MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logtayl Structured version   Visualization version   GIF version

Theorem logtayl 25796
Description: The Taylor series for -log(1 − 𝐴). (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
logtayl ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑘 ∈ ℕ ↦ ((𝐴𝑘) / 𝑘))) ⇝ -(log‘(1 − 𝐴)))
Distinct variable group:   𝐴,𝑘

Proof of Theorem logtayl
Dummy variables 𝑗 𝑚 𝑛 𝑟 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12602 . . . 4 0 = (ℤ‘0)
2 0zd 12314 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 0 ∈ ℤ)
3 eqeq1 2743 . . . . . . . 8 (𝑘 = 𝑛 → (𝑘 = 0 ↔ 𝑛 = 0))
4 oveq2 7276 . . . . . . . 8 (𝑘 = 𝑛 → (1 / 𝑘) = (1 / 𝑛))
53, 4ifbieq2d 4490 . . . . . . 7 (𝑘 = 𝑛 → if(𝑘 = 0, 0, (1 / 𝑘)) = if(𝑛 = 0, 0, (1 / 𝑛)))
6 oveq2 7276 . . . . . . 7 (𝑘 = 𝑛 → (𝐴𝑘) = (𝐴𝑛))
75, 6oveq12d 7286 . . . . . 6 (𝑘 = 𝑛 → (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))
8 eqid 2739 . . . . . 6 (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘))) = (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))
9 ovex 7301 . . . . . 6 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)) ∈ V
107, 8, 9fvmpt 6869 . . . . 5 (𝑛 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))‘𝑛) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))
1110adantl 481 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))‘𝑛) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))
12 0cnd 10952 . . . . . 6 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = 0) → 0 ∈ ℂ)
13 simpr 484 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
14 elnn0 12218 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 ↔ (𝑛 ∈ ℕ ∨ 𝑛 = 0))
1513, 14sylib 217 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ ℕ ∨ 𝑛 = 0))
1615ord 860 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → (¬ 𝑛 ∈ ℕ → 𝑛 = 0))
1716con1d 145 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → (¬ 𝑛 = 0 → 𝑛 ∈ ℕ))
1817imp 406 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → 𝑛 ∈ ℕ)
1918nnrecred 12007 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → (1 / 𝑛) ∈ ℝ)
2019recnd 10987 . . . . . 6 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → (1 / 𝑛) ∈ ℂ)
2112, 20ifclda 4499 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → if(𝑛 = 0, 0, (1 / 𝑛)) ∈ ℂ)
22 expcl 13781 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℂ)
2322adantlr 711 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℂ)
2421, 23mulcld 10979 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)) ∈ ℂ)
25 logtayllem 25795 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))) ∈ dom ⇝ )
261, 2, 11, 24, 25isumclim2 15451 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))) ⇝ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))
27 simpl 482 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ ℂ)
28 0cn 10951 . . . . . . . 8 0 ∈ ℂ
29 eqid 2739 . . . . . . . . 9 (abs ∘ − ) = (abs ∘ − )
3029cnmetdval 23915 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐴(abs ∘ − )0) = (abs‘(𝐴 − 0)))
3127, 28, 30sylancl 585 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝐴(abs ∘ − )0) = (abs‘(𝐴 − 0)))
32 subid1 11224 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴)
3332adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝐴 − 0) = 𝐴)
3433fveq2d 6772 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(𝐴 − 0)) = (abs‘𝐴))
3531, 34eqtrd 2779 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝐴(abs ∘ − )0) = (abs‘𝐴))
36 simpr 484 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) < 1)
3735, 36eqbrtrd 5100 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝐴(abs ∘ − )0) < 1)
38 cnxmet 23917 . . . . . . 7 (abs ∘ − ) ∈ (∞Met‘ℂ)
39 1xr 11018 . . . . . . 7 1 ∈ ℝ*
40 elbl3 23526 . . . . . . 7 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (0 ∈ ℂ ∧ 𝐴 ∈ ℂ)) → (𝐴 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝐴(abs ∘ − )0) < 1))
4138, 39, 40mpanl12 698 . . . . . 6 ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝐴(abs ∘ − )0) < 1))
4228, 27, 41sylancr 586 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝐴 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝐴(abs ∘ − )0) < 1))
4337, 42mpbird 256 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ (0(ball‘(abs ∘ − ))1))
44 tru 1545 . . . . . 6
45 eqid 2739 . . . . . . . 8 (0(ball‘(abs ∘ − ))1) = (0(ball‘(abs ∘ − ))1)
46 0cnd 10952 . . . . . . . 8 (⊤ → 0 ∈ ℂ)
4739a1i 11 . . . . . . . 8 (⊤ → 1 ∈ ℝ*)
48 ax-1cn 10913 . . . . . . . . . . . . 13 1 ∈ ℂ
49 blssm 23552 . . . . . . . . . . . . . . 15 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℝ*) → (0(ball‘(abs ∘ − ))1) ⊆ ℂ)
5038, 28, 39, 49mp3an 1459 . . . . . . . . . . . . . 14 (0(ball‘(abs ∘ − ))1) ⊆ ℂ
5150sseli 3921 . . . . . . . . . . . . 13 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → 𝑦 ∈ ℂ)
52 subcl 11203 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (1 − 𝑦) ∈ ℂ)
5348, 51, 52sylancr 586 . . . . . . . . . . . 12 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (1 − 𝑦) ∈ ℂ)
5451abscld 15129 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (abs‘𝑦) ∈ ℝ)
5529cnmetdval 23915 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑦(abs ∘ − )0) = (abs‘(𝑦 − 0)))
5651, 28, 55sylancl 585 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (𝑦(abs ∘ − )0) = (abs‘(𝑦 − 0)))
5751subid1d 11304 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (𝑦 − 0) = 𝑦)
5857fveq2d 6772 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (abs‘(𝑦 − 0)) = (abs‘𝑦))
5956, 58eqtrd 2779 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (𝑦(abs ∘ − )0) = (abs‘𝑦))
60 elbl3 23526 . . . . . . . . . . . . . . . . . . 19 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (0 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑦(abs ∘ − )0) < 1))
6138, 39, 60mpanl12 698 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑦(abs ∘ − )0) < 1))
6228, 51, 61sylancr 586 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑦(abs ∘ − )0) < 1))
6362ibi 266 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (𝑦(abs ∘ − )0) < 1)
6459, 63eqbrtrrd 5102 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (abs‘𝑦) < 1)
6554, 64gtned 11093 . . . . . . . . . . . . . 14 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → 1 ≠ (abs‘𝑦))
66 abs1 14990 . . . . . . . . . . . . . . . 16 (abs‘1) = 1
67 fveq2 6768 . . . . . . . . . . . . . . . 16 (1 = 𝑦 → (abs‘1) = (abs‘𝑦))
6866, 67eqtr3id 2793 . . . . . . . . . . . . . . 15 (1 = 𝑦 → 1 = (abs‘𝑦))
6968necon3i 2977 . . . . . . . . . . . . . 14 (1 ≠ (abs‘𝑦) → 1 ≠ 𝑦)
7065, 69syl 17 . . . . . . . . . . . . 13 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → 1 ≠ 𝑦)
71 subeq0 11230 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((1 − 𝑦) = 0 ↔ 1 = 𝑦))
7271necon3bid 2989 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((1 − 𝑦) ≠ 0 ↔ 1 ≠ 𝑦))
7348, 51, 72sylancr 586 . . . . . . . . . . . . 13 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → ((1 − 𝑦) ≠ 0 ↔ 1 ≠ 𝑦))
7470, 73mpbird 256 . . . . . . . . . . . 12 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (1 − 𝑦) ≠ 0)
7553, 74logcld 25707 . . . . . . . . . . 11 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (log‘(1 − 𝑦)) ∈ ℂ)
