MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logtayl Structured version   Visualization version   GIF version

Theorem logtayl 25720
Description: The Taylor series for -log(1 − 𝐴). (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
logtayl ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑘 ∈ ℕ ↦ ((𝐴𝑘) / 𝑘))) ⇝ -(log‘(1 − 𝐴)))
Distinct variable group:   𝐴,𝑘

Proof of Theorem logtayl
Dummy variables 𝑗 𝑚 𝑛 𝑟 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12549 . . . 4 0 = (ℤ‘0)
2 0zd 12261 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 0 ∈ ℤ)
3 eqeq1 2742 . . . . . . . 8 (𝑘 = 𝑛 → (𝑘 = 0 ↔ 𝑛 = 0))
4 oveq2 7263 . . . . . . . 8 (𝑘 = 𝑛 → (1 / 𝑘) = (1 / 𝑛))
53, 4ifbieq2d 4482 . . . . . . 7 (𝑘 = 𝑛 → if(𝑘 = 0, 0, (1 / 𝑘)) = if(𝑛 = 0, 0, (1 / 𝑛)))
6 oveq2 7263 . . . . . . 7 (𝑘 = 𝑛 → (𝐴𝑘) = (𝐴𝑛))
75, 6oveq12d 7273 . . . . . 6 (𝑘 = 𝑛 → (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))
8 eqid 2738 . . . . . 6 (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘))) = (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))
9 ovex 7288 . . . . . 6 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)) ∈ V
107, 8, 9fvmpt 6857 . . . . 5 (𝑛 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))‘𝑛) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))
1110adantl 481 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))‘𝑛) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))
12 0cnd 10899 . . . . . 6 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = 0) → 0 ∈ ℂ)
13 simpr 484 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
14 elnn0 12165 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 ↔ (𝑛 ∈ ℕ ∨ 𝑛 = 0))
1513, 14sylib 217 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ ℕ ∨ 𝑛 = 0))
1615ord 860 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → (¬ 𝑛 ∈ ℕ → 𝑛 = 0))
1716con1d 145 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → (¬ 𝑛 = 0 → 𝑛 ∈ ℕ))
1817imp 406 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → 𝑛 ∈ ℕ)
1918nnrecred 11954 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → (1 / 𝑛) ∈ ℝ)
2019recnd 10934 . . . . . 6 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → (1 / 𝑛) ∈ ℂ)
2112, 20ifclda 4491 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → if(𝑛 = 0, 0, (1 / 𝑛)) ∈ ℂ)
22 expcl 13728 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℂ)
2322adantlr 711 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℂ)
2421, 23mulcld 10926 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)) ∈ ℂ)
25 logtayllem 25719 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))) ∈ dom ⇝ )
261, 2, 11, 24, 25isumclim2 15398 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))) ⇝ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))
27 simpl 482 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ ℂ)
28 0cn 10898 . . . . . . . 8 0 ∈ ℂ
29 eqid 2738 . . . . . . . . 9 (abs ∘ − ) = (abs ∘ − )
3029cnmetdval 23840 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐴(abs ∘ − )0) = (abs‘(𝐴 − 0)))
3127, 28, 30sylancl 585 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝐴(abs ∘ − )0) = (abs‘(𝐴 − 0)))
32 subid1 11171 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴)
3332adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝐴 − 0) = 𝐴)
3433fveq2d 6760 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(𝐴 − 0)) = (abs‘𝐴))
3531, 34eqtrd 2778 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝐴(abs ∘ − )0) = (abs‘𝐴))
36 simpr 484 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) < 1)
3735, 36eqbrtrd 5092 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝐴(abs ∘ − )0) < 1)
38 cnxmet 23842 . . . . . . 7 (abs ∘ − ) ∈ (∞Met‘ℂ)
39 1xr 10965 . . . . . . 7 1 ∈ ℝ*
40 elbl3 23453 . . . . . . 7 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (0 ∈ ℂ ∧ 𝐴 ∈ ℂ)) → (𝐴 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝐴(abs ∘ − )0) < 1))
4138, 39, 40mpanl12 698 . . . . . 6 ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝐴(abs ∘ − )0) < 1))
4228, 27, 41sylancr 586 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝐴 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝐴(abs ∘ − )0) < 1))
4337, 42mpbird 256 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ (0(ball‘(abs ∘ − ))1))
44 tru 1543 . . . . . 6
45 eqid 2738 . . . . . . . 8 (0(ball‘(abs ∘ − ))1) = (0(ball‘(abs ∘ − ))1)
46 0cnd 10899 . . . . . . . 8 (⊤ → 0 ∈ ℂ)
4739a1i 11 . . . . . . . 8 (⊤ → 1 ∈ ℝ*)
48 ax-1cn 10860 . . . . . . . . . . . . 13 1 ∈ ℂ
49 blssm 23479 . . . . . . . . . . . . . . 15 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℝ*) → (0(ball‘(abs ∘ − ))1) ⊆ ℂ)
5038, 28, 39, 49mp3an 1459 . . . . . . . . . . . . . 14 (0(ball‘(abs ∘ − ))1) ⊆ ℂ
5150sseli 3913 . . . . . . . . . . . . 13 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → 𝑦 ∈ ℂ)
52 subcl 11150 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (1 − 𝑦) ∈ ℂ)
5348, 51, 52sylancr 586 . . . . . . . . . . . 12 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (1 − 𝑦) ∈ ℂ)
5451abscld 15076 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (abs‘𝑦) ∈ ℝ)
5529cnmetdval 23840 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑦(abs ∘ − )0) = (abs‘(𝑦 − 0)))
5651, 28, 55sylancl 585 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (𝑦(abs ∘ − )0) = (abs‘(𝑦 − 0)))
5751subid1d 11251 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (𝑦 − 0) = 𝑦)
5857fveq2d 6760 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (abs‘(𝑦 − 0)) = (abs‘𝑦))
5956, 58eqtrd 2778 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (𝑦(abs ∘ − )0) = (abs‘𝑦))
60 elbl3 23453 . . . . . . . . . . . . . . . . . . 19 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (0 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑦(abs ∘ − )0) < 1))
6138, 39, 60mpanl12 698 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑦(abs ∘ − )0) < 1))
6228, 51, 61sylancr 586 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑦(abs ∘ − )0) < 1))
6362ibi 266 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (𝑦(abs ∘ − )0) < 1)
6459, 63eqbrtrrd 5094 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (abs‘𝑦) < 1)
6554, 64gtned 11040 . . . . . . . . . . . . . 14 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → 1 ≠ (abs‘𝑦))
66 abs1 14937 . . . . . . . . . . . . . . . 16 (abs‘1) = 1
67 fveq2 6756 . . . . . . . . . . . . . . . 16 (1 = 𝑦 → (abs‘1) = (abs‘𝑦))
6866, 67eqtr3id 2793 . . . . . . . . . . . . . . 15 (1 = 𝑦 → 1 = (abs‘𝑦))
6968necon3i 2975 . . . . . . . . . . . . . 14 (1 ≠ (abs‘𝑦) → 1 ≠ 𝑦)
7065, 69syl 17 . . . . . . . . . . . . 13 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → 1 ≠ 𝑦)
71 subeq0 11177 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((1 − 𝑦) = 0 ↔ 1 = 𝑦))
7271necon3bid 2987 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((1 − 𝑦) ≠ 0 ↔ 1 ≠ 𝑦))
