mp1i 13 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚))):ℕ0⟶ℂ) |
| 132 | 83 | recnd 11289 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (((abs‘𝑦) + 1) / 2) ∈ ℂ) |
| 133 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = (((abs‘𝑦) + 1) / 2) → (𝑥↑𝑗) = ((((abs‘𝑦) + 1) / 2)↑𝑗)) |
| 134 | 133 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = (((abs‘𝑦) + 1) / 2) → (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗)) = (if(𝑗 = 0, 0, (1 / 𝑗)) · ((((abs‘𝑦) + 1) / 2)↑𝑗))) |
| 135 | 134 | mpteq2dv 5244 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = (((abs‘𝑦) + 1) / 2) → (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑥↑𝑗))) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · ((((abs‘𝑦) + 1) / 2)↑𝑗)))) |
| 136 | 111 | mptex 7243 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) ·
((((abs‘𝑦) + 1) /
2)↑𝑗))) ∈
V |
| 137 | 135, 110,
136 | fvmpt 7016 |
. . . . . . . . . . . . . . . . . 18
⊢
((((abs‘𝑦) +
1) / 2) ∈ ℂ → ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗))))‘(((abs‘𝑦) + 1) / 2)) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · ((((abs‘𝑦) + 1) / 2)↑𝑗)))) |
| 138 | 132, 137 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗))))‘(((abs‘𝑦) + 1) / 2)) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · ((((abs‘𝑦) + 1) / 2)↑𝑗)))) |
| 139 | 138 | seqeq3d 14050 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → seq0( + , ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗))))‘(((abs‘𝑦) + 1) / 2))) = seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · ((((abs‘𝑦) + 1) / 2)↑𝑗))))) |
| 140 | | avglt2 12505 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((abs‘𝑦)
∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝑦) < 1 ↔ (((abs‘𝑦) + 1) / 2) <
1)) |
| 141 | 54, 123, 140 | sylancl 586 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → ((abs‘𝑦) < 1 ↔ (((abs‘𝑦) + 1) / 2) <
1)) |
| 142 | 64, 141 | mpbid 232 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (((abs‘𝑦) + 1) / 2) < 1) |
| 143 | 130, 142 | eqbrtrd 5165 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (abs‘(((abs‘𝑦) + 1) / 2)) < 1) |
| 144 | | logtayllem 26701 |
. . . . . . . . . . . . . . . . 17
⊢
(((((abs‘𝑦) +
1) / 2) ∈ ℂ ∧ (abs‘(((abs‘𝑦) + 1) / 2)) < 1) → seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) ·
((((abs‘𝑦) + 1) /
2)↑𝑗)))) ∈ dom
⇝ ) |
| 145 | 132, 143,
144 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · ((((abs‘𝑦) + 1) / 2)↑𝑗)))) ∈ dom ⇝ ) |
| 146 | 139, 145 | eqeltrd 2841 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → seq0( + , ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗))))‘(((abs‘𝑦) + 1) / 2))) ∈ dom ⇝
) |
| 147 | 97, 131, 119, 132, 146 | radcnvle 26463 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (abs‘(((abs‘𝑦) + 1) / 2)) ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )) |
| 148 | 130, 147 | eqbrtrrd 5167 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (((abs‘𝑦) + 1) / 2) ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )) |
| 149 | 80, 84, 122, 126, 148 | xrltletrd 13203 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (abs‘𝑦) < sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )) |
| 150 | | 0re 11263 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℝ |
| 151 | | elico2 13451 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ ∧ sup({𝑟
∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ) ∈ ℝ*) →
((abs‘𝑦) ∈
(0[,)sup({𝑟 ∈ ℝ
∣ seq0( + , (𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )) ↔ ((abs‘𝑦) ∈ ℝ ∧ 0 ≤
(abs‘𝑦) ∧
(abs‘𝑦) <
sup({𝑟 ∈ ℝ
∣ seq0( + , (𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )))) |
| 152 | 150, 122,
151 | sylancr 587 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → ((abs‘𝑦) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )) ↔ ((abs‘𝑦) ∈ ℝ ∧ 0 ≤
(abs‘𝑦) ∧
(abs‘𝑦) <
sup({𝑟 ∈ ℝ
∣ seq0( + , (𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )))) |
| 153 | 54, 79, 149, 152 | mpbir3and 1343 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (abs‘𝑦) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) |
| 154 | | absf 15376 |
. . . . . . . . . . . 12
⊢
abs:ℂ⟶ℝ |
| 155 | | ffn 6736 |
. . . . . . . . . . . 12
⊢
(abs:ℂ⟶ℝ → abs Fn ℂ) |
| 156 | | elpreima 7078 |
. . . . . . . . . . . 12
⊢ (abs Fn
ℂ → (𝑦 ∈
(◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( +
, (𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) ↔ (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( +
, (𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))))) |
| 157 | 154, 155,
156 | mp2b 10 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) ↔ (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( +
, (𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )))) |
| 158 | 51, 153, 157 | sylanbrc 583 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → 𝑦 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )))) |
| 159 | | cnvimass 6100 |
. . . . . . . . . . . . . . . . 17
⊢ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) ⊆ dom abs |
| 160 | 154 | fdmi 6747 |
. . . . . . . . . . . . . . . . 17
⊢ dom abs =
ℂ |
| 161 | 159, 160 | sseqtri 4032 |
. . . . . . . . . . . . . . . 16
⊢ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) ⊆ ℂ |
| 162 | 161 | sseli 3979 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) → 𝑦 ∈ ℂ) |
| 163 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑦 → (𝑥↑𝑗) = (𝑦↑𝑗)) |
| 164 | 163 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑦 → (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗)) = (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦↑𝑗))) |
| 165 | 164 | mpteq2dv 5244 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑦 → (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗))) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦↑𝑗)))) |