7675negcld 11302 . . . . . . . . . 10 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → -(log‘(1 − 𝑦)) ∈ ℂ)
7776adantl 481 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ (0(ball‘(abs ∘ − ))1)) → -(log‘(1 − 𝑦)) ∈ ℂ)
7877fmpttd 6983 . . . . . . . 8 (⊤ → (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦))):(0(ball‘(abs ∘ − ))1)⟶ℂ)
7951absge0d 15137 . . . . . . . . . . . 12 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → 0 ≤ (abs‘𝑦))
8054rexrd 11009 . . . . . . . . . . . . 13 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (abs‘𝑦) ∈ ℝ*)
81 peano2re 11131 . . . . . . . . . . . . . . . 16 ((abs‘𝑦) ∈ ℝ → ((abs‘𝑦) + 1) ∈ ℝ)
8254, 81syl 17 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → ((abs‘𝑦) + 1) ∈ ℝ)
8382rehalfcld 12203 . . . . . . . . . . . . . 14 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (((abs‘𝑦) + 1) / 2) ∈ ℝ)
8483rexrd 11009 . . . . . . . . . . . . 13 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (((abs‘𝑦) + 1) / 2) ∈ ℝ*)
85 iccssxr 13144 . . . . . . . . . . . . . . 15 (0[,]+∞) ⊆ ℝ*
86 eqeq1 2743 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑗 → (𝑚 = 0 ↔ 𝑗 = 0))
87 oveq2 7276 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑗 → (1 / 𝑚) = (1 / 𝑗))
8886, 87ifbieq2d 4490 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑗 → if(𝑚 = 0, 0, (1 / 𝑚)) = if(𝑗 = 0, 0, (1 / 𝑗)))
89 eqid 2739 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚))) = (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))
90 c0ex 10953 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ V
91 ovex 7301 . . . . . . . . . . . . . . . . . . . . . 22 (1 / 𝑗) ∈ V
9290, 91ifex 4514 . . . . . . . . . . . . . . . . . . . . 21 if(𝑗 = 0, 0, (1 / 𝑗)) ∈ V
9388, 89, 92fvmpt 6869 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑗) = if(𝑗 = 0, 0, (1 / 𝑗)))
9493eqcomd 2745 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ0 → if(𝑗 = 0, 0, (1 / 𝑗)) = ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑗))
9594oveq1d 7283 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ0 → (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗)) = (((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑗) · (𝑥𝑗)))
9695mpteq2ia 5181 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))) = (𝑗 ∈ ℕ0 ↦ (((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑗) · (𝑥𝑗)))
9796mpteq2i 5183 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗)))) = (𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑗) · (𝑥𝑗))))
98 0cnd 10952 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 = 0) → 0 ∈ ℂ)
99 nn0cn 12226 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
10099adantl 481 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℂ)
101 neqne 2952 . . . . . . . . . . . . . . . . . . 19 𝑚 = 0 → 𝑚 ≠ 0)
102 reccl 11623 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ ℂ ∧ 𝑚 ≠ 0) → (1 / 𝑚) ∈ ℂ)
103100, 101, 102syl2an 595 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑚 ∈ ℕ0) ∧ ¬ 𝑚 = 0) → (1 / 𝑚) ∈ ℂ)
10498, 103ifclda 4499 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑚 ∈ ℕ0) → if(𝑚 = 0, 0, (1 / 𝑚)) ∈ ℂ)
105104fmpttd 6983 . . . . . . . . . . . . . . . 16 (⊤ → (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚))):ℕ0⟶ℂ)
106 recn 10945 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 ∈ ℝ → 𝑟 ∈ ℂ)
107 oveq1 7275 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑟 → (𝑥𝑗) = (𝑟𝑗))
108107oveq2d 7284 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑟 → (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗)) = (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))
109108mpteq2dv 5180 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑟 → (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗))))
110 eqid 2739 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗)))) = (𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))
111 nn0ex 12222 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ V
112111mptex 7093 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗))) ∈ V
113109, 110, 112fvmpt 6869 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 ∈ ℂ → ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑟) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗))))
114106, 113syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 ∈ ℝ → ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑟) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗))))
115114eqcomd 2745 . . . . . . . . . . . . . . . . . . . 20 (𝑟 ∈ ℝ → (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗))) = ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑟))
116115seqeq3d 13710 . . . . . . . . . . . . . . . . . . 19 (𝑟 ∈ ℝ → seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) = seq0( + , ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑟)))
117116eleq1d 2824 . . . . . . . . . . . . . . . . . 18 (𝑟 ∈ ℝ → (seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ ↔ seq0( + , ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑟)) ∈ dom ⇝ ))
118117rabbiia 3404 . . . . . . . . . . . . . . . . 17 {𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ } = {𝑟 ∈ ℝ ∣ seq0( + , ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑟)) ∈ dom ⇝ }
119118supeq1i 9167 . . . . . . . . . . . . . . . 16 sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )
12097, 105, 119radcnvcl 25557 . . . . . . . . . . . . . . 15 (⊤ → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ) ∈ (0[,]+∞))
12185, 120sselid 3923 . . . . . . . . . . . . . 14 (⊤ → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*)
12244, 121mp1i 13 . . . . . . . . . . . . 13 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*)
123 1re 10959 . . . . . . . . . . . . . . 15 1 ∈ ℝ
124 avglt1 12194 . . . . . . . . . . . . . . 15 (((abs‘𝑦) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝑦) < 1 ↔ (abs‘𝑦) < (((abs‘𝑦) + 1) / 2)))
12554, 123, 124sylancl 585 . . . . . . . . . . . . . 14 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → ((abs‘𝑦) < 1 ↔ (abs‘𝑦) < (((abs‘𝑦) + 1) / 2)))
12664, 125mpbid 231 . . . . . . . . . . . . 13 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (abs‘𝑦) < (((abs‘𝑦) + 1) / 2))
127 0red 10962 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → 0 ∈ ℝ)
128127, 54, 83, 79, 126lelttrd 11116 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → 0 < (((abs‘𝑦) + 1) / 2))
129127, 83, 128ltled 11106 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → 0 ≤ (((abs‘𝑦) + 1) / 2))
13083, 129absidd 15115 . . . . . . . . . . . . . 14 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (abs‘(((abs‘𝑦) + 1) / 2)) = (((abs‘𝑦) + 1) / 2))
13144, 105mp1i 13 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚))):ℕ0⟶ℂ)
13283recnd 10987 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (((abs‘𝑦) + 1) / 2) ∈ ℂ)
133 oveq1 7275 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (((abs‘𝑦) + 1) / 2) → (𝑥𝑗) = ((((abs‘𝑦) + 1) / 2)↑𝑗))
134133oveq2d 7284 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (((abs‘𝑦) + 1) / 2) → (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗)) = (if(𝑗 = 0, 0, (1 / 𝑗)) · ((((abs‘𝑦) + 1) / 2)↑𝑗)))