7348, 51, 72sylancr 586 . . . . . . . . . . . . 13 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → ((1 − 𝑦) ≠ 0 ↔ 1 ≠ 𝑦))
7470, 73mpbird 256 . . . . . . . . . . . 12 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (1 − 𝑦) ≠ 0)
7553, 74logcld 25631 . . . . . . . . . . 11 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (log‘(1 − 𝑦)) ∈ ℂ)
7675negcld 11249 . . . . . . . . . 10 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → -(log‘(1 − 𝑦)) ∈ ℂ)
7776adantl 481 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ (0(ball‘(abs ∘ − ))1)) → -(log‘(1 − 𝑦)) ∈ ℂ)
7877fmpttd 6971 . . . . . . . 8 (⊤ → (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦))):(0(ball‘(abs ∘ − ))1)⟶ℂ)
7951absge0d 15084 . . . . . . . . . . . 12 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → 0 ≤ (abs‘𝑦))
8054rexrd 10956 . . . . . . . . . . . . 13 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (abs‘𝑦) ∈ ℝ*)
81 peano2re 11078 . . . . . . . . . . . . . . . 16 ((abs‘𝑦) ∈ ℝ → ((abs‘𝑦) + 1) ∈ ℝ)
8254, 81syl 17 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → ((abs‘𝑦) + 1) ∈ ℝ)
8382rehalfcld 12150 . . . . . . . . . . . . . 14 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (((abs‘𝑦) + 1) / 2) ∈ ℝ)
8483rexrd 10956 . . . . . . . . . . . . 13 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (((abs‘𝑦) + 1) / 2) ∈ ℝ*)
85 iccssxr 13091 . . . . . . . . . . . . . . 15 (0[,]+∞) ⊆ ℝ*
86 eqeq1 2742 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑗 → (𝑚 = 0 ↔ 𝑗 = 0))
87 oveq2 7263 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑗 → (1 / 𝑚) = (1 / 𝑗))
8886, 87ifbieq2d 4482 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑗 → if(𝑚 = 0, 0, (1 / 𝑚)) = if(𝑗 = 0, 0, (1 / 𝑗)))
89 eqid 2738 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚))) = (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))
90 c0ex 10900 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ V
91 ovex 7288 . . . . . . . . . . . . . . . . . . . . . 22 (1 / 𝑗) ∈ V
9290, 91ifex 4506 . . . . . . . . . . . . . . . . . . . . 21 if(𝑗 = 0, 0, (1 / 𝑗)) ∈ V
9388, 89, 92fvmpt 6857 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑗) = if(𝑗 = 0, 0, (1 / 𝑗)))
9493eqcomd 2744 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ0 → if(𝑗 = 0, 0, (1 / 𝑗)) = ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑗))
9594oveq1d 7270 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ0 → (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗)) = (((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑗) · (𝑥𝑗)))
9695mpteq2ia 5173 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))) = (𝑗 ∈ ℕ0 ↦ (((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑗) · (𝑥𝑗)))
9796mpteq2i 5175 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗)))) = (𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑗) · (𝑥𝑗))))
98 0cnd 10899 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 = 0) → 0 ∈ ℂ)
99 nn0cn 12173 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
10099adantl 481 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℂ)
101 neqne 2950 . . . . . . . . . . . . . . . . . . 19 𝑚 = 0 → 𝑚 ≠ 0)
102 reccl 11570 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ ℂ ∧ 𝑚 ≠ 0) → (1 / 𝑚) ∈ ℂ)
103100, 101, 102syl2an 595 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑚 ∈ ℕ0) ∧ ¬ 𝑚 = 0) → (1 / 𝑚) ∈ ℂ)
10498, 103ifclda 4491 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑚 ∈ ℕ0) → if(𝑚 = 0, 0, (1 / 𝑚)) ∈ ℂ)
105104fmpttd 6971 . . . . . . . . . . . . . . . 16 (⊤ → (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚))):ℕ0⟶ℂ)
106 recn 10892 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 ∈ ℝ → 𝑟 ∈ ℂ)
107 oveq1 7262 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑟 → (𝑥𝑗) = (𝑟𝑗))
108107oveq2d 7271 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑟 → (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗)) = (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))
109108mpteq2dv 5172 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑟 → (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗))))
110 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗)))) = (𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))
111 nn0ex 12169 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ V
112111mptex 7081 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗))) ∈ V
113109, 110, 112fvmpt 6857 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 ∈ ℂ → ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑟) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗))))
114106, 113syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 ∈ ℝ → ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑟) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗))))
115114eqcomd 2744 . . . . . . . . . . . . . . . . . . . 20 (𝑟 ∈ ℝ → (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗))) = ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑟))
116115seqeq3d 13657 . . . . . . . . . . . . . . . . . . 19 (𝑟 ∈ ℝ → seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) = seq0( + , ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑟)))
117116eleq1d 2823 . . . . . . . . . . . . . . . . . 18 (𝑟 ∈ ℝ → (seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ ↔ seq0( + , ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑟)) ∈ dom ⇝ ))
118117rabbiia 3396 . . . . . . . . . . . . . . . . 17 {𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ } = {𝑟 ∈ ℝ ∣ seq0( + , ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑟)) ∈ dom ⇝ }
119118supeq1i 9136 . . . . . . . . . . . . . . . 16 sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )
12097, 105, 119radcnvcl 25481 . . . . . . . . . . . . . . 15 (⊤ → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ) ∈ (0[,]+∞))
12185, 120sselid 3915 . . . . . . . . . . . . . 14 (⊤ → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*)
12244, 121mp1i 13 . . . . . . . . . . . . 13 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*)
123 1re 10906 . . . . . . . . . . . . . . 15 1 ∈ ℝ
124 avglt1 12141 . . . . . . . . . . . . . . 15 (((abs‘𝑦) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝑦) < 1 ↔ (abs‘𝑦) < (((abs‘𝑦) + 1) / 2)))
12554, 123, 124sylancl 585 . . . . . . . . . . . . . 14 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → ((abs‘𝑦) < 1 ↔ (abs‘𝑦) < (((abs‘𝑦) + 1) / 2)))
12664, 125mpbid 231 . . . . . . . . . . . . 13 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (abs‘𝑦) < (((abs‘𝑦) + 1) / 2))
127 0red 10909 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → 0 ∈ ℝ)
128127, 54, 83, 79, 126lelttrd 11063 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → 0 < (((abs‘𝑦) + 1) / 2))
129127, 83, 128ltled 11053 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → 0 ≤ (((abs‘𝑦) + 1) / 2))
13083, 129absidd 15062 . . . . . . . . . . . . . 14 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (abs‘(((abs‘𝑦) + 1) / 2)) = (((abs‘𝑦) + 1) / 2))