| 166 | 111 | mptex 7243 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑦↑𝑗))) ∈ V |
| 167 | 165, 110,
166 | fvmpt 7016 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ ℂ → ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑥↑𝑗))))‘𝑦) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦↑𝑗)))) |
| 168 | 167 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℂ ∧ 𝑛 ∈ ℕ0)
→ ((𝑥 ∈ ℂ
↦ (𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗))))‘𝑦) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦↑𝑗)))) |
| 169 | 168 | fveq1d 6908 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℂ ∧ 𝑛 ∈ ℕ0)
→ (((𝑥 ∈ ℂ
↦ (𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗))))‘𝑦)‘𝑛) = ((𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦↑𝑗)))‘𝑛)) |
| 170 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 𝑛 → (𝑗 = 0 ↔ 𝑛 = 0)) |
| 171 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 𝑛 → (1 / 𝑗) = (1 / 𝑛)) |
| 172 | 170, 171 | ifbieq2d 4552 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 𝑛 → if(𝑗 = 0, 0, (1 / 𝑗)) = if(𝑛 = 0, 0, (1 / 𝑛))) |
| 173 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 𝑛 → (𝑦↑𝑗) = (𝑦↑𝑛)) |
| 174 | 172, 173 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝑛 → (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦↑𝑗)) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛))) |
| 175 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑦↑𝑗))) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦↑𝑗))) |
| 176 | | ovex 7464 |
. . . . . . . . . . . . . . . . . . 19
⊢ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)) ∈ V |
| 177 | 174, 175,
176 | fvmpt 7016 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ0
→ ((𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦↑𝑗)))‘𝑛) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛))) |
| 178 | 177 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℂ ∧ 𝑛 ∈ ℕ0)
→ ((𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦↑𝑗)))‘𝑛) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛))) |
| 179 | 169, 178 | eqtr2d 2778 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℂ ∧ 𝑛 ∈ ℕ0)
→ (if(𝑛 = 0, 0, (1 /
𝑛)) · (𝑦↑𝑛)) = (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗))))‘𝑦)‘𝑛)) |
| 180 | 179 | sumeq2dv 15738 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℂ →
Σ𝑛 ∈
ℕ0 (if(𝑛 =
0, 0, (1 / 𝑛)) ·
(𝑦↑𝑛)) = Σ𝑛 ∈ ℕ0 (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑥↑𝑗))))‘𝑦)‘𝑛)) |
| 181 | 162, 180 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) → Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)) = Σ𝑛 ∈ ℕ0 (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑥↑𝑗))))‘𝑦)‘𝑛)) |
| 182 | 181 | mpteq2ia 5245 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛))) = (𝑦 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑥↑𝑗))))‘𝑦)‘𝑛)) |
| 183 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) = (◡abs
“ (0[,)sup({𝑟 ∈
ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) |
| 184 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
if(sup({𝑟 ∈
ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ) ∈ ℝ, (((abs‘𝑧) + sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )) / 2), ((abs‘𝑧) + 1)) = if(sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ) ∈ ℝ, (((abs‘𝑧) + sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )) / 2), ((abs‘𝑧) + 1)) |
| 185 | 97, 182, 105, 119, 183, 184 | psercn 26470 |
. . . . . . . . . . . 12
⊢ (⊤
→ (𝑦 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛))) ∈ ((◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )))–cn→ℂ)) |
| 186 | | cncff 24919 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛))) ∈ ((◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )))–cn→ℂ) → (𝑦 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛))):(◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )))⟶ℂ) |
| 187 | 185, 186 | syl 17 |
. . . . . . . . . . 11
⊢ (⊤
→ (𝑦 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛))):(◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )))⟶ℂ) |
| 188 | 187 | fvmptelcdm 7133 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑦
∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( +
, (𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )))) → Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)) ∈ ℂ) |
| 189 | 158, 188 | sylan2 593 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑦
∈ (0(ball‘(abs ∘ − ))1)) → Σ𝑛 ∈ ℕ0
(if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)) ∈ ℂ) |
| 190 | 189 | fmpttd 7135 |
. . . . . . . 8
⊢ (⊤
→ (𝑦 ∈
(0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛))):(0(ball‘(abs ∘ −
))1)⟶ℂ) |
| 191 | | cnelprrecn 11248 |
. . . . . . . . . . . . 13
⊢ ℂ
∈ {ℝ, ℂ} |
| 192 | 191 | a1i 11 |
. . . . . . . . . . . 12
⊢ (⊤
→ ℂ ∈ {ℝ, ℂ}) |
| 193 | 75 | adantl 481 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑦
∈ (0(ball‘(abs ∘ − ))1)) → (log‘(1 −
𝑦)) ∈
ℂ) |
| 194 | | ovexd 7466 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑦
∈ (0(ball‘(abs ∘ − ))1)) → ((1 / (1 − 𝑦)) · -1) ∈
V) |
| 195 | 29 | cnmetdval 24791 |
. . . . . . . . . . . . . . . . . 18
⊢ ((1
∈ ℂ ∧ (1 − 𝑦) ∈ ℂ) → (1(abs ∘
− )(1 − 𝑦)) =
(abs‘(1 − (1 − 𝑦)))) |
| 196 | 48, 53, 195 | sylancr 587 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (1(abs ∘ − )(1 − 𝑦)) = (abs‘(1 − (1
− 𝑦)))) |
| 197 | | nncan 11538 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((1
∈ ℂ ∧ 𝑦
∈ ℂ) → (1 − (1 − 𝑦)) = 𝑦) |
| 198 | 48, 51, 197 | sylancr 587 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (1 − (1 − 𝑦)) = 𝑦) |
| 199 | 198 | fveq2d 6910 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (abs‘(1 − (1 − 𝑦))) = (abs‘𝑦)) |
| 200 | 196, 199 | eqtrd 2777 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (1(abs ∘ − )(1 − 𝑦)) = (abs‘𝑦)) |
| 201 | 200, 64 | eqbrtrd 5165 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (1(abs ∘ − )(1 − 𝑦)) < 1) |