135134mpteq2dv 5180 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (((abs‘𝑦) + 1) / 2) → (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · ((((abs‘𝑦) + 1) / 2)↑𝑗))))
136111mptex 7093 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · ((((abs‘𝑦) + 1) / 2)↑𝑗))) ∈ V
137135, 110, 136fvmpt 6869 . . . . . . . . . . . . . . . . . 18 ((((abs‘𝑦) + 1) / 2) ∈ ℂ → ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘(((abs‘𝑦) + 1) / 2)) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · ((((abs‘𝑦) + 1) / 2)↑𝑗))))
138132, 137syl 17 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘(((abs‘𝑦) + 1) / 2)) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · ((((abs‘𝑦) + 1) / 2)↑𝑗))))
139138seqeq3d 13710 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → seq0( + , ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘(((abs‘𝑦) + 1) / 2))) = seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · ((((abs‘𝑦) + 1) / 2)↑𝑗)))))
140 avglt2 12195 . . . . . . . . . . . . . . . . . . . 20 (((abs‘𝑦) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝑦) < 1 ↔ (((abs‘𝑦) + 1) / 2) < 1))
14154, 123, 140sylancl 585 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → ((abs‘𝑦) < 1 ↔ (((abs‘𝑦) + 1) / 2) < 1))
14264, 141mpbid 231 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (((abs‘𝑦) + 1) / 2) < 1)
143130, 142eqbrtrd 5100 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (abs‘(((abs‘𝑦) + 1) / 2)) < 1)
144 logtayllem 25795 . . . . . . . . . . . . . . . . 17 (((((abs‘𝑦) + 1) / 2) ∈ ℂ ∧ (abs‘(((abs‘𝑦) + 1) / 2)) < 1) → seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · ((((abs‘𝑦) + 1) / 2)↑𝑗)))) ∈ dom ⇝ )
145132, 143, 144syl2anc 583 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · ((((abs‘𝑦) + 1) / 2)↑𝑗)))) ∈ dom ⇝ )
146139, 145eqeltrd 2840 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → seq0( + , ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘(((abs‘𝑦) + 1) / 2))) ∈ dom ⇝ )
14797, 131, 119, 132, 146radcnvle 25560 . . . . . . . . . . . . . 14 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (abs‘(((abs‘𝑦) + 1) / 2)) ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))
148130, 147eqbrtrrd 5102 . . . . . . . . . . . . 13 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (((abs‘𝑦) + 1) / 2) ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))
14980, 84, 122, 126, 148xrltletrd 12877 . . . . . . . . . . . 12 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (abs‘𝑦) < sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))
150 0re 10961 . . . . . . . . . . . . 13 0 ∈ ℝ
151 elico2 13125 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*) → ((abs‘𝑦) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < )) ↔ ((abs‘𝑦) ∈ ℝ ∧ 0 ≤ (abs‘𝑦) ∧ (abs‘𝑦) < sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))))
152150, 122, 151sylancr 586 . . . . . . . . . . . 12 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → ((abs‘𝑦) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < )) ↔ ((abs‘𝑦) ∈ ℝ ∧ 0 ≤ (abs‘𝑦) ∧ (abs‘𝑦) < sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))))
15354, 79, 149, 152mpbir3and 1340 . . . . . . . . . . 11 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (abs‘𝑦) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < )))
154 absf 15030 . . . . . . . . . . . 12 abs:ℂ⟶ℝ
155 ffn 6596 . . . . . . . . . . . 12 (abs:ℂ⟶ℝ → abs Fn ℂ)
156 elpreima 6929 . . . . . . . . . . . 12 (abs Fn ℂ → (𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) ↔ (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < )))))
157154, 155, 156mp2b 10 . . . . . . . . . . 11 (𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) ↔ (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))))
15851, 153, 157sylanbrc 582 . . . . . . . . . 10 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → 𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))))
159 cnvimass 5986 . . . . . . . . . . . . . . . . 17 (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) ⊆ dom abs
160154fdmi 6608 . . . . . . . . . . . . . . . . 17 dom abs = ℂ
161159, 160sseqtri 3961 . . . . . . . . . . . . . . . 16 (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) ⊆ ℂ
162161sseli 3921 . . . . . . . . . . . . . . 15 (𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) → 𝑦 ∈ ℂ)
163 oveq1 7275 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑦 → (𝑥𝑗) = (𝑦𝑗))
164163oveq2d 7284 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗)) = (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦𝑗)))
165164mpteq2dv 5180 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦𝑗))))
166111mptex 7093 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦𝑗))) ∈ V
167165, 110, 166fvmpt 6869 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℂ → ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑦) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦𝑗))))
168167adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑦) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦𝑗))))
169168fveq1d 6770 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑦)‘𝑛) = ((𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦𝑗)))‘𝑛))
170 eqeq1 2743 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑛 → (𝑗 = 0 ↔ 𝑛 = 0))
171 oveq2 7276 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑛 → (1 / 𝑗) = (1 / 𝑛))
172170, 171ifbieq2d 4490 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑛 → if(𝑗 = 0, 0, (1 / 𝑗)) = if(𝑛 = 0, 0, (1 / 𝑛)))
173 oveq2 7276 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑛 → (𝑦𝑗) = (𝑦𝑛))
174172, 173oveq12d 7286 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑛 → (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦𝑗)) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)))
175 eqid 2739 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦𝑗))) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦𝑗)))
176 ovex 7301 . . . . . . . . . . . . . . . . . . 19 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)) ∈ V
177174, 175, 176fvmpt 6869 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0 → ((𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦𝑗)))‘𝑛) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)))
178177adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦𝑗)))‘𝑛) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)))
179169, 178eqtr2d 2780 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)) = (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑦)‘𝑛))
180179sumeq2dv 15396 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℂ → Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)) = Σ𝑛 ∈ ℕ0 (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑦)‘𝑛))
181162, 180syl 17 . . . . . . . . . . . . . 14 (𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) → Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)) = Σ𝑛 ∈ ℕ0 (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑦)‘𝑛))
182181mpteq2ia 5181 . . . . . . . . . . . . 13 (𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛))) = (𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑦)‘𝑛))