13144, 105mp1i 13 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚))):ℕ0⟶ℂ)
13283recnd 10934 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (((abs‘𝑦) + 1) / 2) ∈ ℂ)
133 oveq1 7262 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (((abs‘𝑦) + 1) / 2) → (𝑥𝑗) = ((((abs‘𝑦) + 1) / 2)↑𝑗))
134133oveq2d 7271 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (((abs‘𝑦) + 1) / 2) → (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗)) = (if(𝑗 = 0, 0, (1 / 𝑗)) · ((((abs‘𝑦) + 1) / 2)↑𝑗)))
135134mpteq2dv 5172 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (((abs‘𝑦) + 1) / 2) → (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · ((((abs‘𝑦) + 1) / 2)↑𝑗))))
136111mptex 7081 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · ((((abs‘𝑦) + 1) / 2)↑𝑗))) ∈ V
137135, 110, 136fvmpt 6857 . . . . . . . . . . . . . . . . . 18 ((((abs‘𝑦) + 1) / 2) ∈ ℂ → ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘(((abs‘𝑦) + 1) / 2)) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · ((((abs‘𝑦) + 1) / 2)↑𝑗))))
138132, 137syl 17 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘(((abs‘𝑦) + 1) / 2)) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · ((((abs‘𝑦) + 1) / 2)↑𝑗))))
139138seqeq3d 13657 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → seq0( + , ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘(((abs‘𝑦) + 1) / 2))) = seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · ((((abs‘𝑦) + 1) / 2)↑𝑗)))))
140 avglt2 12142 . . . . . . . . . . . . . . . . . . . 20 (((abs‘𝑦) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝑦) < 1 ↔ (((abs‘𝑦) + 1) / 2) < 1))
14154, 123, 140sylancl 585 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → ((abs‘𝑦) < 1 ↔ (((abs‘𝑦) + 1) / 2) < 1))
14264, 141mpbid 231 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (((abs‘𝑦) + 1) / 2) < 1)
143130, 142eqbrtrd 5092 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (abs‘(((abs‘𝑦) + 1) / 2)) < 1)
144 logtayllem 25719 . . . . . . . . . . . . . . . . 17 (((((abs‘𝑦) + 1) / 2) ∈ ℂ ∧ (abs‘(((abs‘𝑦) + 1) / 2)) < 1) → seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · ((((abs‘𝑦) + 1) / 2)↑𝑗)))) ∈ dom ⇝ )
145132, 143, 144syl2anc 583 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · ((((abs‘𝑦) + 1) / 2)↑𝑗)))) ∈ dom ⇝ )
146139, 145eqeltrd 2839 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → seq0( + , ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘(((abs‘𝑦) + 1) / 2))) ∈ dom ⇝ )
14797, 131, 119, 132, 146radcnvle 25484 . . . . . . . . . . . . . 14 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (abs‘(((abs‘𝑦) + 1) / 2)) ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))
148130, 147eqbrtrrd 5094 . . . . . . . . . . . . 13 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (((abs‘𝑦) + 1) / 2) ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))
14980, 84, 122, 126, 148xrltletrd 12824 . . . . . . . . . . . 12 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (abs‘𝑦) < sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))
150 0re 10908 . . . . . . . . . . . . 13 0 ∈ ℝ
151 elico2 13072 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*) → ((abs‘𝑦) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < )) ↔ ((abs‘𝑦) ∈ ℝ ∧ 0 ≤ (abs‘𝑦) ∧ (abs‘𝑦) < sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))))
152150, 122, 151sylancr 586 . . . . . . . . . . . 12 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → ((abs‘𝑦) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < )) ↔ ((abs‘𝑦) ∈ ℝ ∧ 0 ≤ (abs‘𝑦) ∧ (abs‘𝑦) < sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))))
15354, 79, 149, 152mpbir3and 1340 . . . . . . . . . . 11 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (abs‘𝑦) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < )))
154 absf 14977 . . . . . . . . . . . 12 abs:ℂ⟶ℝ
155 ffn 6584 . . . . . . . . . . . 12 (abs:ℂ⟶ℝ → abs Fn ℂ)
156 elpreima 6917 . . . . . . . . . . . 12 (abs Fn ℂ → (𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) ↔ (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < )))))
157154, 155, 156mp2b 10 . . . . . . . . . . 11 (𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) ↔ (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))))
15851, 153, 157sylanbrc 582 . . . . . . . . . 10 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → 𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))))
159 cnvimass 5978 . . . . . . . . . . . . . . . . 17 (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) ⊆ dom abs
160154fdmi 6596 . . . . . . . . . . . . . . . . 17 dom abs = ℂ
161159, 160sseqtri 3953 . . . . . . . . . . . . . . . 16 (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) ⊆ ℂ
162161sseli 3913 . . . . . . . . . . . . . . 15 (𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) → 𝑦 ∈ ℂ)
163 oveq1 7262 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑦 → (𝑥𝑗) = (𝑦𝑗))
164163oveq2d 7271 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗)) = (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦𝑗)))
165164mpteq2dv 5172 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦𝑗))))
166111mptex 7081 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦𝑗))) ∈ V
167165, 110, 166fvmpt 6857 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℂ → ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑦) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦𝑗))))
168167adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑦) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦𝑗))))
169168fveq1d 6758 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑦)‘𝑛) = ((𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦𝑗)))‘𝑛))
170 eqeq1 2742 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑛 → (𝑗 = 0 ↔ 𝑛 = 0))
171 oveq2 7263 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑛 → (1 / 𝑗) = (1 / 𝑛))
172170, 171ifbieq2d 4482 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑛 → if(𝑗 = 0, 0, (1 / 𝑗)) = if(𝑛 = 0, 0, (1 / 𝑛)))
173 oveq2 7263 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑛 → (𝑦𝑗) = (𝑦𝑛))
174172, 173oveq12d 7273 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑛 → (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦𝑗)) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)))
175 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦𝑗))) = (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦𝑗)))
176 ovex 7288 . . . . . . . . . . . . . . . . . . 19 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)) ∈ V
177174, 175, 176fvmpt 6857 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0 → ((𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦𝑗)))‘𝑛) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)))
178177adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑦𝑗)))‘𝑛) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)))
179169, 178eqtr2d 2779 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)) = (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑦)‘𝑛))