| 202 | | elbl 24398 |
. . . . . . . . . . . . . . . 16
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℂ
∧ 1 ∈ ℝ*) → ((1 − 𝑦) ∈ (1(ball‘(abs ∘ −
))1) ↔ ((1 − 𝑦)
∈ ℂ ∧ (1(abs ∘ − )(1 − 𝑦)) < 1))) |
| 203 | 38, 48, 39, 202 | mp3an 1463 |
. . . . . . . . . . . . . . 15
⊢ ((1
− 𝑦) ∈
(1(ball‘(abs ∘ − ))1) ↔ ((1 − 𝑦) ∈ ℂ ∧ (1(abs ∘ −
)(1 − 𝑦)) <
1)) |
| 204 | 53, 201, 203 | sylanbrc 583 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (1 − 𝑦) ∈ (1(ball‘(abs ∘ −
))1)) |
| 205 | 204 | adantl 481 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑦
∈ (0(ball‘(abs ∘ − ))1)) → (1 − 𝑦) ∈ (1(ball‘(abs
∘ − ))1)) |
| 206 | | neg1cn 12380 |
. . . . . . . . . . . . . 14
⊢ -1 ∈
ℂ |
| 207 | 206 | a1i 11 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑦
∈ (0(ball‘(abs ∘ − ))1)) → -1 ∈
ℂ) |
| 208 | | eqid 2737 |
. . . . . . . . . . . . . . . . . 18
⊢
(1(ball‘(abs ∘ − ))1) = (1(ball‘(abs ∘
− ))1) |
| 209 | 208 | dvlog2lem 26694 |
. . . . . . . . . . . . . . . . 17
⊢
(1(ball‘(abs ∘ − ))1) ⊆ (ℂ ∖
(-∞(,]0)) |
| 210 | 209 | sseli 3979 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (1(ball‘(abs
∘ − ))1) → 𝑥 ∈ (ℂ ∖
(-∞(,]0))) |
| 211 | 210 | eldifad 3963 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (1(ball‘(abs
∘ − ))1) → 𝑥 ∈ ℂ) |
| 212 | | eqid 2737 |
. . . . . . . . . . . . . . . . 17
⊢ (ℂ
∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0)) |
| 213 | 212 | logdmn0 26682 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (ℂ ∖
(-∞(,]0)) → 𝑥
≠ 0) |
| 214 | 210, 213 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (1(ball‘(abs
∘ − ))1) → 𝑥 ≠ 0) |
| 215 | 211, 214 | logcld 26612 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (1(ball‘(abs
∘ − ))1) → (log‘𝑥) ∈ ℂ) |
| 216 | 215 | adantl 481 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ (1(ball‘(abs ∘ − ))1)) → (log‘𝑥) ∈
ℂ) |
| 217 | | ovexd 7466 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ (1(ball‘(abs ∘ − ))1)) → (1 / 𝑥) ∈ V) |
| 218 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢
((⊤ ∧ 𝑦
∈ ℂ) → 𝑦
∈ ℂ) |
| 219 | 48, 218, 52 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑦
∈ ℂ) → (1 − 𝑦) ∈ ℂ) |
| 220 | 206 | a1i 11 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑦
∈ ℂ) → -1 ∈ ℂ) |
| 221 | | 1cnd 11256 |
. . . . . . . . . . . . . . . 16
⊢
((⊤ ∧ 𝑦
∈ ℂ) → 1 ∈ ℂ) |
| 222 | | 0cnd 11254 |
. . . . . . . . . . . . . . . 16
⊢
((⊤ ∧ 𝑦
∈ ℂ) → 0 ∈ ℂ) |
| 223 | | 1cnd 11256 |
. . . . . . . . . . . . . . . . 17
⊢ (⊤
→ 1 ∈ ℂ) |
| 224 | 192, 223 | dvmptc 25996 |
. . . . . . . . . . . . . . . 16
⊢ (⊤
→ (ℂ D (𝑦 ∈
ℂ ↦ 1)) = (𝑦
∈ ℂ ↦ 0)) |
| 225 | 192 | dvmptid 25995 |
. . . . . . . . . . . . . . . 16
⊢ (⊤
→ (ℂ D (𝑦 ∈
ℂ ↦ 𝑦)) =
(𝑦 ∈ ℂ ↦
1)) |
| 226 | 192, 221,
222, 224, 218, 221, 225 | dvmptsub 26005 |
. . . . . . . . . . . . . . 15
⊢ (⊤
→ (ℂ D (𝑦 ∈
ℂ ↦ (1 − 𝑦))) = (𝑦 ∈ ℂ ↦ (0 −
1))) |
| 227 | | df-neg 11495 |
. . . . . . . . . . . . . . . 16
⊢ -1 = (0
− 1) |
| 228 | 227 | mpteq2i 5247 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℂ ↦ -1) =
(𝑦 ∈ ℂ ↦
(0 − 1)) |
| 229 | 226, 228 | eqtr4di 2795 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ (ℂ D (𝑦 ∈
ℂ ↦ (1 − 𝑦))) = (𝑦 ∈ ℂ ↦ -1)) |
| 230 | 50 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ (0(ball‘(abs ∘ − ))1) ⊆
ℂ) |
| 231 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 232 | 231 | cnfldtopon 24803 |
. . . . . . . . . . . . . . 15
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
| 233 | 232 | toponrestid 22927 |
. . . . . . . . . . . . . 14
⊢
(TopOpen‘ℂfld) =
((TopOpen‘ℂfld) ↾t
ℂ) |
| 234 | 231 | cnfldtopn 24802 |
. . . . . . . . . . . . . . . . 17
⊢
(TopOpen‘ℂfld) = (MetOpen‘(abs ∘
− )) |
| 235 | 234 | blopn 24513 |
. . . . . . . . . . . . . . . 16
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ
∧ 1 ∈ ℝ*) → (0(ball‘(abs ∘ −
))1) ∈ (TopOpen‘ℂfld)) |
| 236 | 38, 28, 39, 235 | mp3an 1463 |
. . . . . . . . . . . . . . 15
⊢
(0(ball‘(abs ∘ − ))1) ∈
(TopOpen‘ℂfld) |
| 237 | 236 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ (0(ball‘(abs ∘ − ))1) ∈
(TopOpen‘ℂfld)) |
| 238 | 192, 219,
220, 229, 230, 233, 231, 237 | dvmptres 26001 |
. . . . . . . . . . . . 13
⊢ (⊤
→ (ℂ D (𝑦 ∈
(0(ball‘(abs ∘ − ))1) ↦ (1 − 𝑦))) = (𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ -1)) |
| 239 | | logf1o 26606 |
. . . . . . . . . . . . . . . . . . . 20
⊢
log:(ℂ ∖ {0})–1-1-onto→ran
log |
| 240 | | f1of 6848 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(log:(ℂ ∖ {0})–1-1-onto→ran
log → log:(ℂ ∖ {0})⟶ran log) |
| 241 | 239, 240 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
log:(ℂ ∖ {0})⟶ran log |
| 242 | 212 | logdmss 26684 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (ℂ
∖ (-∞(,]0)) ⊆ (ℂ ∖ {0}) |
| 243 | 209, 242 | sstri 3993 |
. . . . . . . . . . . . . . . . . . 19
⊢
(1(ball‘(abs ∘ − ))1) ⊆ (ℂ ∖
{0}) |
| 244 | | fssres 6774 |
. . . . . . . . . . . . . . . . . . 19
⊢
((log:(ℂ ∖ {0})⟶ran log ∧ (1(ball‘(abs
∘ − ))1) ⊆ (ℂ ∖ {0})) → (log ↾
(1(ball‘(abs ∘ − ))1)):(1(ball‘(abs ∘ −
))1)⟶ran log) |
| 245 | 241, 243,
244 | mp2an 692 |
. . . . . . . . . . . . . . . . . 18
⊢ (log
↾ (1(ball‘(abs ∘ − ))1)):(1(ball‘(abs ∘
− ))1)⟶ran log |
| 246 | 245 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (⊤
→ (log ↾ (1(ball‘(abs ∘ − ))1)):(1(ball‘(abs
∘ − ))1)⟶ran log) |
| 247 | 246 | feqmptd 6977 |
. . . . . . . . . . . . . . . 16
⊢ (⊤
→ (log ↾ (1(ball‘(abs ∘ − ))1)) = (𝑥 ∈ (1(ball‘(abs
∘ − ))1) ↦ ((log ↾ (1(ball‘(abs ∘ −
))1))‘𝑥))) |
| 248 | | fvres 6925 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (1(ball‘(abs
∘ − ))1) → ((log ↾ (1(ball‘(abs ∘ −
))1))‘𝑥) =
(log‘𝑥)) |
| 249 | 248 | mpteq2ia 5245 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (1(ball‘(abs
∘ − ))1) ↦ ((log ↾ (1(ball‘(abs ∘ −
))1))‘𝑥)) = (𝑥 ∈ (1(ball‘(abs
∘ − ))1) ↦ (log‘𝑥)) |
| 250 | 247, 249 | eqtrdi 2793 |
. . . . . . . . . . . . . . 15
⊢ (⊤