183 eqid 2739 . . . . . . . . . . . . 13 (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) = (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < )))
184 eqid 2739 . . . . . . . . . . . . 13 if(sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑧) + sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑧) + 1)) = if(sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑧) + sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑧) + 1))
18597, 182, 105, 119, 183, 184psercn 25566 . . . . . . . . . . . 12 (⊤ → (𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛))) ∈ ((abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < )))–cn→ℂ))
186 cncff 24037 . . . . . . . . . . . 12 ((𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛))) ∈ ((abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < )))–cn→ℂ) → (𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛))):(abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < )))⟶ℂ)
187185, 186syl 17 . . . . . . . . . . 11 (⊤ → (𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛))):(abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < )))⟶ℂ)
188187fvmptelrn 6981 . . . . . . . . . 10 ((⊤ ∧ 𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < )))) → Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)) ∈ ℂ)
189158, 188sylan2 592 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ (0(ball‘(abs ∘ − ))1)) → Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)) ∈ ℂ)
190189fmpttd 6983 . . . . . . . 8 (⊤ → (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛))):(0(ball‘(abs ∘ − ))1)⟶ℂ)
191 cnelprrecn 10948 . . . . . . . . . . . . 13 ℂ ∈ {ℝ, ℂ}
192191a1i 11 . . . . . . . . . . . 12 (⊤ → ℂ ∈ {ℝ, ℂ})
19375adantl 481 . . . . . . . . . . . 12 ((⊤ ∧ 𝑦 ∈ (0(ball‘(abs ∘ − ))1)) → (log‘(1 − 𝑦)) ∈ ℂ)
194 ovexd 7303 . . . . . . . . . . . 12 ((⊤ ∧ 𝑦 ∈ (0(ball‘(abs ∘ − ))1)) → ((1 / (1 − 𝑦)) · -1) ∈ V)
19529cnmetdval 23915 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℂ ∧ (1 − 𝑦) ∈ ℂ) → (1(abs ∘ − )(1 − 𝑦)) = (abs‘(1 − (1 − 𝑦))))
19648, 53, 195sylancr 586 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (1(abs ∘ − )(1 − 𝑦)) = (abs‘(1 − (1 − 𝑦))))
197 nncan 11233 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (1 − (1 − 𝑦)) = 𝑦)
19848, 51, 197sylancr 586 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (1 − (1 − 𝑦)) = 𝑦)
199198fveq2d 6772 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (abs‘(1 − (1 − 𝑦))) = (abs‘𝑦))
200196, 199eqtrd 2779 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (1(abs ∘ − )(1 − 𝑦)) = (abs‘𝑦))
201200, 64eqbrtrd 5100 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (1(abs ∘ − )(1 − 𝑦)) < 1)
202 elbl 23522 . . . . . . . . . . . . . . . 16 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ*) → ((1 − 𝑦) ∈ (1(ball‘(abs ∘ − ))1) ↔ ((1 − 𝑦) ∈ ℂ ∧ (1(abs ∘ − )(1 − 𝑦)) < 1)))
20338, 48, 39, 202mp3an 1459 . . . . . . . . . . . . . . 15 ((1 − 𝑦) ∈ (1(ball‘(abs ∘ − ))1) ↔ ((1 − 𝑦) ∈ ℂ ∧ (1(abs ∘ − )(1 − 𝑦)) < 1))
20453, 201, 203sylanbrc 582 . . . . . . . . . . . . . 14 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (1 − 𝑦) ∈ (1(ball‘(abs ∘ − ))1))
205204adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑦 ∈ (0(ball‘(abs ∘ − ))1)) → (1 − 𝑦) ∈ (1(ball‘(abs ∘ − ))1))
206 neg1cn 12070 . . . . . . . . . . . . . 14 -1 ∈ ℂ
207206a1i 11 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑦 ∈ (0(ball‘(abs ∘ − ))1)) → -1 ∈ ℂ)
208 eqid 2739 . . . . . . . . . . . . . . . . . 18 (1(ball‘(abs ∘ − ))1) = (1(ball‘(abs ∘ − ))1)
209208dvlog2lem 25788 . . . . . . . . . . . . . . . . 17 (1(ball‘(abs ∘ − ))1) ⊆ (ℂ ∖ (-∞(,]0))
210209sseli 3921 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1(ball‘(abs ∘ − ))1) → 𝑥 ∈ (ℂ ∖ (-∞(,]0)))
211210eldifad 3903 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1(ball‘(abs ∘ − ))1) → 𝑥 ∈ ℂ)
212 eqid 2739 . . . . . . . . . . . . . . . . 17 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
213212logdmn0 25776 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (ℂ ∖ (-∞(,]0)) → 𝑥 ≠ 0)
214210, 213syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1(ball‘(abs ∘ − ))1) → 𝑥 ≠ 0)
215211, 214logcld 25707 . . . . . . . . . . . . . 14 (𝑥 ∈ (1(ball‘(abs ∘ − ))1) → (log‘𝑥) ∈ ℂ)
216215adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(ball‘(abs ∘ − ))1)) → (log‘𝑥) ∈ ℂ)
217 ovexd 7303 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(ball‘(abs ∘ − ))1)) → (1 / 𝑥) ∈ V)
218 simpr 484 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
21948, 218, 52sylancr 586 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑦 ∈ ℂ) → (1 − 𝑦) ∈ ℂ)
220206a1i 11 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑦 ∈ ℂ) → -1 ∈ ℂ)
221 1cnd 10954 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑦 ∈ ℂ) → 1 ∈ ℂ)
222 0cnd 10952 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑦 ∈ ℂ) → 0 ∈ ℂ)
223 1cnd 10954 . . . . . . . . . . . . . . . . 17 (⊤ → 1 ∈ ℂ)
224192, 223dvmptc 25103 . . . . . . . . . . . . . . . 16 (⊤ → (ℂ D (𝑦 ∈ ℂ ↦ 1)) = (𝑦 ∈ ℂ ↦ 0))
225192dvmptid 25102 . . . . . . . . . . . . . . . 16 (⊤ → (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = (𝑦 ∈ ℂ ↦ 1))
226192, 221, 222, 224, 218, 221, 225dvmptsub 25112 . . . . . . . . . . . . . . 15 (⊤ → (ℂ D (𝑦 ∈ ℂ ↦ (1 − 𝑦))) = (𝑦 ∈ ℂ ↦ (0 − 1)))
227 df-neg 11191 . . . . . . . . . . . . . . . 16 -1 = (0 − 1)
228227mpteq2i 5183 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℂ ↦ -1) = (𝑦 ∈ ℂ ↦ (0 − 1))
229226, 228eqtr4di 2797 . . . . . . . . . . . . . 14 (⊤ → (ℂ D (𝑦 ∈ ℂ ↦ (1 − 𝑦))) = (𝑦 ∈ ℂ ↦ -1))
23050a1i 11 . . . . . . . . . . . . . 14 (⊤ → (0(ball‘(abs ∘ − ))1) ⊆ ℂ)
231 eqid 2739 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
232231cnfldtopon 23927 . . . . . . . . . . . . . . 15 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
233232toponrestid 22051 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
234231cnfldtopn 23926 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
235234blopn 23637 . . . . . . . . . . . . . . . 16 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℝ*) → (0(ball‘(abs ∘ − ))1) ∈ (TopOpen‘ℂfld))
23638, 28, 39, 235mp3an 1459 . . . . . . . . . . . . . . 15 (0(ball‘(abs ∘ − ))1) ∈ (TopOpen‘ℂfld)
237236a1i 11 . . . . . . . . . . . . . 14 (⊤ → (0(ball‘(abs ∘ − ))1) ∈ (TopOpen‘ℂfld))
238192, 219, 220, 229, 230, 233, 231, 237dvmptres 25108 . . . . . . . . . . . . 13 (⊤ → (ℂ D (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ (1 − 𝑦))) = (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -1))
239 logf1o 25701 . . . . . . . . . . . . . . . . . . . 20 log:(ℂ ∖ {0})–1-1-onto→ran log
240 f1of 6712 . . . . . . . . . . . . . . . . . . . 20 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
241239, 240ax-mp 5 . . . . . . . . . . . . . . . . . . 19 log:(ℂ ∖ {0})⟶ran log
242212logdmss 25778 . . . . . . . . . . . . . . . . . . . 20 (ℂ ∖ (-∞(,]0)) ⊆ (ℂ ∖ {0})
243209, 242sstri 3934 . . . . . . . . . . . . . . . . . . 19 (1(ball‘(abs ∘ − ))1) ⊆ (ℂ ∖ {0})
244 fssres 6636 . . . . . . . . . . . . . . . . . . 19 ((log:(ℂ ∖ {0})⟶ran log ∧ (1(ball‘(abs ∘ − ))1) ⊆ (ℂ ∖ {0})) → (log ↾ (1(ball‘(abs ∘ − ))1)):(1(ball‘(abs ∘ − ))1)⟶ran log)