180179sumeq2dv 15343 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℂ → Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)) = Σ𝑛 ∈ ℕ0 (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑦)‘𝑛))
181162, 180syl 17 . . . . . . . . . . . . . 14 (𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) → Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)) = Σ𝑛 ∈ ℕ0 (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑦)‘𝑛))
182181mpteq2ia 5173 . . . . . . . . . . . . 13 (𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛))) = (𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑦)‘𝑛))
183 eqid 2738 . . . . . . . . . . . . 13 (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) = (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < )))
184 eqid 2738 . . . . . . . . . . . . 13 if(sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑧) + sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑧) + 1)) = if(sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑧) + sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑧) + 1))
18597, 182, 105, 119, 183, 184psercn 25490 . . . . . . . . . . . 12 (⊤ → (𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛))) ∈ ((abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < )))–cn→ℂ))
186 cncff 23962 . . . . . . . . . . . 12 ((𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛))) ∈ ((abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < )))–cn→ℂ) → (𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛))):(abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < )))⟶ℂ)
187185, 186syl 17 . . . . . . . . . . 11 (⊤ → (𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛))):(abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < )))⟶ℂ)
188187fvmptelrn 6969 . . . . . . . . . 10 ((⊤ ∧ 𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < )))) → Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)) ∈ ℂ)
189158, 188sylan2 592 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ (0(ball‘(abs ∘ − ))1)) → Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)) ∈ ℂ)
190189fmpttd 6971 . . . . . . . 8 (⊤ → (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛))):(0(ball‘(abs ∘ − ))1)⟶ℂ)
191 cnelprrecn 10895 . . . . . . . . . . . . 13 ℂ ∈ {ℝ, ℂ}
192191a1i 11 . . . . . . . . . . . 12 (⊤ → ℂ ∈ {ℝ, ℂ})
19375adantl 481 . . . . . . . . . . . 12 ((⊤ ∧ 𝑦 ∈ (0(ball‘(abs ∘ − ))1)) → (log‘(1 − 𝑦)) ∈ ℂ)
194 ovexd 7290 . . . . . . . . . . . 12 ((⊤ ∧ 𝑦 ∈ (0(ball‘(abs ∘ − ))1)) → ((1 / (1 − 𝑦)) · -1) ∈ V)
19529cnmetdval 23840 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℂ ∧ (1 − 𝑦) ∈ ℂ) → (1(abs ∘ − )(1 − 𝑦)) = (abs‘(1 − (1 − 𝑦))))
19648, 53, 195sylancr 586 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (1(abs ∘ − )(1 − 𝑦)) = (abs‘(1 − (1 − 𝑦))))
197 nncan 11180 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (1 − (1 − 𝑦)) = 𝑦)
19848, 51, 197sylancr 586 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (1 − (1 − 𝑦)) = 𝑦)
199198fveq2d 6760 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (abs‘(1 − (1 − 𝑦))) = (abs‘𝑦))
200196, 199eqtrd 2778 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (1(abs ∘ − )(1 − 𝑦)) = (abs‘𝑦))
201200, 64eqbrtrd 5092 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (1(abs ∘ − )(1 − 𝑦)) < 1)
202 elbl 23449 . . . . . . . . . . . . . . . 16 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ*) → ((1 − 𝑦) ∈ (1(ball‘(abs ∘ − ))1) ↔ ((1 − 𝑦) ∈ ℂ ∧ (1(abs ∘ − )(1 − 𝑦)) < 1)))
20338, 48, 39, 202mp3an 1459 . . . . . . . . . . . . . . 15 ((1 − 𝑦) ∈ (1(ball‘(abs ∘ − ))1) ↔ ((1 − 𝑦) ∈ ℂ ∧ (1(abs ∘ − )(1 − 𝑦)) < 1))
20453, 201, 203sylanbrc 582 . . . . . . . . . . . . . 14 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (1 − 𝑦) ∈ (1(ball‘(abs ∘ − ))1))
205204adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑦 ∈ (0(ball‘(abs ∘ − ))1)) → (1 − 𝑦) ∈ (1(ball‘(abs ∘ − ))1))
206 neg1cn 12017 . . . . . . . . . . . . . 14 -1 ∈ ℂ
207206a1i 11 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑦 ∈ (0(ball‘(abs ∘ − ))1)) → -1 ∈ ℂ)
208 eqid 2738 . . . . . . . . . . . . . . . . . 18 (1(ball‘(abs ∘ − ))1) = (1(ball‘(abs ∘ − ))1)
209208dvlog2lem 25712 . . . . . . . . . . . . . . . . 17 (1(ball‘(abs ∘ − ))1) ⊆ (ℂ ∖ (-∞(,]0))
210209sseli 3913 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1(ball‘(abs ∘ − ))1) → 𝑥 ∈ (ℂ ∖ (-∞(,]0)))
211210eldifad 3895 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1(ball‘(abs ∘ − ))1) → 𝑥 ∈ ℂ)
212 eqid 2738 . . . . . . . . . . . . . . . . 17 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
213212logdmn0 25700 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (ℂ ∖ (-∞(,]0)) → 𝑥 ≠ 0)
214210, 213syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1(ball‘(abs ∘ − ))1) → 𝑥 ≠ 0)
215211, 214logcld 25631 . . . . . . . . . . . . . 14 (𝑥 ∈ (1(ball‘(abs ∘ − ))1) → (log‘𝑥) ∈ ℂ)
216215adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(ball‘(abs ∘ − ))1)) → (log‘𝑥) ∈ ℂ)
217 ovexd 7290 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(ball‘(abs ∘ − ))1)) → (1 / 𝑥) ∈ V)
218 simpr 484 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
21948, 218, 52sylancr 586 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑦 ∈ ℂ) → (1 − 𝑦) ∈ ℂ)
220206a1i 11 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑦 ∈ ℂ) → -1 ∈ ℂ)
221 1cnd 10901 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑦 ∈ ℂ) → 1 ∈ ℂ)
222 0cnd 10899 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑦 ∈ ℂ) → 0 ∈ ℂ)
223 1cnd 10901 . . . . . . . . . . . . . . . . 17 (⊤ → 1 ∈ ℂ)
224192, 223dvmptc 25027 . . . . . . . . . . . . . . . 16 (⊤ → (ℂ D (𝑦 ∈ ℂ ↦ 1)) = (𝑦 ∈ ℂ ↦ 0))
225192dvmptid 25026 . . . . . . . . . . . . . . . 16 (⊤ → (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = (𝑦 ∈ ℂ ↦ 1))
226192, 221, 222, 224, 218, 221, 225dvmptsub 25036 . . . . . . . . . . . . . . 15 (⊤ → (ℂ D (𝑦 ∈ ℂ ↦ (1 − 𝑦))) = (𝑦 ∈ ℂ ↦ (0 − 1)))
227 df-neg 11138 . . . . . . . . . . . . . . . 16 -1 = (0 − 1)
228227mpteq2i 5175 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℂ ↦ -1) = (𝑦 ∈ ℂ ↦ (0 − 1))
229226, 228eqtr4di 2797 . . . . . . . . . . . . . 14 (⊤ → (ℂ D (𝑦 ∈ ℂ ↦ (1 − 𝑦))) = (𝑦 ∈ ℂ ↦ -1))
23050a1i 11 . . . . . . . . . . . . . 14 (⊤ → (0(ball‘(abs ∘ − ))1) ⊆ ℂ)
231 eqid 2738 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
232231cnfldtopon 23852 . . . . . . . . . . . . . . 15 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
233232toponrestid 21978 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
234231cnfldtopn 23851 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
235234blopn 23562 . . . . . . . . . . . . . . . 16 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℝ*) → (0(ball‘(abs ∘ − ))1) ∈ (TopOpen‘ℂfld))
23638, 28, 39, 235mp3an 1459 . . . . . . . . . . . . . . 15 (0(ball‘(abs ∘ − ))1) ∈ (TopOpen‘ℂfld)
237236a1i 11 . . . . . . . . . . . . . 14 (⊤ → (0(ball‘(abs ∘ − ))1) ∈ (TopOpen‘ℂfld))