→ (log ↾ (1(ball‘(abs ∘ − ))1)) = (𝑥 ∈ (1(ball‘(abs
∘ − ))1) ↦ (log‘𝑥))) |
| 251 | 250 | oveq2d 7447 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ (ℂ D (log ↾ (1(ball‘(abs ∘ − ))1))) =
(ℂ D (𝑥 ∈
(1(ball‘(abs ∘ − ))1) ↦ (log‘𝑥)))) |
| 252 | 208 | dvlog2 26695 |
. . . . . . . . . . . . . 14
⊢ (ℂ
D (log ↾ (1(ball‘(abs ∘ − ))1))) = (𝑥 ∈ (1(ball‘(abs ∘ −
))1) ↦ (1 / 𝑥)) |
| 253 | 251, 252 | eqtr3di 2792 |
. . . . . . . . . . . . 13
⊢ (⊤
→ (ℂ D (𝑥 ∈
(1(ball‘(abs ∘ − ))1) ↦ (log‘𝑥))) = (𝑥 ∈ (1(ball‘(abs ∘ −
))1) ↦ (1 / 𝑥))) |
| 254 | | fveq2 6906 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (1 − 𝑦) → (log‘𝑥) = (log‘(1 − 𝑦))) |
| 255 | | oveq2 7439 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (1 − 𝑦) → (1 / 𝑥) = (1 / (1 − 𝑦))) |
| 256 | 192, 192,
205, 207, 216, 217, 238, 253, 254, 255 | dvmptco 26010 |
. . . . . . . . . . . 12
⊢ (⊤
→ (ℂ D (𝑦 ∈
(0(ball‘(abs ∘ − ))1) ↦ (log‘(1 − 𝑦)))) = (𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ ((1 / (1 − 𝑦)) · -1))) |
| 257 | 192, 193,
194, 256 | dvmptneg 26004 |
. . . . . . . . . . 11
⊢ (⊤
→ (ℂ D (𝑦 ∈
(0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))) = (𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ -((1 / (1 − 𝑦)) · -1))) |
| 258 | 53, 74 | reccld 12036 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (1 / (1 − 𝑦)) ∈ ℂ) |
| 259 | | mulcom 11241 |
. . . . . . . . . . . . . . . 16
⊢ (((1 / (1
− 𝑦)) ∈ ℂ
∧ -1 ∈ ℂ) → ((1 / (1 − 𝑦)) · -1) = (-1 · (1 / (1
− 𝑦)))) |
| 260 | 258, 206,
259 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → ((1 / (1 − 𝑦)) · -1) = (-1 · (1 / (1
− 𝑦)))) |
| 261 | 258 | mulm1d 11715 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (-1 · (1 / (1 − 𝑦))) = -(1 / (1 − 𝑦))) |
| 262 | 260, 261 | eqtrd 2777 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → ((1 / (1 − 𝑦)) · -1) = -(1 / (1 − 𝑦))) |
| 263 | 262 | negeqd 11502 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → -((1 / (1 − 𝑦)) · -1) = --(1 / (1 − 𝑦))) |
| 264 | 258 | negnegd 11611 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → --(1 / (1 − 𝑦)) = (1 / (1 − 𝑦))) |
| 265 | 263, 264 | eqtrd 2777 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → -((1 / (1 − 𝑦)) · -1) = (1 / (1 − 𝑦))) |
| 266 | 265 | mpteq2ia 5245 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) ↦ -((1 / (1 − 𝑦)) · -1)) = (𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ (1 / (1 − 𝑦))) |
| 267 | 257, 266 | eqtrdi 2793 |
. . . . . . . . . 10
⊢ (⊤
→ (ℂ D (𝑦 ∈
(0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))) = (𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ (1 / (1 − 𝑦)))) |
| 268 | 267 | dmeqd 5916 |
. . . . . . . . 9
⊢ (⊤
→ dom (ℂ D (𝑦
∈ (0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 −
𝑦)))) = dom (𝑦 ∈ (0(ball‘(abs
∘ − ))1) ↦ (1 / (1 − 𝑦)))) |
| 269 | | dmmptg 6262 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
(0(ball‘(abs ∘ − ))1)(1 / (1 − 𝑦)) ∈ V → dom (𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ (1 / (1 − 𝑦))) = (0(ball‘(abs ∘ −
))1)) |
| 270 | | ovexd 7466 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → (1 / (1 − 𝑦)) ∈ V) |
| 271 | 269, 270 | mprg 3067 |
. . . . . . . . 9
⊢ dom
(𝑦 ∈
(0(ball‘(abs ∘ − ))1) ↦ (1 / (1 − 𝑦))) = (0(ball‘(abs ∘
− ))1) |
| 272 | 268, 271 | eqtrdi 2793 |
. . . . . . . 8
⊢ (⊤
→ dom (ℂ D (𝑦
∈ (0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 −
𝑦)))) = (0(ball‘(abs
∘ − ))1)) |
| 273 | | sumex 15724 |
. . . . . . . . . . . 12
⊢
Σ𝑛 ∈
ℕ ((𝑛 ·
((𝑚 ∈
ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1))) ∈ V |
| 274 | 273 | a1i 11 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑦
∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( +
, (𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )))) → Σ𝑛 ∈ ℕ ((𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1))) ∈ V) |
| 275 | | fveq2 6906 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑘 → (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗))))‘𝑦)‘𝑛) = (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗))))‘𝑦)‘𝑘)) |
| 276 | 275 | cbvsumv 15732 |
. . . . . . . . . . . . . 14
⊢
Σ𝑛 ∈
ℕ0 (((𝑥
∈ ℂ ↦ (𝑗
∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥↑𝑗))))‘𝑦)‘𝑛) = Σ𝑘 ∈ ℕ0 (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑥↑𝑗))))‘𝑦)‘𝑘) |
| 277 | 181, 276 | eqtrdi 2793 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) → Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)) = Σ𝑘 ∈ ℕ0 (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑥↑𝑗))))‘𝑦)‘𝑘)) |
| 278 | 277 | mpteq2ia 5245 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛))) = (𝑦 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) ↦ Σ𝑘 ∈ ℕ0 (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑥↑𝑗))))‘𝑦)‘𝑘)) |
| 279 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(0(ball‘(abs ∘ − ))(((abs‘𝑧) + if(sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ) ∈ ℝ, (((abs‘𝑧) + sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )) / 2), ((abs‘𝑧) + 1))) / 2)) = (0(ball‘(abs ∘
− ))(((abs‘𝑧) +
if(sup({𝑟 ∈ ℝ
∣ seq0( + , (𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ) ∈ ℝ, (((abs‘𝑧) + sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )) / 2), ((abs‘𝑧) + 1))) / 2)) |
| 280 | 97, 278, 105, 119, 183, 184, 279 | pserdv2 26474 |
. . . . . . . . . . 11
⊢ (⊤
→ (ℂ D (𝑦 ∈
(◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( +
, (𝑗 ∈
ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)))) = (𝑦 ∈ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ ((𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1))))) |
| 281 | 158 | ssriv 3987 |
. . . . . . . . . . . 12
⊢
(0(ball‘(abs ∘ − ))1) ⊆ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < ))) |
| 282 | 281 | a1i 11 |
. . . . . . . . . . 11
⊢ (⊤
→ (0(ball‘(abs ∘ − ))1) ⊆ (◡abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0
↦ (if(𝑗 = 0, 0, (1 /
𝑗)) · (𝑟↑𝑗)))) ∈ dom ⇝ },