245241, 243, 244mp2an 688 . . . . . . . . . . . . . . . . . 18 (log ↾ (1(ball‘(abs ∘ − ))1)):(1(ball‘(abs ∘ − ))1)⟶ran log
246245a1i 11 . . . . . . . . . . . . . . . . 17 (⊤ → (log ↾ (1(ball‘(abs ∘ − ))1)):(1(ball‘(abs ∘ − ))1)⟶ran log)
247246feqmptd 6831 . . . . . . . . . . . . . . . 16 (⊤ → (log ↾ (1(ball‘(abs ∘ − ))1)) = (𝑥 ∈ (1(ball‘(abs ∘ − ))1) ↦ ((log ↾ (1(ball‘(abs ∘ − ))1))‘𝑥)))
248 fvres 6787 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (1(ball‘(abs ∘ − ))1) → ((log ↾ (1(ball‘(abs ∘ − ))1))‘𝑥) = (log‘𝑥))
249248mpteq2ia 5181 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1(ball‘(abs ∘ − ))1) ↦ ((log ↾ (1(ball‘(abs ∘ − ))1))‘𝑥)) = (𝑥 ∈ (1(ball‘(abs ∘ − ))1) ↦ (log‘𝑥))
250247, 249eqtrdi 2795 . . . . . . . . . . . . . . 15 (⊤ → (log ↾ (1(ball‘(abs ∘ − ))1)) = (𝑥 ∈ (1(ball‘(abs ∘ − ))1) ↦ (log‘𝑥)))
251250oveq2d 7284 . . . . . . . . . . . . . 14 (⊤ → (ℂ D (log ↾ (1(ball‘(abs ∘ − ))1))) = (ℂ D (𝑥 ∈ (1(ball‘(abs ∘ − ))1) ↦ (log‘𝑥))))
252208dvlog2 25789 . . . . . . . . . . . . . 14 (ℂ D (log ↾ (1(ball‘(abs ∘ − ))1))) = (𝑥 ∈ (1(ball‘(abs ∘ − ))1) ↦ (1 / 𝑥))
253251, 252eqtr3di 2794 . . . . . . . . . . . . 13 (⊤ → (ℂ D (𝑥 ∈ (1(ball‘(abs ∘ − ))1) ↦ (log‘𝑥))) = (𝑥 ∈ (1(ball‘(abs ∘ − ))1) ↦ (1 / 𝑥)))
254 fveq2 6768 . . . . . . . . . . . . 13 (𝑥 = (1 − 𝑦) → (log‘𝑥) = (log‘(1 − 𝑦)))
255 oveq2 7276 . . . . . . . . . . . . 13 (𝑥 = (1 − 𝑦) → (1 / 𝑥) = (1 / (1 − 𝑦)))
256192, 192, 205, 207, 216, 217, 238, 253, 254, 255dvmptco 25117 . . . . . . . . . . . 12 (⊤ → (ℂ D (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ (log‘(1 − 𝑦)))) = (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ ((1 / (1 − 𝑦)) · -1)))
257192, 193, 194, 256dvmptneg 25111 . . . . . . . . . . 11 (⊤ → (ℂ D (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))) = (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -((1 / (1 − 𝑦)) · -1)))
25853, 74reccld 11727 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (1 / (1 − 𝑦)) ∈ ℂ)
259 mulcom 10941 . . . . . . . . . . . . . . . 16 (((1 / (1 − 𝑦)) ∈ ℂ ∧ -1 ∈ ℂ) → ((1 / (1 − 𝑦)) · -1) = (-1 · (1 / (1 − 𝑦))))
260258, 206, 259sylancl 585 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → ((1 / (1 − 𝑦)) · -1) = (-1 · (1 / (1 − 𝑦))))
261258mulm1d 11410 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (-1 · (1 / (1 − 𝑦))) = -(1 / (1 − 𝑦)))
262260, 261eqtrd 2779 . . . . . . . . . . . . . 14 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → ((1 / (1 − 𝑦)) · -1) = -(1 / (1 − 𝑦)))
263262negeqd 11198 . . . . . . . . . . . . 13 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → -((1 / (1 − 𝑦)) · -1) = --(1 / (1 − 𝑦)))
264258negnegd 11306 . . . . . . . . . . . . 13 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → --(1 / (1 − 𝑦)) = (1 / (1 − 𝑦)))
265263, 264eqtrd 2779 . . . . . . . . . . . 12 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → -((1 / (1 − 𝑦)) · -1) = (1 / (1 − 𝑦)))
266265mpteq2ia 5181 . . . . . . . . . . 11 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -((1 / (1 − 𝑦)) · -1)) = (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ (1 / (1 − 𝑦)))
267257, 266eqtrdi 2795 . . . . . . . . . 10 (⊤ → (ℂ D (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))) = (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ (1 / (1 − 𝑦))))
268267dmeqd 5811 . . . . . . . . 9 (⊤ → dom (ℂ D (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))) = dom (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ (1 / (1 − 𝑦))))
269 dmmptg 6142 . . . . . . . . . 10 (∀𝑦 ∈ (0(ball‘(abs ∘ − ))1)(1 / (1 − 𝑦)) ∈ V → dom (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ (1 / (1 − 𝑦))) = (0(ball‘(abs ∘ − ))1))
270 ovexd 7303 . . . . . . . . . 10 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (1 / (1 − 𝑦)) ∈ V)
271269, 270mprg 3079 . . . . . . . . 9 dom (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ (1 / (1 − 𝑦))) = (0(ball‘(abs ∘ − ))1)
272268, 271eqtrdi 2795 . . . . . . . 8 (⊤ → dom (ℂ D (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))) = (0(ball‘(abs ∘ − ))1))
273 sumex 15380 . . . . . . . . . . . 12 Σ𝑛 ∈ ℕ ((𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1))) ∈ V
274273a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < )))) → Σ𝑛 ∈ ℕ ((𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1))) ∈ V)
275 fveq2 6768 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑦)‘𝑛) = (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑦)‘𝑘))
276275cbvsumv 15389 . . . . . . . . . . . . . 14 Σ𝑛 ∈ ℕ0 (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑦)‘𝑛) = Σ𝑘 ∈ ℕ0 (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑦)‘𝑘)
277181, 276eqtrdi 2795 . . . . . . . . . . . . 13 (𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) → Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)) = Σ𝑘 ∈ ℕ0 (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑦)‘𝑘))
278277mpteq2ia 5181 . . . . . . . . . . . 12 (𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛))) = (𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑘 ∈ ℕ0 (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑦)‘𝑘))
279 eqid 2739 . . . . . . . . . . . 12 (0(ball‘(abs ∘ − ))(((abs‘𝑧) + if(sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑧) + sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑧) + 1))) / 2)) = (0(ball‘(abs ∘ − ))(((abs‘𝑧) + if(sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑧) + sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑧) + 1))) / 2))
28097, 278, 105, 119, 183, 184, 279pserdv2 25570 . . . . . . . . . . 11 (⊤ → (ℂ D (𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)))) = (𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ ((𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1)))))
281158ssriv 3929 . . . . . . . . . . . 12 (0(ball‘(abs ∘ − ))1) ⊆ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < )))
282281a1i 11 . . . . . . . . . . 11 (⊤ → (0(ball‘(abs ∘ − ))1) ⊆ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))))
283192, 188, 274, 280, 282, 233, 231, 237dvmptres 25108 . . . . . . . . . 10 (⊤ → (ℂ D (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)))) = (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ ((𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1)))))
284 nnnn0 12223 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
285284adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
286 eqeq1 2743 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 → (𝑚 = 0 ↔ 𝑛 = 0))
287 oveq2 7276 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 → (1 / 𝑚) = (1 / 𝑛))
288286, 287ifbieq2d 4490 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑛 → if(𝑚 = 0, 0, (1 / 𝑚)) = if(𝑛 = 0, 0, (1 / 𝑛)))
289 ovex 7301 . . . . . . . . . . . . . . . . . . . . 21 (1 / 𝑛) ∈ V
29090, 289ifex 4514 . . . . . . . . . . . . . . . . . . . 20 if(𝑛 = 0, 0, (1 / 𝑛)) ∈ V
291288, 89, 290fvmpt 6869 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛) = if(𝑛 = 0, 0, (1 / 𝑛)))
292285, 291syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛) = if(𝑛 = 0, 0, (1 / 𝑛)))
293 nnne0 11990 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
294293adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ∧ 𝑛 ∈ ℕ) → 𝑛 ≠ 0)