238192, 219, 220, 229, 230, 233, 231, 237dvmptres 25032 . . . . . . . . . . . . 13 (⊤ → (ℂ D (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ (1 − 𝑦))) = (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -1))
239 logf1o 25625 . . . . . . . . . . . . . . . . . . . 20 log:(ℂ ∖ {0})–1-1-onto→ran log
240 f1of 6700 . . . . . . . . . . . . . . . . . . . 20 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
241239, 240ax-mp 5 . . . . . . . . . . . . . . . . . . 19 log:(ℂ ∖ {0})⟶ran log
242212logdmss 25702 . . . . . . . . . . . . . . . . . . . 20 (ℂ ∖ (-∞(,]0)) ⊆ (ℂ ∖ {0})
243209, 242sstri 3926 . . . . . . . . . . . . . . . . . . 19 (1(ball‘(abs ∘ − ))1) ⊆ (ℂ ∖ {0})
244 fssres 6624 . . . . . . . . . . . . . . . . . . 19 ((log:(ℂ ∖ {0})⟶ran log ∧ (1(ball‘(abs ∘ − ))1) ⊆ (ℂ ∖ {0})) → (log ↾ (1(ball‘(abs ∘ − ))1)):(1(ball‘(abs ∘ − ))1)⟶ran log)
245241, 243, 244mp2an 688 . . . . . . . . . . . . . . . . . 18 (log ↾ (1(ball‘(abs ∘ − ))1)):(1(ball‘(abs ∘ − ))1)⟶ran log
246245a1i 11 . . . . . . . . . . . . . . . . 17 (⊤ → (log ↾ (1(ball‘(abs ∘ − ))1)):(1(ball‘(abs ∘ − ))1)⟶ran log)
247246feqmptd 6819 . . . . . . . . . . . . . . . 16 (⊤ → (log ↾ (1(ball‘(abs ∘ − ))1)) = (𝑥 ∈ (1(ball‘(abs ∘ − ))1) ↦ ((log ↾ (1(ball‘(abs ∘ − ))1))‘𝑥)))
248 fvres 6775 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (1(ball‘(abs ∘ − ))1) → ((log ↾ (1(ball‘(abs ∘ − ))1))‘𝑥) = (log‘𝑥))
249248mpteq2ia 5173 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1(ball‘(abs ∘ − ))1) ↦ ((log ↾ (1(ball‘(abs ∘ − ))1))‘𝑥)) = (𝑥 ∈ (1(ball‘(abs ∘ − ))1) ↦ (log‘𝑥))
250247, 249eqtrdi 2795 . . . . . . . . . . . . . . 15 (⊤ → (log ↾ (1(ball‘(abs ∘ − ))1)) = (𝑥 ∈ (1(ball‘(abs ∘ − ))1) ↦ (log‘𝑥)))
251250oveq2d 7271 . . . . . . . . . . . . . 14 (⊤ → (ℂ D (log ↾ (1(ball‘(abs ∘ − ))1))) = (ℂ D (𝑥 ∈ (1(ball‘(abs ∘ − ))1) ↦ (log‘𝑥))))
252208dvlog2 25713 . . . . . . . . . . . . . 14 (ℂ D (log ↾ (1(ball‘(abs ∘ − ))1))) = (𝑥 ∈ (1(ball‘(abs ∘ − ))1) ↦ (1 / 𝑥))
253251, 252eqtr3di 2794 . . . . . . . . . . . . 13 (⊤ → (ℂ D (𝑥 ∈ (1(ball‘(abs ∘ − ))1) ↦ (log‘𝑥))) = (𝑥 ∈ (1(ball‘(abs ∘ − ))1) ↦ (1 / 𝑥)))
254 fveq2 6756 . . . . . . . . . . . . 13 (𝑥 = (1 − 𝑦) → (log‘𝑥) = (log‘(1 − 𝑦)))
255 oveq2 7263 . . . . . . . . . . . . 13 (𝑥 = (1 − 𝑦) → (1 / 𝑥) = (1 / (1 − 𝑦)))
256192, 192, 205, 207, 216, 217, 238, 253, 254, 255dvmptco 25041 . . . . . . . . . . . 12 (⊤ → (ℂ D (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ (log‘(1 − 𝑦)))) = (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ ((1 / (1 − 𝑦)) · -1)))
257192, 193, 194, 256dvmptneg 25035 . . . . . . . . . . 11 (⊤ → (ℂ D (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))) = (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -((1 / (1 − 𝑦)) · -1)))
25853, 74reccld 11674 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (1 / (1 − 𝑦)) ∈ ℂ)
259 mulcom 10888 . . . . . . . . . . . . . . . 16 (((1 / (1 − 𝑦)) ∈ ℂ ∧ -1 ∈ ℂ) → ((1 / (1 − 𝑦)) · -1) = (-1 · (1 / (1 − 𝑦))))
260258, 206, 259sylancl 585 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → ((1 / (1 − 𝑦)) · -1) = (-1 · (1 / (1 − 𝑦))))
261258mulm1d 11357 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (-1 · (1 / (1 − 𝑦))) = -(1 / (1 − 𝑦)))
262260, 261eqtrd 2778 . . . . . . . . . . . . . 14 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → ((1 / (1 − 𝑦)) · -1) = -(1 / (1 − 𝑦)))
263262negeqd 11145 . . . . . . . . . . . . 13 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → -((1 / (1 − 𝑦)) · -1) = --(1 / (1 − 𝑦)))
264258negnegd 11253 . . . . . . . . . . . . 13 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → --(1 / (1 − 𝑦)) = (1 / (1 − 𝑦)))
265263, 264eqtrd 2778 . . . . . . . . . . . 12 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → -((1 / (1 − 𝑦)) · -1) = (1 / (1 − 𝑦)))
266265mpteq2ia 5173 . . . . . . . . . . 11 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -((1 / (1 − 𝑦)) · -1)) = (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ (1 / (1 − 𝑦)))
267257, 266eqtrdi 2795 . . . . . . . . . 10 (⊤ → (ℂ D (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))) = (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ (1 / (1 − 𝑦))))
268267dmeqd 5803 . . . . . . . . 9 (⊤ → dom (ℂ D (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))) = dom (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ (1 / (1 − 𝑦))))
269 dmmptg 6134 . . . . . . . . . 10 (∀𝑦 ∈ (0(ball‘(abs ∘ − ))1)(1 / (1 − 𝑦)) ∈ V → dom (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ (1 / (1 − 𝑦))) = (0(ball‘(abs ∘ − ))1))
270 ovexd 7290 . . . . . . . . . 10 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → (1 / (1 − 𝑦)) ∈ V)
271269, 270mprg 3077 . . . . . . . . 9 dom (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ (1 / (1 − 𝑦))) = (0(ball‘(abs ∘ − ))1)
272268, 271eqtrdi 2795 . . . . . . . 8 (⊤ → dom (ℂ D (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))) = (0(ball‘(abs ∘ − ))1))
273 sumex 15327 . . . . . . . . . . . 12 Σ𝑛 ∈ ℕ ((𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1))) ∈ V
274273a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < )))) → Σ𝑛 ∈ ℕ ((𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1))) ∈ V)
275 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑦)‘𝑛) = (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑦)‘𝑘))
276275cbvsumv 15336 . . . . . . . . . . . . . 14 Σ𝑛 ∈ ℕ0 (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑦)‘𝑛) = Σ𝑘 ∈ ℕ0 (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑦)‘𝑘)
277181, 276eqtrdi 2795 . . . . . . . . . . . . 13 (𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) → Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)) = Σ𝑘 ∈ ℕ0 (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑦)‘𝑘))
278277mpteq2ia 5173 . . . . . . . . . . . 12 (𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛))) = (𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑘 ∈ ℕ0 (((𝑥 ∈ ℂ ↦ (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑥𝑗))))‘𝑦)‘𝑘))
279 eqid 2738 . . . . . . . . . . . 12 (0(ball‘(abs ∘ − ))(((abs‘𝑧) + if(sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑧) + sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑧) + 1))) / 2)) = (0(ball‘(abs ∘ − ))(((abs‘𝑧) + if(sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑧) + sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑧) + 1))) / 2))
28097, 278, 105, 119, 183, 184, 279pserdv2 25494 . . . . . . . . . . 11 (⊤ → (ℂ D (𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)))) = (𝑦 ∈ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ ℕ ((𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1)))))
281158ssriv 3921 . . . . . . . . . . . 12 (0(ball‘(abs ∘ − ))1) ⊆ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < )))
282281a1i 11 . . . . . . . . . . 11 (⊤ → (0(ball‘(abs ∘ − ))1) ⊆ (abs “ (0[,)sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑗 ∈ ℕ0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) · (𝑟𝑗)))) ∈ dom ⇝ }, ℝ*, < ))))