ℝ*, < )))) |
| 283 | 192, 188,
274, 280, 282, 233, 231, 237 | dvmptres 26001 |
. . . . . . . . . 10
⊢ (⊤
→ (ℂ D (𝑦 ∈
(0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)))) = (𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ Σ𝑛
∈ ℕ ((𝑛 ·
((𝑚 ∈
ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1))))) |
| 284 | | nnnn0 12533 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) |
| 285 | 284 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ (0(ball‘(abs
∘ − ))1) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0) |
| 286 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 = 𝑛 → (𝑚 = 0 ↔ 𝑛 = 0)) |
| 287 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 = 𝑛 → (1 / 𝑚) = (1 / 𝑛)) |
| 288 | 286, 287 | ifbieq2d 4552 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = 𝑛 → if(𝑚 = 0, 0, (1 / 𝑚)) = if(𝑛 = 0, 0, (1 / 𝑛))) |
| 289 | | ovex 7464 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (1 /
𝑛) ∈
V |
| 290 | 90, 289 | ifex 4576 |
. . . . . . . . . . . . . . . . . . . 20
⊢ if(𝑛 = 0, 0, (1 / 𝑛)) ∈ V |
| 291 | 288, 89, 290 | fvmpt 7016 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ ℕ0
→ ((𝑚 ∈
ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛) = if(𝑛 = 0, 0, (1 / 𝑛))) |
| 292 | 285, 291 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ (0(ball‘(abs
∘ − ))1) ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛) = if(𝑛 = 0, 0, (1 / 𝑛))) |
| 293 | | nnne0 12300 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ ℕ → 𝑛 ≠ 0) |
| 294 | 293 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ (0(ball‘(abs
∘ − ))1) ∧ 𝑛 ∈ ℕ) → 𝑛 ≠ 0) |
| 295 | 294 | neneqd 2945 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ (0(ball‘(abs
∘ − ))1) ∧ 𝑛 ∈ ℕ) → ¬ 𝑛 = 0) |
| 296 | 295 | iffalsed 4536 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ (0(ball‘(abs
∘ − ))1) ∧ 𝑛 ∈ ℕ) → if(𝑛 = 0, 0, (1 / 𝑛)) = (1 / 𝑛)) |
| 297 | 292, 296 | eqtrd 2777 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ (0(ball‘(abs
∘ − ))1) ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛) = (1 / 𝑛)) |
| 298 | 297 | oveq2d 7447 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ (0(ball‘(abs
∘ − ))1) ∧ 𝑛 ∈ ℕ) → (𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) = (𝑛 · (1 / 𝑛))) |
| 299 | | nncn 12274 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℂ) |
| 300 | 299 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ (0(ball‘(abs
∘ − ))1) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ) |
| 301 | 300, 294 | recidd 12038 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ (0(ball‘(abs
∘ − ))1) ∧ 𝑛 ∈ ℕ) → (𝑛 · (1 / 𝑛)) = 1) |
| 302 | 298, 301 | eqtrd 2777 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ (0(ball‘(abs
∘ − ))1) ∧ 𝑛 ∈ ℕ) → (𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) = 1) |
| 303 | 302 | oveq1d 7446 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ (0(ball‘(abs
∘ − ))1) ∧ 𝑛 ∈ ℕ) → ((𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1))) = (1 · (𝑦↑(𝑛 − 1)))) |
| 304 | | nnm1nn0 12567 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ → (𝑛 − 1) ∈
ℕ0) |
| 305 | | expcl 14120 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℂ ∧ (𝑛 − 1) ∈
ℕ0) → (𝑦↑(𝑛 − 1)) ∈ ℂ) |
| 306 | 51, 304, 305 | syl2an 596 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ (0(ball‘(abs
∘ − ))1) ∧ 𝑛 ∈ ℕ) → (𝑦↑(𝑛 − 1)) ∈ ℂ) |
| 307 | 306 | mullidd 11279 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ (0(ball‘(abs
∘ − ))1) ∧ 𝑛 ∈ ℕ) → (1 · (𝑦↑(𝑛 − 1))) = (𝑦↑(𝑛 − 1))) |
| 308 | 303, 307 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ (0(ball‘(abs
∘ − ))1) ∧ 𝑛 ∈ ℕ) → ((𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1))) = (𝑦↑(𝑛 − 1))) |
| 309 | 308 | sumeq2dv 15738 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → Σ𝑛 ∈ ℕ ((𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1))) = Σ𝑛 ∈ ℕ (𝑦↑(𝑛 − 1))) |
| 310 | | nnuz 12921 |
. . . . . . . . . . . . . . 15
⊢ ℕ =
(ℤ≥‘1) |
| 311 | | 1e0p1 12775 |
. . . . . . . . . . . . . . . 16
⊢ 1 = (0 +
1) |
| 312 | 311 | fveq2i 6909 |
. . . . . . . . . . . . . . 15
⊢
(ℤ≥‘1) = (ℤ≥‘(0 +
1)) |
| 313 | 310, 312 | eqtri 2765 |
. . . . . . . . . . . . . 14
⊢ ℕ =
(ℤ≥‘(0 + 1)) |
| 314 | | oveq1 7438 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = (1 + 𝑚) → (𝑛 − 1) = ((1 + 𝑚) − 1)) |
| 315 | 314 | oveq2d 7447 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = (1 + 𝑚) → (𝑦↑(𝑛 − 1)) = (𝑦↑((1 + 𝑚) − 1))) |
| 316 | | 1zzd 12648 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → 1 ∈ ℤ) |
| 317 | | 0zd 12625 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → 0 ∈ ℤ) |
| 318 | 1, 313, 315, 316, 317, 306 | isumshft 15875 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → Σ𝑛 ∈ ℕ (𝑦↑(𝑛 − 1)) = Σ𝑚 ∈ ℕ0 (𝑦↑((1 + 𝑚) − 1))) |
| 319 | | pncan2 11515 |
. . . . . . . . . . . . . . . 16
⊢ ((1
∈ ℂ ∧ 𝑚
∈ ℂ) → ((1 + 𝑚) − 1) = 𝑚) |
| 320 | 48, 99, 319 | sylancr 587 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ ℕ0
→ ((1 + 𝑚) − 1)
= 𝑚) |
| 321 | 320 | oveq2d 7447 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ0
→ (𝑦↑((1 + 𝑚) − 1)) = (𝑦↑𝑚)) |
| 322 | 321 | sumeq2i 15734 |
. . . . . . . . . . . . 13
⊢
Σ𝑚 ∈
ℕ0 (𝑦↑((1 + 𝑚) − 1)) = Σ𝑚 ∈ ℕ0 (𝑦↑𝑚) |
| 323 | 318, 322 | eqtrdi 2793 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → Σ𝑛 ∈ ℕ (𝑦↑(𝑛 − 1)) = Σ𝑚 ∈ ℕ0 (𝑦↑𝑚)) |
| 324 | | geoisum 15913 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℂ ∧
(abs‘𝑦) < 1)
→ Σ𝑚 ∈
ℕ0 (𝑦↑𝑚) = (1 / (1 − 𝑦))) |
| 325 | 51, 64, 324 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → Σ𝑚 ∈ ℕ0 (𝑦↑𝑚) = (1 / (1 − 𝑦))) |
| 326 | 309, 323,
325 | 3eqtrd 2781 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) → Σ𝑛 ∈ ℕ ((𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1))) = (1 / (1 − 𝑦))) |
| 327 | 326 | mpteq2ia 5245 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) ↦ Σ𝑛 ∈ ℕ ((𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1)))) = (𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ (1 / (1 − 𝑦))) |