295294neneqd 2949 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ∧ 𝑛 ∈ ℕ) → ¬ 𝑛 = 0)
296295iffalsed 4475 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ∧ 𝑛 ∈ ℕ) → if(𝑛 = 0, 0, (1 / 𝑛)) = (1 / 𝑛))
297292, 296eqtrd 2779 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛) = (1 / 𝑛))
298297oveq2d 7284 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ∧ 𝑛 ∈ ℕ) → (𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) = (𝑛 · (1 / 𝑛)))
299 nncn 11964 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
300299adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
301300, 294recidd 11729 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ∧ 𝑛 ∈ ℕ) → (𝑛 · (1 / 𝑛)) = 1)
302298, 301eqtrd 2779 . . . . . . . . . . . . . . 15 ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ∧ 𝑛 ∈ ℕ) → (𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) = 1)
303302oveq1d 7283 . . . . . . . . . . . . . 14 ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ∧ 𝑛 ∈ ℕ) → ((𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1))) = (1 · (𝑦↑(𝑛 − 1))))
304 nnm1nn0 12257 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
305 expcl 13781 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℂ ∧ (𝑛 − 1) ∈ ℕ0) → (𝑦↑(𝑛 − 1)) ∈ ℂ)
30651, 304, 305syl2an 595 . . . . . . . . . . . . . . 15 ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ∧ 𝑛 ∈ ℕ) → (𝑦↑(𝑛 − 1)) ∈ ℂ)
307306mulid2d 10977 . . . . . . . . . . . . . 14 ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ∧ 𝑛 ∈ ℕ) → (1 · (𝑦↑(𝑛 − 1))) = (𝑦↑(𝑛 − 1)))
308303, 307eqtrd 2779 . . . . . . . . . . . . 13 ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ∧ 𝑛 ∈ ℕ) → ((𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1))) = (𝑦↑(𝑛 − 1)))
309308sumeq2dv 15396 . . . . . . . . . . . 12 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → Σ𝑛 ∈ ℕ ((𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1))) = Σ𝑛 ∈ ℕ (𝑦↑(𝑛 − 1)))
310 nnuz 12603 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘1)
311 1e0p1 12461 . . . . . . . . . . . . . . . 16 1 = (0 + 1)
312311fveq2i 6771 . . . . . . . . . . . . . . 15 (ℤ‘1) = (ℤ‘(0 + 1))
313310, 312eqtri 2767 . . . . . . . . . . . . . 14 ℕ = (ℤ‘(0 + 1))
314 oveq1 7275 . . . . . . . . . . . . . . 15 (𝑛 = (1 + 𝑚) → (𝑛 − 1) = ((1 + 𝑚) − 1))
315314oveq2d 7284 . . . . . . . . . . . . . 14 (𝑛 = (1 + 𝑚) → (𝑦↑(𝑛 − 1)) = (𝑦↑((1 + 𝑚) − 1)))
316 1zzd 12334 . . . . . . . . . . . . . 14 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → 1 ∈ ℤ)
317 0zd 12314 . . . . . . . . . . . . . 14 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → 0 ∈ ℤ)
3181, 313, 315, 316, 317, 306isumshft 15532 . . . . . . . . . . . . 13 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → Σ𝑛 ∈ ℕ (𝑦↑(𝑛 − 1)) = Σ𝑚 ∈ ℕ0 (𝑦↑((1 + 𝑚) − 1)))
319 pncan2 11211 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((1 + 𝑚) − 1) = 𝑚)
32048, 99, 319sylancr 586 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ0 → ((1 + 𝑚) − 1) = 𝑚)
321320oveq2d 7284 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 → (𝑦↑((1 + 𝑚) − 1)) = (𝑦𝑚))
322321sumeq2i 15392 . . . . . . . . . . . . 13 Σ𝑚 ∈ ℕ0 (𝑦↑((1 + 𝑚) − 1)) = Σ𝑚 ∈ ℕ0 (𝑦𝑚)
323318, 322eqtrdi 2795 . . . . . . . . . . . 12 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → Σ𝑛 ∈ ℕ (𝑦↑(𝑛 − 1)) = Σ𝑚 ∈ ℕ0 (𝑦𝑚))
324 geoisum 15570 . . . . . . . . . . . . 13 ((𝑦 ∈ ℂ ∧ (abs‘𝑦) < 1) → Σ𝑚 ∈ ℕ0 (𝑦𝑚) = (1 / (1 − 𝑦)))
32551, 64, 324syl2anc 583 . . . . . . . . . . . 12 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → Σ𝑚 ∈ ℕ0 (𝑦𝑚) = (1 / (1 − 𝑦)))
326309, 323, 3253eqtrd 2783 . . . . . . . . . . 11 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → Σ𝑛 ∈ ℕ ((𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1))) = (1 / (1 − 𝑦)))
327326mpteq2ia 5181 . . . . . . . . . 10 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ ((𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1)))) = (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ (1 / (1 − 𝑦)))
328283, 327eqtrdi 2795 . . . . . . . . 9 (⊤ → (ℂ D (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)))) = (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ (1 / (1 − 𝑦))))
329267, 328eqtr4d 2782 . . . . . . . 8 (⊤ → (ℂ D (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))) = (ℂ D (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)))))
330 1rp 12716 . . . . . . . . . 10 1 ∈ ℝ+
331 blcntr 23547 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℝ+) → 0 ∈ (0(ball‘(abs ∘ − ))1))
33238, 28, 330, 331mp3an 1459 . . . . . . . . 9 0 ∈ (0(ball‘(abs ∘ − ))1)
333332a1i 11 . . . . . . . 8 (⊤ → 0 ∈ (0(ball‘(abs ∘ − ))1))
334 oveq2 7276 . . . . . . . . . . . . . . . 16 (𝑦 = 0 → (1 − 𝑦) = (1 − 0))
335 1m0e1 12077 . . . . . . . . . . . . . . . 16 (1 − 0) = 1
336334, 335eqtrdi 2795 . . . . . . . . . . . . . . 15 (𝑦 = 0 → (1 − 𝑦) = 1)
337336fveq2d 6772 . . . . . . . . . . . . . 14 (𝑦 = 0 → (log‘(1 − 𝑦)) = (log‘1))
338 log1 25722 . . . . . . . . . . . . . 14 (log‘1) = 0
339337, 338eqtrdi 2795 . . . . . . . . . . . . 13 (𝑦 = 0 → (log‘(1 − 𝑦)) = 0)
340339negeqd 11198 . . . . . . . . . . . 12 (𝑦 = 0 → -(log‘(1 − 𝑦)) = -0)
341 neg0 11250 . . . . . . . . . . . 12 -0 = 0
342340, 341eqtrdi 2795 . . . . . . . . . . 11 (𝑦 = 0 → -(log‘(1 − 𝑦)) = 0)
343 eqid 2739 . . . . . . . . . . 11 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦))) = (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))
344342, 343, 90fvmpt 6869 . . . . . . . . . 10 (0 ∈ (0(ball‘(abs ∘ − ))1) → ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))‘0) = 0)
345332, 344mp1i 13 . . . . . . . . 9 (⊤ → ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))‘0) = 0)
346 oveq1 7275 . . . . . . . . . . . . . . 15 (0 = if(𝑛 = 0, 0, (1 / 𝑛)) → (0 · (𝑦𝑛)) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)))
347346eqeq1d 2741 . . . . . . . . . . . . . 14 (0 = if(𝑛 = 0, 0, (1 / 𝑛)) → ((0 · (𝑦𝑛)) = 0 ↔ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)) = 0))
348 oveq1 7275 . . . . . . . . . . . . . . 15 ((1 / 𝑛) = if(𝑛 = 0, 0, (1 / 𝑛)) → ((1 / 𝑛) · (𝑦𝑛)) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)))
349348eqeq1d 2741 . . . . . . . . . . . . . 14 ((1 / 𝑛) = if(𝑛 = 0, 0, (1 / 𝑛)) → (((1 / 𝑛) · (𝑦𝑛)) = 0 ↔ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)) = 0))
350 simpll 763 . . . . . . . . . . . . . . . . 17 (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = 0) → 𝑦 = 0)
351350, 28eqeltrdi 2848 . . . . . . . . . . . . . . . 16 (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = 0) → 𝑦 ∈ ℂ)
352 simplr 765 . . . . . . . . . . . . . . . 16 (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = 0) → 𝑛 ∈ ℕ0)
353351, 352expcld 13845 . . . . . . . . . . . . . . 15 (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = 0) → (𝑦𝑛) ∈ ℂ)
354353mul02d 11156 . . . . . . . . . . . . . 14 (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = 0) → (0 · (𝑦𝑛)) = 0)
355 simpll 763 . . . . . . . . . . . . . . . . . 18 (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → 𝑦 = 0)
356355oveq1d 7283 . . . . . . . . . . . . . . . . 17 (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → (𝑦𝑛) = (0↑𝑛))
357 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