283192, 188, 274, 280, 282, 233, 231, 237dvmptres 25032 . . . . . . . . . 10 (⊤ → (ℂ D (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)))) = (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ ((𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1)))))
284 nnnn0 12170 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
285284adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
286 eqeq1 2742 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 → (𝑚 = 0 ↔ 𝑛 = 0))
287 oveq2 7263 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 → (1 / 𝑚) = (1 / 𝑛))
288286, 287ifbieq2d 4482 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑛 → if(𝑚 = 0, 0, (1 / 𝑚)) = if(𝑛 = 0, 0, (1 / 𝑛)))
289 ovex 7288 . . . . . . . . . . . . . . . . . . . . 21 (1 / 𝑛) ∈ V
29090, 289ifex 4506 . . . . . . . . . . . . . . . . . . . 20 if(𝑛 = 0, 0, (1 / 𝑛)) ∈ V
291288, 89, 290fvmpt 6857 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛) = if(𝑛 = 0, 0, (1 / 𝑛)))
292285, 291syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛) = if(𝑛 = 0, 0, (1 / 𝑛)))
293 nnne0 11937 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
294293adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ∧ 𝑛 ∈ ℕ) → 𝑛 ≠ 0)
295294neneqd 2947 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ∧ 𝑛 ∈ ℕ) → ¬ 𝑛 = 0)
296295iffalsed 4467 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ∧ 𝑛 ∈ ℕ) → if(𝑛 = 0, 0, (1 / 𝑛)) = (1 / 𝑛))
297292, 296eqtrd 2778 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛) = (1 / 𝑛))
298297oveq2d 7271 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ∧ 𝑛 ∈ ℕ) → (𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) = (𝑛 · (1 / 𝑛)))
299 nncn 11911 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
300299adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
301300, 294recidd 11676 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ∧ 𝑛 ∈ ℕ) → (𝑛 · (1 / 𝑛)) = 1)
302298, 301eqtrd 2778 . . . . . . . . . . . . . . 15 ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ∧ 𝑛 ∈ ℕ) → (𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) = 1)
303302oveq1d 7270 . . . . . . . . . . . . . 14 ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ∧ 𝑛 ∈ ℕ) → ((𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1))) = (1 · (𝑦↑(𝑛 − 1))))
304 nnm1nn0 12204 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
305 expcl 13728 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℂ ∧ (𝑛 − 1) ∈ ℕ0) → (𝑦↑(𝑛 − 1)) ∈ ℂ)
30651, 304, 305syl2an 595 . . . . . . . . . . . . . . 15 ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ∧ 𝑛 ∈ ℕ) → (𝑦↑(𝑛 − 1)) ∈ ℂ)
307306mulid2d 10924 . . . . . . . . . . . . . 14 ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ∧ 𝑛 ∈ ℕ) → (1 · (𝑦↑(𝑛 − 1))) = (𝑦↑(𝑛 − 1)))
308303, 307eqtrd 2778 . . . . . . . . . . . . 13 ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ∧ 𝑛 ∈ ℕ) → ((𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1))) = (𝑦↑(𝑛 − 1)))
309308sumeq2dv 15343 . . . . . . . . . . . 12 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → Σ𝑛 ∈ ℕ ((𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1))) = Σ𝑛 ∈ ℕ (𝑦↑(𝑛 − 1)))
310 nnuz 12550 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘1)
311 1e0p1 12408 . . . . . . . . . . . . . . . 16 1 = (0 + 1)
312311fveq2i 6759 . . . . . . . . . . . . . . 15 (ℤ‘1) = (ℤ‘(0 + 1))
313310, 312eqtri 2766 . . . . . . . . . . . . . 14 ℕ = (ℤ‘(0 + 1))
314 oveq1 7262 . . . . . . . . . . . . . . 15 (𝑛 = (1 + 𝑚) → (𝑛 − 1) = ((1 + 𝑚) − 1))
315314oveq2d 7271 . . . . . . . . . . . . . 14 (𝑛 = (1 + 𝑚) → (𝑦↑(𝑛 − 1)) = (𝑦↑((1 + 𝑚) − 1)))
316 1zzd 12281 . . . . . . . . . . . . . 14 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → 1 ∈ ℤ)
317 0zd 12261 . . . . . . . . . . . . . 14 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → 0 ∈ ℤ)
3181, 313, 315, 316, 317, 306isumshft 15479 . . . . . . . . . . . . 13 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → Σ𝑛 ∈ ℕ (𝑦↑(𝑛 − 1)) = Σ𝑚 ∈ ℕ0 (𝑦↑((1 + 𝑚) − 1)))
319 pncan2 11158 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((1 + 𝑚) − 1) = 𝑚)
32048, 99, 319sylancr 586 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ0 → ((1 + 𝑚) − 1) = 𝑚)
321320oveq2d 7271 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 → (𝑦↑((1 + 𝑚) − 1)) = (𝑦𝑚))
322321sumeq2i 15339 . . . . . . . . . . . . 13 Σ𝑚 ∈ ℕ0 (𝑦↑((1 + 𝑚) − 1)) = Σ𝑚 ∈ ℕ0 (𝑦𝑚)
323318, 322eqtrdi 2795 . . . . . . . . . . . 12 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → Σ𝑛 ∈ ℕ (𝑦↑(𝑛 − 1)) = Σ𝑚 ∈ ℕ0 (𝑦𝑚))
324 geoisum 15517 . . . . . . . . . . . . 13 ((𝑦 ∈ ℂ ∧ (abs‘𝑦) < 1) → Σ𝑚 ∈ ℕ0 (𝑦𝑚) = (1 / (1 − 𝑦)))
32551, 64, 324syl2anc 583 . . . . . . . . . . . 12 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → Σ𝑚 ∈ ℕ0 (𝑦𝑚) = (1 / (1 − 𝑦)))
326309, 323, 3253eqtrd 2782 . . . . . . . . . . 11 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) → Σ𝑛 ∈ ℕ ((𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1))) = (1 / (1 − 𝑦)))
327326mpteq2ia 5173 . . . . . . . . . 10 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ ((𝑛 · ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 0, (1 / 𝑚)))‘𝑛)) · (𝑦↑(𝑛 − 1)))) = (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ (1 / (1 − 𝑦)))
328283, 327eqtrdi 2795 . . . . . . . . 9 (⊤ → (ℂ D (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)))) = (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ (1 / (1 − 𝑦))))
329267, 328eqtr4d 2781 . . . . . . . 8 (⊤ → (ℂ D (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))) = (ℂ D (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)))))
330 1rp 12663 . . . . . . . . . 10 1 ∈ ℝ+
331 blcntr 23474 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℝ+) → 0 ∈ (0(ball‘(abs ∘ − ))1))
33238, 28, 330, 331mp3an 1459 . . . . . . . . 9 0 ∈ (0(ball‘(abs ∘ − ))1)
333332a1i 11 . . . . . . . 8 (⊤ → 0 ∈ (0(ball‘(abs ∘ − ))1))
334 oveq2 7263 . . . . . . . . . . . . . . . 16 (𝑦 = 0 → (1 − 𝑦) = (1 − 0))
335 1m0e1 12024 . . . . . . . . . . . . . . . 16 (1 − 0) = 1
336334, 335eqtrdi 2795 . . . . . . . . . . . . . . 15 (𝑦 = 0 → (1 − 𝑦) = 1)
337336fveq2d 6760 . . . . . . . . . . . . . 14 (𝑦 = 0 → (log‘(1 − 𝑦)) = (log‘1))
338 log1 25646 . . . . . . . . . . . . . 14 (log‘1) = 0
339337, 338eqtrdi 2795 . . . . . . . . . . . . 13 (𝑦 = 0 → (log‘(1 − 𝑦)) = 0)
340339negeqd 11145 . . . . . . . . . . . 12 (𝑦 = 0 → -(log‘(1 − 𝑦)) = -0)
341 neg0 11197 . . . . . . . . . . . 12 -0 = 0
342340, 341eqtrdi 2795 . . . . . . . . . . 11 (𝑦 = 0 → -(log‘(1 − 𝑦)) = 0)
343 eqid 2738 . . . . . . . . . . 11 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦))) = (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))
344342, 343, 90fvmpt 6857 . . . . . . . . . 10 (0 ∈ (0(ball‘(abs ∘ − ))1) → ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))‘0) = 0)
345332, 344mp1i 13 . . . . . . . . 9 (⊤ → ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))‘0) = 0)