| 328 | 283, 327 | eqtrdi 2793 |
. . . . . . . . 9
⊢ (⊤
→ (ℂ D (𝑦 ∈
(0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)))) = (𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ (1 / (1 − 𝑦)))) |
| 329 | 267, 328 | eqtr4d 2780 |
. . . . . . . 8
⊢ (⊤
→ (ℂ D (𝑦 ∈
(0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))) = (ℂ D (𝑦 ∈ (0(ball‘(abs
∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛))))) |
| 330 | | 1rp 13038 |
. . . . . . . . . 10
⊢ 1 ∈
ℝ+ |
| 331 | | blcntr 24423 |
. . . . . . . . . 10
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ
∧ 1 ∈ ℝ+) → 0 ∈ (0(ball‘(abs ∘
− ))1)) |
| 332 | 38, 28, 330, 331 | mp3an 1463 |
. . . . . . . . 9
⊢ 0 ∈
(0(ball‘(abs ∘ − ))1) |
| 333 | 332 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ 0 ∈ (0(ball‘(abs ∘ − ))1)) |
| 334 | | oveq2 7439 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 0 → (1 − 𝑦) = (1 −
0)) |
| 335 | | 1m0e1 12387 |
. . . . . . . . . . . . . . . 16
⊢ (1
− 0) = 1 |
| 336 | 334, 335 | eqtrdi 2793 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 0 → (1 − 𝑦) = 1) |
| 337 | 336 | fveq2d 6910 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 0 → (log‘(1
− 𝑦)) =
(log‘1)) |
| 338 | | log1 26627 |
. . . . . . . . . . . . . 14
⊢
(log‘1) = 0 |
| 339 | 337, 338 | eqtrdi 2793 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 0 → (log‘(1
− 𝑦)) =
0) |
| 340 | 339 | negeqd 11502 |
. . . . . . . . . . . 12
⊢ (𝑦 = 0 → -(log‘(1
− 𝑦)) =
-0) |
| 341 | | neg0 11555 |
. . . . . . . . . . . 12
⊢ -0 =
0 |
| 342 | 340, 341 | eqtrdi 2793 |
. . . . . . . . . . 11
⊢ (𝑦 = 0 → -(log‘(1
− 𝑦)) =
0) |
| 343 | | eqid 2737 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) ↦ -(log‘(1 − 𝑦))) = (𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ -(log‘(1 − 𝑦))) |
| 344 | 342, 343,
90 | fvmpt 7016 |
. . . . . . . . . 10
⊢ (0 ∈
(0(ball‘(abs ∘ − ))1) → ((𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ -(log‘(1 − 𝑦)))‘0) = 0) |
| 345 | 332, 344 | mp1i 13 |
. . . . . . . . 9
⊢ (⊤
→ ((𝑦 ∈
(0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))‘0) =
0) |
| 346 | | oveq1 7438 |
. . . . . . . . . . . . . . 15
⊢ (0 =
if(𝑛 = 0, 0, (1 / 𝑛)) → (0 · (𝑦↑𝑛)) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛))) |
| 347 | 346 | eqeq1d 2739 |
. . . . . . . . . . . . . 14
⊢ (0 =
if(𝑛 = 0, 0, (1 / 𝑛)) → ((0 · (𝑦↑𝑛)) = 0 ↔ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)) = 0)) |
| 348 | | oveq1 7438 |
. . . . . . . . . . . . . . 15
⊢ ((1 /
𝑛) = if(𝑛 = 0, 0, (1 / 𝑛)) → ((1 / 𝑛) · (𝑦↑𝑛)) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛))) |
| 349 | 348 | eqeq1d 2739 |
. . . . . . . . . . . . . 14
⊢ ((1 /
𝑛) = if(𝑛 = 0, 0, (1 / 𝑛)) → (((1 / 𝑛) · (𝑦↑𝑛)) = 0 ↔ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)) = 0)) |
| 350 | | simpll 767 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = 0) → 𝑦 = 0) |
| 351 | 350, 28 | eqeltrdi 2849 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = 0) → 𝑦 ∈ ℂ) |
| 352 | | simplr 769 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = 0) → 𝑛 ∈ ℕ0) |
| 353 | 351, 352 | expcld 14186 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = 0) → (𝑦↑𝑛) ∈ ℂ) |
| 354 | 353 | mul02d 11459 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = 0) → (0 · (𝑦↑𝑛)) = 0) |
| 355 | | simpll 767 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → 𝑦 = 0) |
| 356 | 355 | oveq1d 7446 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → (𝑦↑𝑛) = (0↑𝑛)) |
| 357 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
| 358 | 357, 14 | sylib 218 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ ℕ ∨ 𝑛 = 0)) |
| 359 | 358 | ord 865 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) → (¬
𝑛 ∈ ℕ →
𝑛 = 0)) |
| 360 | 359 | con1d 145 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) → (¬
𝑛 = 0 → 𝑛 ∈
ℕ)) |
| 361 | 360 | imp 406 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → 𝑛 ∈
ℕ) |
| 362 | 361 | 0expd 14179 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → (0↑𝑛) = 0) |
| 363 | 356, 362 | eqtrd 2777 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → (𝑦↑𝑛) = 0) |
| 364 | 363 | oveq2d 7447 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → ((1 / 𝑛) · (𝑦↑𝑛)) = ((1 / 𝑛) · 0)) |
| 365 | 361 | nnrecred 12317 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → (1 / 𝑛) ∈
ℝ) |
| 366 | 365 | recnd 11289 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → (1 / 𝑛) ∈
ℂ) |
| 367 | 366 | mul01d 11460 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → ((1 / 𝑛) · 0) =
0) |
| 368 | 364, 367 | eqtrd 2777 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → ((1 / 𝑛) · (𝑦↑𝑛)) = 0) |
| 369 | 347, 349,
354, 368 | ifbothda 4564 |
. . . . . . . . . . . . 13
⊢ ((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) → (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)) = 0) |
| 370 | 369 | sumeq2dv 15738 |
. . . . . . . . . . . 12
⊢ (𝑦 = 0 → Σ𝑛 ∈ ℕ0
(if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)) = Σ𝑛 ∈ ℕ0
0) |
| 371 | 1 | eqimssi 4044 |
. . . . . . . . . . . . . 14
⊢
ℕ0 ⊆
(ℤ≥‘0) |
| 372 | 371 | orci 866 |
. . . . . . . . . . . . 13
⊢
(ℕ0 ⊆ (ℤ≥‘0) ∨
ℕ0 ∈ Fin) |
| 373 | | sumz 15758 |
. . . . . . . . . . . . 13
⊢
((ℕ0 ⊆ (ℤ≥‘0) ∨
ℕ0 ∈ Fin) → Σ𝑛 ∈ ℕ0 0 =
0) |
| 374 | 372, 373 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
Σ𝑛 ∈
ℕ0 0 = 0 |
| 375 | 370, 374 | eqtrdi 2793 |
. . . . . . . . . . 11
⊢ (𝑦 = 0 → Σ𝑛 ∈ ℕ0
(if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)) = 0) |
| 376 | | eqid 2737 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (0(ball‘(abs
∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛))) = (𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ Σ𝑛
∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛))) |
| 377 | 375, 376,
90 | fvmpt 7016 |