358357, 14sylib 217 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ ℕ ∨ 𝑛 = 0))
359358ord 860 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) → (¬ 𝑛 ∈ ℕ → 𝑛 = 0))
360359con1d 145 . . . . . . . . . . . . . . . . . . 19 ((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) → (¬ 𝑛 = 0 → 𝑛 ∈ ℕ))
361360imp 406 . . . . . . . . . . . . . . . . . 18 (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → 𝑛 ∈ ℕ)
3623610expd 13838 . . . . . . . . . . . . . . . . 17 (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → (0↑𝑛) = 0)
363356, 362eqtrd 2779 . . . . . . . . . . . . . . . 16 (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → (𝑦𝑛) = 0)
364363oveq2d 7284 . . . . . . . . . . . . . . 15 (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → ((1 / 𝑛) · (𝑦𝑛)) = ((1 / 𝑛) · 0))
365361nnrecred 12007 . . . . . . . . . . . . . . . . 17 (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → (1 / 𝑛) ∈ ℝ)
366365recnd 10987 . . . . . . . . . . . . . . . 16 (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → (1 / 𝑛) ∈ ℂ)
367366mul01d 11157 . . . . . . . . . . . . . . 15 (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → ((1 / 𝑛) · 0) = 0)
368364, 367eqtrd 2779 . . . . . . . . . . . . . 14 (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → ((1 / 𝑛) · (𝑦𝑛)) = 0)
369347, 349, 354, 368ifbothda 4502 . . . . . . . . . . . . 13 ((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) → (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)) = 0)
370369sumeq2dv 15396 . . . . . . . . . . . 12 (𝑦 = 0 → Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)) = Σ𝑛 ∈ ℕ0 0)
3711eqimssi 3983 . . . . . . . . . . . . . 14 0 ⊆ (ℤ‘0)
372371orci 861 . . . . . . . . . . . . 13 (ℕ0 ⊆ (ℤ‘0) ∨ ℕ0 ∈ Fin)
373 sumz 15415 . . . . . . . . . . . . 13 ((ℕ0 ⊆ (ℤ‘0) ∨ ℕ0 ∈ Fin) → Σ𝑛 ∈ ℕ0 0 = 0)
374372, 373ax-mp 5 . . . . . . . . . . . 12 Σ𝑛 ∈ ℕ0 0 = 0
375370, 374eqtrdi 2795 . . . . . . . . . . 11 (𝑦 = 0 → Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)) = 0)
376 eqid 2739 . . . . . . . . . . 11 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛))) = (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)))
377375, 376, 90fvmpt 6869 . . . . . . . . . 10 (0 ∈ (0(ball‘(abs ∘ − ))1) → ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)))‘0) = 0)
378332, 377mp1i 13 . . . . . . . . 9 (⊤ → ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)))‘0) = 0)
379345, 378eqtr4d 2782 . . . . . . . 8 (⊤ → ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))‘0) = ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)))‘0))
38045, 46, 47, 78, 190, 272, 329, 333, 379dv11cn 25146 . . . . . . 7 (⊤ → (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦))) = (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛))))
381380fveq1d 6770 . . . . . 6 (⊤ → ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))‘𝐴) = ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)))‘𝐴))
38244, 381mp1i 13 . . . . 5 (𝐴 ∈ (0(ball‘(abs ∘ − ))1) → ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))‘𝐴) = ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)))‘𝐴))
383 oveq2 7276 . . . . . . . 8 (𝑦 = 𝐴 → (1 − 𝑦) = (1 − 𝐴))
384383fveq2d 6772 . . . . . . 7 (𝑦 = 𝐴 → (log‘(1 − 𝑦)) = (log‘(1 − 𝐴)))
385384negeqd 11198 . . . . . 6 (𝑦 = 𝐴 → -(log‘(1 − 𝑦)) = -(log‘(1 − 𝐴)))
386 negex 11202 . . . . . 6 -(log‘(1 − 𝐴)) ∈ V
387385, 343, 386fvmpt 6869 . . . . 5 (𝐴 ∈ (0(ball‘(abs ∘ − ))1) → ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))‘𝐴) = -(log‘(1 − 𝐴)))
388 oveq1 7275 . . . . . . . 8 (𝑦 = 𝐴 → (𝑦𝑛) = (𝐴𝑛))
389388oveq2d 7284 . . . . . . 7 (𝑦 = 𝐴 → (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))
390389sumeq2sdv 15397 . . . . . 6 (𝑦 = 𝐴 → Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)) = Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))
391 sumex 15380 . . . . . 6 Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)) ∈ V
392390, 376, 391fvmpt 6869 . . . . 5 (𝐴 ∈ (0(ball‘(abs ∘ − ))1) → ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)))‘𝐴) = Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))
393382, 387, 3923eqtr3d 2787 . . . 4 (𝐴 ∈ (0(ball‘(abs ∘ − ))1) → -(log‘(1 − 𝐴)) = Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))
39443, 393syl 17 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → -(log‘(1 − 𝐴)) = Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))
39526, 394breqtrrd 5106 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))) ⇝ -(log‘(1 − 𝐴)))
396 seqex 13704 . . . 4 seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))) ∈ V
397396a1i 11 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))) ∈ V)
398 seqex 13704 . . . 4 seq1( + , (𝑘 ∈ ℕ ↦ ((𝐴𝑘) / 𝑘))) ∈ V
399398a1i 11 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑘 ∈ ℕ ↦ ((𝐴𝑘) / 𝑘))) ∈ V)
400 1zzd 12334 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 1 ∈ ℤ)
401 elnnuz 12604 . . . . . 6 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
402 fvres 6787 . . . . . 6 (𝑛 ∈ (ℤ‘1) → ((seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))) ↾ (ℤ‘1))‘𝑛) = (seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘))))‘𝑛))
403401, 402sylbi 216 . . . . 5 (𝑛 ∈ ℕ → ((seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))) ↾ (ℤ‘1))‘𝑛) = (seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘))))‘𝑛))
404403eqcomd 2745 . . . 4 (𝑛 ∈ ℕ → (seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘))))‘𝑛) = ((seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))) ↾ (ℤ‘1))‘𝑛))
405 addid2 11141 . . . . . . . 8 (𝑛 ∈ ℂ → (0 + 𝑛) = 𝑛)
406405adantl 481 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℂ) → (0 + 𝑛) = 𝑛)
407 0cnd 10952 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 0 ∈ ℂ)
408 1eluzge0 12614 . . . . . . . 8 1 ∈ (ℤ‘0)
409408a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 1 ∈ (ℤ‘0))
410 0cnd 10952 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 = 0) → 0 ∈ ℂ)
411 nn0cn 12226 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
412411adantl 481 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
413 neqne 2952 . . . . . . . . . . . 12 𝑘 = 0 → 𝑘 ≠ 0)
414 reccl 11623 . . . . . . . . . . . 12 ((𝑘 ∈ ℂ ∧ 𝑘 ≠ 0) → (1 / 𝑘) ∈ ℂ)
415412, 413, 414syl2an 595 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 = 0) → (1 / 𝑘) ∈ ℂ)
416410, 415ifclda 4499 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → if(𝑘 = 0, 0, (1 / 𝑘)) ∈ ℂ)
417 expcl 13781 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
418417adantlr 711 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
419416, 418mulcld 10979 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)) ∈ ℂ)
420419fmpttd 6983 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘))):ℕ0⟶ℂ)
421 1nn0 12232 . . . . . . . 8 1 ∈ ℕ0
422 ffvelrn 6953 . . . . . . . 8 (((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘))):ℕ0⟶ℂ ∧ 1 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))‘1) ∈ ℂ)
423420, 421, 422sylancl 585 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))‘1) ∈ ℂ)
424 elfz1eq 13249 . . . . . . . . . 10 (𝑛 ∈ (0...0) → 𝑛 = 0)
425 1m1e0 12028 . . . . . . . . . . 11 (1 − 1) = 0
426425oveq2i 7279 . . . . . . . . . 10 (0...(1 − 1)) = (0...0)