346 oveq1 7262 . . . . . . . . . . . . . . 15 (0 = if(𝑛 = 0, 0, (1 / 𝑛)) → (0 · (𝑦𝑛)) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)))
347346eqeq1d 2740 . . . . . . . . . . . . . 14 (0 = if(𝑛 = 0, 0, (1 / 𝑛)) → ((0 · (𝑦𝑛)) = 0 ↔ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)) = 0))
348 oveq1 7262 . . . . . . . . . . . . . . 15 ((1 / 𝑛) = if(𝑛 = 0, 0, (1 / 𝑛)) → ((1 / 𝑛) · (𝑦𝑛)) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)))
349348eqeq1d 2740 . . . . . . . . . . . . . 14 ((1 / 𝑛) = if(𝑛 = 0, 0, (1 / 𝑛)) → (((1 / 𝑛) · (𝑦𝑛)) = 0 ↔ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)) = 0))
350 simpll 763 . . . . . . . . . . . . . . . . 17 (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = 0) → 𝑦 = 0)
351350, 28eqeltrdi 2847 . . . . . . . . . . . . . . . 16 (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = 0) → 𝑦 ∈ ℂ)
352 simplr 765 . . . . . . . . . . . . . . . 16 (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = 0) → 𝑛 ∈ ℕ0)
353351, 352expcld 13792 . . . . . . . . . . . . . . 15 (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = 0) → (𝑦𝑛) ∈ ℂ)
354353mul02d 11103 . . . . . . . . . . . . . 14 (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = 0) → (0 · (𝑦𝑛)) = 0)
355 simpll 763 . . . . . . . . . . . . . . . . . 18 (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → 𝑦 = 0)
356355oveq1d 7270 . . . . . . . . . . . . . . . . 17 (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → (𝑦𝑛) = (0↑𝑛))
357 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
358357, 14sylib 217 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ ℕ ∨ 𝑛 = 0))
359358ord 860 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) → (¬ 𝑛 ∈ ℕ → 𝑛 = 0))
360359con1d 145 . . . . . . . . . . . . . . . . . . 19 ((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) → (¬ 𝑛 = 0 → 𝑛 ∈ ℕ))
361360imp 406 . . . . . . . . . . . . . . . . . 18 (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → 𝑛 ∈ ℕ)
3623610expd 13785 . . . . . . . . . . . . . . . . 17 (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → (0↑𝑛) = 0)
363356, 362eqtrd 2778 . . . . . . . . . . . . . . . 16 (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → (𝑦𝑛) = 0)
364363oveq2d 7271 . . . . . . . . . . . . . . 15 (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → ((1 / 𝑛) · (𝑦𝑛)) = ((1 / 𝑛) · 0))
365361nnrecred 11954 . . . . . . . . . . . . . . . . 17 (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → (1 / 𝑛) ∈ ℝ)
366365recnd 10934 . . . . . . . . . . . . . . . 16 (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → (1 / 𝑛) ∈ ℂ)
367366mul01d 11104 . . . . . . . . . . . . . . 15 (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → ((1 / 𝑛) · 0) = 0)
368364, 367eqtrd 2778 . . . . . . . . . . . . . 14 (((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → ((1 / 𝑛) · (𝑦𝑛)) = 0)
369347, 349, 354, 368ifbothda 4494 . . . . . . . . . . . . 13 ((𝑦 = 0 ∧ 𝑛 ∈ ℕ0) → (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)) = 0)
370369sumeq2dv 15343 . . . . . . . . . . . 12 (𝑦 = 0 → Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)) = Σ𝑛 ∈ ℕ0 0)
3711eqimssi 3975 . . . . . . . . . . . . . 14 0 ⊆ (ℤ‘0)
372371orci 861 . . . . . . . . . . . . 13 (ℕ0 ⊆ (ℤ‘0) ∨ ℕ0 ∈ Fin)
373 sumz 15362 . . . . . . . . . . . . 13 ((ℕ0 ⊆ (ℤ‘0) ∨ ℕ0 ∈ Fin) → Σ𝑛 ∈ ℕ0 0 = 0)
374372, 373ax-mp 5 . . . . . . . . . . . 12 Σ𝑛 ∈ ℕ0 0 = 0
375370, 374eqtrdi 2795 . . . . . . . . . . 11 (𝑦 = 0 → Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)) = 0)
376 eqid 2738 . . . . . . . . . . 11 (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛))) = (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)))
377375, 376, 90fvmpt 6857 . . . . . . . . . 10 (0 ∈ (0(ball‘(abs ∘ − ))1) → ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)))‘0) = 0)
378332, 377mp1i 13 . . . . . . . . 9 (⊤ → ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)))‘0) = 0)
379345, 378eqtr4d 2781 . . . . . . . 8 (⊤ → ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))‘0) = ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)))‘0))
38045, 46, 47, 78, 190, 272, 329, 333, 379dv11cn 25070 . . . . . . 7 (⊤ → (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦))) = (𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛))))
381380fveq1d 6758 . . . . . 6 (⊤ → ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))‘𝐴) = ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)))‘𝐴))
38244, 381mp1i 13 . . . . 5 (𝐴 ∈ (0(ball‘(abs ∘ − ))1) → ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))‘𝐴) = ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)))‘𝐴))
383 oveq2 7263 . . . . . . . 8 (𝑦 = 𝐴 → (1 − 𝑦) = (1 − 𝐴))
384383fveq2d 6760 . . . . . . 7 (𝑦 = 𝐴 → (log‘(1 − 𝑦)) = (log‘(1 − 𝐴)))
385384negeqd 11145 . . . . . 6 (𝑦 = 𝐴 → -(log‘(1 − 𝑦)) = -(log‘(1 − 𝐴)))
386 negex 11149 . . . . . 6 -(log‘(1 − 𝐴)) ∈ V
387385, 343, 386fvmpt 6857 . . . . 5 (𝐴 ∈ (0(ball‘(abs ∘ − ))1) → ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ -(log‘(1 − 𝑦)))‘𝐴) = -(log‘(1 − 𝐴)))
388 oveq1 7262 . . . . . . . 8 (𝑦 = 𝐴 → (𝑦𝑛) = (𝐴𝑛))
389388oveq2d 7271 . . . . . . 7 (𝑦 = 𝐴 → (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))
390389sumeq2sdv 15344 . . . . . 6 (𝑦 = 𝐴 → Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)) = Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))
391 sumex 15327 . . . . . 6 Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)) ∈ V
392390, 376, 391fvmpt 6857 . . . . 5 (𝐴 ∈ (0(ball‘(abs ∘ − ))1) → ((𝑦 ∈ (0(ball‘(abs ∘ − ))1) ↦ Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝑦𝑛)))‘𝐴) = Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))
393382, 387, 3923eqtr3d 2786 . . . 4 (𝐴 ∈ (0(ball‘(abs ∘ − ))1) → -(log‘(1 − 𝐴)) = Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))
39443, 393syl 17 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → -(log‘(1 − 𝐴)) = Σ𝑛 ∈ ℕ0 (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))
39526, 394breqtrrd 5098 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))) ⇝ -(log‘(1 − 𝐴)))
396 seqex 13651 . . . 4 seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))) ∈ V
397396a1i 11 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))) ∈ V)
398 seqex 13651 . . . 4 seq1( + , (𝑘 ∈ ℕ ↦ ((𝐴𝑘) / 𝑘))) ∈ V
399398a1i 11 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑘 ∈ ℕ ↦ ((𝐴𝑘) / 𝑘))) ∈ V)
400 1zzd 12281 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 1 ∈ ℤ)
401 elnnuz 12551 . . . . . 6 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
402 fvres 6775 . . . . . 6 (𝑛 ∈ (ℤ‘1) → ((seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))) ↾ (ℤ‘1))‘𝑛) = (seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘))))‘𝑛))
403401, 402sylbi 216 . . . . 5 (𝑛 ∈ ℕ → ((seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))) ↾ (ℤ‘1))‘𝑛) = (seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘))))‘𝑛))