. . . . . . . . . 10
⊢ (0 ∈
(0(ball‘(abs ∘ − ))1) → ((𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ Σ𝑛
∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)))‘0) = 0) |
| 378 | 332, 377 | mp1i 13 |
. . . . . . . . 9
⊢ (⊤
→ ((𝑦 ∈
(0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)))‘0) = 0) |
| 379 | 345, 378 | eqtr4d 2780 |
. . . . . . . 8
⊢ (⊤
→ ((𝑦 ∈
(0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))‘0) = ((𝑦 ∈ (0(ball‘(abs
∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)))‘0)) |
| 380 | 45, 46, 47, 78, 190, 272, 329, 333, 379 | dv11cn 26040 |
. . . . . . 7
⊢ (⊤
→ (𝑦 ∈
(0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦))) = (𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ Σ𝑛
∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)))) |
| 381 | 380 | fveq1d 6908 |
. . . . . 6
⊢ (⊤
→ ((𝑦 ∈
(0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))‘𝐴) = ((𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ Σ𝑛
∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)))‘𝐴)) |
| 382 | 44, 381 | mp1i 13 |
. . . . 5
⊢ (𝐴 ∈ (0(ball‘(abs
∘ − ))1) → ((𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ -(log‘(1 − 𝑦)))‘𝐴) = ((𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ Σ𝑛
∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)))‘𝐴)) |
| 383 | | oveq2 7439 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → (1 − 𝑦) = (1 − 𝐴)) |
| 384 | 383 | fveq2d 6910 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (log‘(1 − 𝑦)) = (log‘(1 − 𝐴))) |
| 385 | 384 | negeqd 11502 |
. . . . . 6
⊢ (𝑦 = 𝐴 → -(log‘(1 − 𝑦)) = -(log‘(1 −
𝐴))) |
| 386 | | negex 11506 |
. . . . . 6
⊢
-(log‘(1 − 𝐴)) ∈ V |
| 387 | 385, 343,
386 | fvmpt 7016 |
. . . . 5
⊢ (𝐴 ∈ (0(ball‘(abs
∘ − ))1) → ((𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ -(log‘(1 − 𝑦)))‘𝐴) = -(log‘(1 − 𝐴))) |
| 388 | | oveq1 7438 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → (𝑦↑𝑛) = (𝐴↑𝑛)) |
| 389 | 388 | oveq2d 7447 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴↑𝑛))) |
| 390 | 389 | sumeq2sdv 15739 |
. . . . . 6
⊢ (𝑦 = 𝐴 → Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)) = Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴↑𝑛))) |
| 391 | | sumex 15724 |
. . . . . 6
⊢
Σ𝑛 ∈
ℕ0 (if(𝑛 =
0, 0, (1 / 𝑛)) ·
(𝐴↑𝑛)) ∈ V |
| 392 | 390, 376,
391 | fvmpt 7016 |
. . . . 5
⊢ (𝐴 ∈ (0(ball‘(abs
∘ − ))1) → ((𝑦 ∈ (0(ball‘(abs ∘ −
))1) ↦ Σ𝑛
∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦↑𝑛)))‘𝐴) = Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴↑𝑛))) |
| 393 | 382, 387,
392 | 3eqtr3d 2785 |
. . . 4
⊢ (𝐴 ∈ (0(ball‘(abs
∘ − ))1) → -(log‘(1 − 𝐴)) = Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴↑𝑛))) |
| 394 | 43, 393 | syl 17 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ -(log‘(1 − 𝐴)) = Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴↑𝑛))) |
| 395 | 26, 394 | breqtrrd 5171 |
. 2
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ seq0( + , (𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))) ⇝ -(log‘(1 − 𝐴))) |
| 396 | | seqex 14044 |
. . . 4
⊢ seq0( + ,
(𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))) ∈ V |
| 397 | 396 | a1i 11 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ seq0( + , (𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))) ∈ V) |
| 398 | | seqex 14044 |
. . . 4
⊢ seq1( + ,
(𝑘 ∈ ℕ ↦
((𝐴↑𝑘) / 𝑘))) ∈ V |
| 399 | 398 | a1i 11 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ seq1( + , (𝑘 ∈
ℕ ↦ ((𝐴↑𝑘) / 𝑘))) ∈ V) |
| 400 | | 1zzd 12648 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ 1 ∈ ℤ) |
| 401 | | elnnuz 12922 |
. . . . . 6
⊢ (𝑛 ∈ ℕ ↔ 𝑛 ∈
(ℤ≥‘1)) |
| 402 | | fvres 6925 |
. . . . . 6
⊢ (𝑛 ∈
(ℤ≥‘1) → ((seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))) ↾
(ℤ≥‘1))‘𝑛) = (seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘))))‘𝑛)) |
| 403 | 401, 402 | sylbi 217 |
. . . . 5
⊢ (𝑛 ∈ ℕ → ((seq0( +
, (𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))) ↾
(ℤ≥‘1))‘𝑛) = (seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘))))‘𝑛)) |
| 404 | 403 | eqcomd 2743 |
. . . 4
⊢ (𝑛 ∈ ℕ → (seq0( +
, (𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘))))‘𝑛) = ((seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))) ↾
(ℤ≥‘1))‘𝑛)) |
| 405 | | addlid 11444 |
. . . . . . . 8
⊢ (𝑛 ∈ ℂ → (0 +
𝑛) = 𝑛) |
| 406 | 405 | adantl 481 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈ ℂ) → (0
+ 𝑛) = 𝑛) |
| 407 | | 0cnd 11254 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ 0 ∈ ℂ) |
| 408 | | 1eluzge0 12934 |
. . . . . . . 8
⊢ 1 ∈
(ℤ≥‘0) |
| 409 | 408 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ 1 ∈ (ℤ≥‘0)) |
| 410 | | 0cnd 11254 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑘 ∈
ℕ0) ∧ 𝑘 = 0) → 0 ∈
ℂ) |
| 411 | | nn0cn 12536 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℂ) |
| 412 | 411 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑘 ∈
ℕ0) → 𝑘 ∈ ℂ) |
| 413 | | neqne 2948 |
. . . . . . . . . . . 12
⊢ (¬
𝑘 = 0 → 𝑘 ≠ 0) |
| 414 | | reccl 11929 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℂ ∧ 𝑘 ≠ 0) → (1 / 𝑘) ∈
ℂ) |
| 415 | 412, 413,
414 | syl2an 596 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑘 ∈
ℕ0) ∧ ¬ 𝑘 = 0) → (1 / 𝑘) ∈ ℂ) |
| 416 | 410, 415 | ifclda 4561 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑘 ∈
ℕ0) → if(𝑘 = 0, 0, (1 / 𝑘)) ∈ ℂ) |
| 417 | | expcl 14120 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑𝑘) ∈
ℂ) |
| 418 | 417 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑘 ∈
ℕ0) → (𝐴↑𝑘) ∈ ℂ) |
| 419 | 416, 418 | mulcld 11281 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑘 ∈
ℕ0) → (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)) ∈ ℂ) |
| 420 | 419 | fmpttd 7135 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ (𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘))):ℕ0⟶ℂ) |
| 421 | | 1nn0 12542 |
. . . . . . . 8
⊢ 1 ∈
ℕ0 |