427424, 426eleq2s 2858 . . . . . . . . 9 (𝑛 ∈ (0...(1 − 1)) → 𝑛 = 0)
428427fveq2d 6772 . . . . . . . 8 (𝑛 ∈ (0...(1 − 1)) → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))‘𝑛) = ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))‘0))
429 0nn0 12231 . . . . . . . . . 10 0 ∈ ℕ0
430 iftrue 4470 . . . . . . . . . . . 12 (𝑘 = 0 → if(𝑘 = 0, 0, (1 / 𝑘)) = 0)
431 oveq2 7276 . . . . . . . . . . . 12 (𝑘 = 0 → (𝐴𝑘) = (𝐴↑0))
432430, 431oveq12d 7286 . . . . . . . . . . 11 (𝑘 = 0 → (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)) = (0 · (𝐴↑0)))
433 ovex 7301 . . . . . . . . . . 11 (0 · (𝐴↑0)) ∈ V
434432, 8, 433fvmpt 6869 . . . . . . . . . 10 (0 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))‘0) = (0 · (𝐴↑0)))
435429, 434ax-mp 5 . . . . . . . . 9 ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))‘0) = (0 · (𝐴↑0))
436 expcl 13781 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 ∈ ℕ0) → (𝐴↑0) ∈ ℂ)
43727, 429, 436sylancl 585 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝐴↑0) ∈ ℂ)
438437mul02d 11156 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (0 · (𝐴↑0)) = 0)
439435, 438eqtrid 2791 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))‘0) = 0)
440428, 439sylan9eqr 2801 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ (0...(1 − 1))) → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))‘𝑛) = 0)
441406, 407, 409, 423, 440seqid 13749 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))) ↾ (ℤ‘1)) = seq1( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))))
442293adantl 481 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → 𝑛 ≠ 0)
443442neneqd 2949 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → ¬ 𝑛 = 0)
444443iffalsed 4475 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → if(𝑛 = 0, 0, (1 / 𝑛)) = (1 / 𝑛))
445444oveq1d 7283 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)) = ((1 / 𝑛) · (𝐴𝑛)))
446284, 23sylan2 592 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → (𝐴𝑛) ∈ ℂ)
447299adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
448446, 447, 442divrec2d 11738 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → ((𝐴𝑛) / 𝑛) = ((1 / 𝑛) · (𝐴𝑛)))
449445, 448eqtr4d 2782 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)) = ((𝐴𝑛) / 𝑛))
450284, 11sylan2 592 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))‘𝑛) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))
451 id 22 . . . . . . . . . . . 12 (𝑘 = 𝑛𝑘 = 𝑛)
4526, 451oveq12d 7286 . . . . . . . . . . 11 (𝑘 = 𝑛 → ((𝐴𝑘) / 𝑘) = ((𝐴𝑛) / 𝑛))
453 eqid 2739 . . . . . . . . . . 11 (𝑘 ∈ ℕ ↦ ((𝐴𝑘) / 𝑘)) = (𝑘 ∈ ℕ ↦ ((𝐴𝑘) / 𝑘))
454 ovex 7301 . . . . . . . . . . 11 ((𝐴𝑛) / 𝑛) ∈ V
455452, 453, 454fvmpt 6869 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ↦ ((𝐴𝑘) / 𝑘))‘𝑛) = ((𝐴𝑛) / 𝑛))
456455adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((𝐴𝑘) / 𝑘))‘𝑛) = ((𝐴𝑛) / 𝑛))
457449, 450, 4563eqtr4d 2789 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))‘𝑛) = ((𝑘 ∈ ℕ ↦ ((𝐴𝑘) / 𝑘))‘𝑛))
458401, 457sylan2br 594 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ (ℤ‘1)) → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))‘𝑛) = ((𝑘 ∈ ℕ ↦ ((𝐴𝑘) / 𝑘))‘𝑛))
459400, 458seqfeq 13729 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))) = seq1( + , (𝑘 ∈ ℕ ↦ ((𝐴𝑘) / 𝑘))))
460441, 459eqtrd 2779 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))) ↾ (ℤ‘1)) = seq1( + , (𝑘 ∈ ℕ ↦ ((𝐴𝑘) / 𝑘))))
461460fveq1d 6770 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))) ↾ (ℤ‘1))‘𝑛) = (seq1( + , (𝑘 ∈ ℕ ↦ ((𝐴𝑘) / 𝑘)))‘𝑛))
462404, 461sylan9eqr 2801 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → (seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘))))‘𝑛) = (seq1( + , (𝑘 ∈ ℕ ↦ ((𝐴𝑘) / 𝑘)))‘𝑛))
463310, 397, 399, 400, 462climeq 15257 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))) ⇝ -(log‘(1 − 𝐴)) ↔ seq1( + , (𝑘 ∈ ℕ ↦ ((𝐴𝑘) / 𝑘))) ⇝ -(log‘(1 − 𝐴))))
464395, 463mpbid 231 1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑘 ∈ ℕ ↦ ((𝐴𝑘) / 𝑘))) ⇝ -(log‘(1 − 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1541  wtru 1542  wcel 2109  wne 2944  {crab 3069  Vcvv 3430  cdif 3888  wss 3891  ifcif 4464  {csn 4566  {cpr 4568   class class class wbr 5078  cmpt 5161  ccnv 5587  dom cdm 5588  ran crn 5589  cres 5590  cima 5591  ccom 5592   Fn wfn 6425  wf 6426  1-1-ontowf1o 6429  cfv 6430  (class class class)co 7268  Fincfn 8707  supcsup 9160  cc 10853  cr 10854  0cc0 10855  1c1 10856   + caddc 10858   · cmul 10860  +∞cpnf 10990  -∞cmnf 10991  *cxr 10992   < clt 10993  cle 10994  cmin 11188  -cneg 11189   / cdiv 11615  cn 11956  2c2 12011  0cn0 12216  cuz 12564  +crp 12712  (,]cioc 13062  [,)cico 13063  [,]cicc 13064  ...cfz 13221  seqcseq 13702  cexp 13763  abscabs 14926  cli 15174  Σcsu 15378  TopOpenctopn 17113  ∞Metcxmet 20563  ballcbl 20565  fldccnfld 20578  cnccncf 24020   D cdv 25008  logclog 25691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-inf2 9360  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933  ax-addf 10934  ax-mulf 10935
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-iin 4932  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-om 7701  df-1st 7817  df-2nd 7818  df-supp 7962  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-2o 8282  df-er 8472  df-map 8591  df-pm 8592  df-ixp 8660  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-fsupp 9090  df-fi 9131  df-sup 9162  df-inf 9163  df-oi 9230  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-z 12303  df-dec 12420  df-uz 12565  df-q 12671  df-rp 12713  df-xneg 12830  df-xadd 12831  df-xmul 12832  df-ioo 13065  df-ioc 13066  df-ico 13067  df-icc 13068  df-fz 13222  df-fzo 13365  df-fl 13493  df-mod 13571  df-seq 13703  df-exp 13764  df-fac 13969  df-bc 13998  df-hash 14026  df-shft 14759  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-limsup 15161  df-clim 15178  df-rlim 15179  df-sum 15379  df-ef 15758  df-sin 15760  df-cos 15761  df-tan 15762  df-pi 15763  df-struct 16829  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-plusg 16956  df-mulr 16957  df-starv 16958  df-sca 16959  df-vsca 16960  df-ip 16961  df-tset 16962  df-ple 16963  df-ds 16965  df-unif 16966  df-hom 16967  df-cco 16968  df-rest 17114  df-topn 17115  df-0g 17133  df-gsum 17134  df-topgen 17135  df-pt 17136  df-prds 17139  df-xrs 17194  df-qtop 17199  df-imas 17200  df-xps 17202  df-mre 17276  df-mrc 17277  df-acs 17279  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-submnd 18412  df-mulg 18682  df-cntz 18904  df-cmn 19369  df-psmet 20570  df-xmet 20571  df-met 20572  df-bl 20573  df-mopn 20574  df-fbas 20575  df-fg 20576  df-cnfld 20579  df-top 22024  df-topon 22041  df-topsp 22063  df-bases 22077  df-cld 22151  df-ntr 22152  df-cls 22153  df-nei 22230  df-lp 22268  df-perf 22269  df-cn 22359  df-cnp 22360  df-haus 22447  df-cmp 22519  df-tx 22694  df-hmeo 22887  df-fil 22978  df-fm 23070  df-flim 23071  df-flf 23072  df-xms 23454  df-ms 23455  df-tms 23456  df-cncf 24022  df-limc 25011  df-dv 25012  df-ulm 25517  df-log 25693
This theorem is referenced by:  logtaylsum  25797  logtayl2  25798  atantayl  26068  stirlinglem5  43573
  Copyright terms: Public domain W3C validator