404403eqcomd 2744 . . . 4 (𝑛 ∈ ℕ → (seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘))))‘𝑛) = ((seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))) ↾ (ℤ‘1))‘𝑛))
405 addid2 11088 . . . . . . . 8 (𝑛 ∈ ℂ → (0 + 𝑛) = 𝑛)
406405adantl 481 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℂ) → (0 + 𝑛) = 𝑛)
407 0cnd 10899 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 0 ∈ ℂ)
408 1eluzge0 12561 . . . . . . . 8 1 ∈ (ℤ‘0)
409408a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 1 ∈ (ℤ‘0))
410 0cnd 10899 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 = 0) → 0 ∈ ℂ)
411 nn0cn 12173 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
412411adantl 481 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
413 neqne 2950 . . . . . . . . . . . 12 𝑘 = 0 → 𝑘 ≠ 0)
414 reccl 11570 . . . . . . . . . . . 12 ((𝑘 ∈ ℂ ∧ 𝑘 ≠ 0) → (1 / 𝑘) ∈ ℂ)
415412, 413, 414syl2an 595 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 = 0) → (1 / 𝑘) ∈ ℂ)
416410, 415ifclda 4491 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → if(𝑘 = 0, 0, (1 / 𝑘)) ∈ ℂ)
417 expcl 13728 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
418417adantlr 711 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
419416, 418mulcld 10926 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)) ∈ ℂ)
420419fmpttd 6971 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘))):ℕ0⟶ℂ)
421 1nn0 12179 . . . . . . . 8 1 ∈ ℕ0
422 ffvelrn 6941 . . . . . . . 8 (((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘))):ℕ0⟶ℂ ∧ 1 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))‘1) ∈ ℂ)
423420, 421, 422sylancl 585 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))‘1) ∈ ℂ)
424 elfz1eq 13196 . . . . . . . . . 10 (𝑛 ∈ (0...0) → 𝑛 = 0)
425 1m1e0 11975 . . . . . . . . . . 11 (1 − 1) = 0
426425oveq2i 7266 . . . . . . . . . 10 (0...(1 − 1)) = (0...0)
427424, 426eleq2s 2857 . . . . . . . . 9 (𝑛 ∈ (0...(1 − 1)) → 𝑛 = 0)
428427fveq2d 6760 . . . . . . . 8 (𝑛 ∈ (0...(1 − 1)) → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))‘𝑛) = ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))‘0))
429 0nn0 12178 . . . . . . . . . 10 0 ∈ ℕ0
430 iftrue 4462 . . . . . . . . . . . 12 (𝑘 = 0 → if(𝑘 = 0, 0, (1 / 𝑘)) = 0)
431 oveq2 7263 . . . . . . . . . . . 12 (𝑘 = 0 → (𝐴𝑘) = (𝐴↑0))
432430, 431oveq12d 7273 . . . . . . . . . . 11 (𝑘 = 0 → (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)) = (0 · (𝐴↑0)))
433 ovex 7288 . . . . . . . . . . 11 (0 · (𝐴↑0)) ∈ V
434432, 8, 433fvmpt 6857 . . . . . . . . . 10 (0 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))‘0) = (0 · (𝐴↑0)))
435429, 434ax-mp 5 . . . . . . . . 9 ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))‘0) = (0 · (𝐴↑0))
436 expcl 13728 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 ∈ ℕ0) → (𝐴↑0) ∈ ℂ)
43727, 429, 436sylancl 585 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝐴↑0) ∈ ℂ)
438437mul02d 11103 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (0 · (𝐴↑0)) = 0)
439435, 438syl5eq 2791 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))‘0) = 0)
440428, 439sylan9eqr 2801 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ (0...(1 − 1))) → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))‘𝑛) = 0)
441406, 407, 409, 423, 440seqid 13696 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))) ↾ (ℤ‘1)) = seq1( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))))
442293adantl 481 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → 𝑛 ≠ 0)
443442neneqd 2947 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → ¬ 𝑛 = 0)
444443iffalsed 4467 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → if(𝑛 = 0, 0, (1 / 𝑛)) = (1 / 𝑛))
445444oveq1d 7270 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)) = ((1 / 𝑛) · (𝐴𝑛)))
446284, 23sylan2 592 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → (𝐴𝑛) ∈ ℂ)
447299adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
448446, 447, 442divrec2d 11685 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → ((𝐴𝑛) / 𝑛) = ((1 / 𝑛) · (𝐴𝑛)))
449445, 448eqtr4d 2781 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)) = ((𝐴𝑛) / 𝑛))
450284, 11sylan2 592 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))‘𝑛) = (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))
451 id 22 . . . . . . . . . . . 12 (𝑘 = 𝑛𝑘 = 𝑛)
4526, 451oveq12d 7273 . . . . . . . . . . 11 (𝑘 = 𝑛 → ((𝐴𝑘) / 𝑘) = ((𝐴𝑛) / 𝑛))
453 eqid 2738 . . . . . . . . . . 11 (𝑘 ∈ ℕ ↦ ((𝐴𝑘) / 𝑘)) = (𝑘 ∈ ℕ ↦ ((𝐴𝑘) / 𝑘))
454 ovex 7288 . . . . . . . . . . 11 ((𝐴𝑛) / 𝑛) ∈ V
455452, 453, 454fvmpt 6857 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ↦ ((𝐴𝑘) / 𝑘))‘𝑛) = ((𝐴𝑛) / 𝑛))
456455adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((𝐴𝑘) / 𝑘))‘𝑛) = ((𝐴𝑛) / 𝑛))
457449, 450, 4563eqtr4d 2788 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))‘𝑛) = ((𝑘 ∈ ℕ ↦ ((𝐴𝑘) / 𝑘))‘𝑛))
458401, 457sylan2br 594 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ (ℤ‘1)) → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))‘𝑛) = ((𝑘 ∈ ℕ ↦ ((𝐴𝑘) / 𝑘))‘𝑛))
459400, 458seqfeq 13676 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))) = seq1( + , (𝑘 ∈ ℕ ↦ ((𝐴𝑘) / 𝑘))))
460441, 459eqtrd 2778 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))) ↾ (ℤ‘1)) = seq1( + , (𝑘 ∈ ℕ ↦ ((𝐴𝑘) / 𝑘))))
461460fveq1d 6758 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))) ↾ (ℤ‘1))‘𝑛) = (seq1( + , (𝑘 ∈ ℕ ↦ ((𝐴𝑘) / 𝑘)))‘𝑛))
462404, 461sylan9eqr 2801 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → (seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘))))‘𝑛) = (seq1( + , (𝑘 ∈ ℕ ↦ ((𝐴𝑘) / 𝑘)))‘𝑛))
463310, 397, 399, 400, 462climeq 15204 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))) ⇝ -(log‘(1 − 𝐴)) ↔ seq1( + , (𝑘 ∈ ℕ ↦ ((𝐴𝑘) / 𝑘))) ⇝ -(log‘(1 − 𝐴))))
464395, 463mpbid 231 1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑘 ∈ ℕ ↦ ((𝐴𝑘) / 𝑘))) ⇝ -(log‘(1 − 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wtru 1540  wcel 2108  wne 2942  {crab 3067  Vcvv 3422  cdif 3880  wss 3883  ifcif 4456  {csn 4558  {cpr 4560   class class class wbr 5070  cmpt 5153  ccnv 5579  dom cdm 5580  ran crn 5581  cres 5582  cima 5583  ccom 5584   Fn wfn 6413  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  Fincfn 8691  supcsup 9129  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  +∞cpnf 10937  -∞cmnf 10938  *cxr 10939   < clt 10940  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cuz 12511  +crp 12659  (,]cioc 13009  [,)cico 13010  [,]cicc 13011  ...cfz 13168  seqcseq 13649  cexp 13710  abscabs 14873  cli 15121  Σcsu 15325  TopOpenctopn 17049  ∞Metcxmet 20495  ballcbl 20497  fldccnfld 20510  cnccncf 23945   D cdv 24932  logclog 25615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-tan 15709  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-ulm 25441  df-log 25617
This theorem is referenced by:  logtaylsum  25721  logtayl2  25722  atantayl  25992  stirlinglem5  43509
  Copyright terms: Public domain W3C validator