| 422 | | ffvelcdm 7101 |
. . . . . . . 8
⊢ (((𝑘 ∈ ℕ0
↦ (if(𝑘 = 0, 0, (1 /
𝑘)) · (𝐴↑𝑘))):ℕ0⟶ℂ ∧
1 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))‘1) ∈ ℂ) |
| 423 | 420, 421,
422 | sylancl 586 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ ((𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))‘1) ∈ ℂ) |
| 424 | | elfz1eq 13575 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (0...0) → 𝑛 = 0) |
| 425 | | 1m1e0 12338 |
. . . . . . . . . . 11
⊢ (1
− 1) = 0 |
| 426 | 425 | oveq2i 7442 |
. . . . . . . . . 10
⊢ (0...(1
− 1)) = (0...0) |
| 427 | 424, 426 | eleq2s 2859 |
. . . . . . . . 9
⊢ (𝑛 ∈ (0...(1 − 1))
→ 𝑛 =
0) |
| 428 | 427 | fveq2d 6910 |
. . . . . . . 8
⊢ (𝑛 ∈ (0...(1 − 1))
→ ((𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))‘𝑛) = ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))‘0)) |
| 429 | | 0nn0 12541 |
. . . . . . . . . 10
⊢ 0 ∈
ℕ0 |
| 430 | | iftrue 4531 |
. . . . . . . . . . . 12
⊢ (𝑘 = 0 → if(𝑘 = 0, 0, (1 / 𝑘)) = 0) |
| 431 | | oveq2 7439 |
. . . . . . . . . . . 12
⊢ (𝑘 = 0 → (𝐴↑𝑘) = (𝐴↑0)) |
| 432 | 430, 431 | oveq12d 7449 |
. . . . . . . . . . 11
⊢ (𝑘 = 0 → (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)) = (0 · (𝐴↑0))) |
| 433 | | ovex 7464 |
. . . . . . . . . . 11
⊢ (0
· (𝐴↑0)) ∈
V |
| 434 | 432, 8, 433 | fvmpt 7016 |
. . . . . . . . . 10
⊢ (0 ∈
ℕ0 → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))‘0) = (0 · (𝐴↑0))) |
| 435 | 429, 434 | ax-mp 5 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ0
↦ (if(𝑘 = 0, 0, (1 /
𝑘)) · (𝐴↑𝑘)))‘0) = (0 · (𝐴↑0)) |
| 436 | | expcl 14120 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 0 ∈
ℕ0) → (𝐴↑0) ∈ ℂ) |
| 437 | 27, 429, 436 | sylancl 586 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ (𝐴↑0) ∈
ℂ) |
| 438 | 437 | mul02d 11459 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ (0 · (𝐴↑0)) = 0) |
| 439 | 435, 438 | eqtrid 2789 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ ((𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))‘0) = 0) |
| 440 | 428, 439 | sylan9eqr 2799 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈ (0...(1 −
1))) → ((𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))‘𝑛) = 0) |
| 441 | 406, 407,
409, 423, 440 | seqid 14088 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ (seq0( + , (𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))) ↾
(ℤ≥‘1)) = seq1( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘))))) |
| 442 | 293 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈ ℕ) →
𝑛 ≠ 0) |
| 443 | 442 | neneqd 2945 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈ ℕ) →
¬ 𝑛 =
0) |
| 444 | 443 | iffalsed 4536 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈ ℕ) →
if(𝑛 = 0, 0, (1 / 𝑛)) = (1 / 𝑛)) |
| 445 | 444 | oveq1d 7446 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈ ℕ) →
(if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴↑𝑛)) = ((1 / 𝑛) · (𝐴↑𝑛))) |
| 446 | 284, 23 | sylan2 593 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈ ℕ) →
(𝐴↑𝑛) ∈ ℂ) |
| 447 | 299 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈ ℕ) →
𝑛 ∈
ℂ) |
| 448 | 446, 447,
442 | divrec2d 12047 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈ ℕ) →
((𝐴↑𝑛) / 𝑛) = ((1 / 𝑛) · (𝐴↑𝑛))) |
| 449 | 445, 448 | eqtr4d 2780 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈ ℕ) →
(if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴↑𝑛)) = ((𝐴↑𝑛) / 𝑛)) |
| 450 | 284, 11 | sylan2 593 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈ ℕ) →
((𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))‘𝑛) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴↑𝑛))) |
| 451 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑛 → 𝑘 = 𝑛) |
| 452 | 6, 451 | oveq12d 7449 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑛 → ((𝐴↑𝑘) / 𝑘) = ((𝐴↑𝑛) / 𝑛)) |
| 453 | | eqid 2737 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ ↦ ((𝐴↑𝑘) / 𝑘)) = (𝑘 ∈ ℕ ↦ ((𝐴↑𝑘) / 𝑘)) |
| 454 | | ovex 7464 |
. . . . . . . . . . 11
⊢ ((𝐴↑𝑛) / 𝑛) ∈ V |
| 455 | 452, 453,
454 | fvmpt 7016 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ↦ ((𝐴↑𝑘) / 𝑘))‘𝑛) = ((𝐴↑𝑛) / 𝑛)) |
| 456 | 455 | adantl 481 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈ ℕ) →
((𝑘 ∈ ℕ ↦
((𝐴↑𝑘) / 𝑘))‘𝑛) = ((𝐴↑𝑛) / 𝑛)) |
| 457 | 449, 450,
456 | 3eqtr4d 2787 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈ ℕ) →
((𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))‘𝑛) = ((𝑘 ∈ ℕ ↦ ((𝐴↑𝑘) / 𝑘))‘𝑛)) |
| 458 | 401, 457 | sylan2br 595 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈
(ℤ≥‘1)) → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))‘𝑛) = ((𝑘 ∈ ℕ ↦ ((𝐴↑𝑘) / 𝑘))‘𝑛)) |
| 459 | 400, 458 | seqfeq 14068 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ seq1( + , (𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))) = seq1( + , (𝑘 ∈ ℕ ↦ ((𝐴↑𝑘) / 𝑘)))) |
| 460 | 441, 459 | eqtrd 2777 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ (seq0( + , (𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))) ↾
(ℤ≥‘1)) = seq1( + , (𝑘 ∈ ℕ ↦ ((𝐴↑𝑘) / 𝑘)))) |
| 461 | 460 | fveq1d 6908 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ ((seq0( + , (𝑘
∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))) ↾
(ℤ≥‘1))‘𝑛) = (seq1( + , (𝑘 ∈ ℕ ↦ ((𝐴↑𝑘) / 𝑘)))‘𝑛)) |
| 462 | 404, 461 | sylan9eqr 2799 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1) ∧
𝑛 ∈ ℕ) →
(seq0( + , (𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘))))‘𝑛) = (seq1( + , (𝑘 ∈ ℕ ↦ ((𝐴↑𝑘) / 𝑘)))‘𝑛)) |
| 463 | 310, 397,
399, 400, 462 | climeq 15603 |
. 2
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ (seq0( + , (𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴↑𝑘)))) ⇝ -(log‘(1 − 𝐴)) ↔ seq1( + , (𝑘 ∈ ℕ ↦ ((𝐴↑𝑘) / 𝑘))) ⇝ -(log‘(1 − 𝐴)))) |
| 464 | 395, 463 | mpbid 232 |
1
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) < 1)
→ seq1( + , (𝑘 ∈
ℕ ↦ ((𝐴↑𝑘) / 𝑘))) ⇝ -(log‘(1 − 𝐴))) |