MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logtayl Structured version   Visualization version   GIF version

Theorem logtayl 26509
Description: The Taylor series for -log(1 βˆ’ 𝐴). (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
logtayl ((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) β†’ seq1( + , (π‘˜ ∈ β„• ↦ ((π΄β†‘π‘˜) / π‘˜))) ⇝ -(logβ€˜(1 βˆ’ 𝐴)))
Distinct variable group:   𝐴,π‘˜

Proof of Theorem logtayl
Dummy variables 𝑗 π‘š 𝑛 π‘Ÿ π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12871 . . . 4 β„•0 = (β„€β‰₯β€˜0)
2 0zd 12577 . . . 4 ((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) β†’ 0 ∈ β„€)
3 eqeq1 2735 . . . . . . . 8 (π‘˜ = 𝑛 β†’ (π‘˜ = 0 ↔ 𝑛 = 0))
4 oveq2 7420 . . . . . . . 8 (π‘˜ = 𝑛 β†’ (1 / π‘˜) = (1 / 𝑛))
53, 4ifbieq2d 4554 . . . . . . 7 (π‘˜ = 𝑛 β†’ if(π‘˜ = 0, 0, (1 / π‘˜)) = if(𝑛 = 0, 0, (1 / 𝑛)))
6 oveq2 7420 . . . . . . 7 (π‘˜ = 𝑛 β†’ (π΄β†‘π‘˜) = (𝐴↑𝑛))
75, 6oveq12d 7430 . . . . . 6 (π‘˜ = 𝑛 β†’ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜)) = (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝐴↑𝑛)))
8 eqid 2731 . . . . . 6 (π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜))) = (π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜)))
9 ovex 7445 . . . . . 6 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝐴↑𝑛)) ∈ V
107, 8, 9fvmpt 6998 . . . . 5 (𝑛 ∈ β„•0 β†’ ((π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜)))β€˜π‘›) = (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝐴↑𝑛)))
1110adantl 481 . . . 4 (((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) ∧ 𝑛 ∈ β„•0) β†’ ((π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜)))β€˜π‘›) = (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝐴↑𝑛)))
12 0cnd 11214 . . . . . 6 ((((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) ∧ 𝑛 ∈ β„•0) ∧ 𝑛 = 0) β†’ 0 ∈ β„‚)
13 simpr 484 . . . . . . . . . . . 12 (((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) ∧ 𝑛 ∈ β„•0) β†’ 𝑛 ∈ β„•0)
14 elnn0 12481 . . . . . . . . . . . 12 (𝑛 ∈ β„•0 ↔ (𝑛 ∈ β„• ∨ 𝑛 = 0))
1513, 14sylib 217 . . . . . . . . . . 11 (((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) ∧ 𝑛 ∈ β„•0) β†’ (𝑛 ∈ β„• ∨ 𝑛 = 0))
1615ord 861 . . . . . . . . . 10 (((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) ∧ 𝑛 ∈ β„•0) β†’ (Β¬ 𝑛 ∈ β„• β†’ 𝑛 = 0))
1716con1d 145 . . . . . . . . 9 (((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) ∧ 𝑛 ∈ β„•0) β†’ (Β¬ 𝑛 = 0 β†’ 𝑛 ∈ β„•))
1817imp 406 . . . . . . . 8 ((((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) ∧ 𝑛 ∈ β„•0) ∧ Β¬ 𝑛 = 0) β†’ 𝑛 ∈ β„•)
1918nnrecred 12270 . . . . . . 7 ((((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) ∧ 𝑛 ∈ β„•0) ∧ Β¬ 𝑛 = 0) β†’ (1 / 𝑛) ∈ ℝ)
2019recnd 11249 . . . . . 6 ((((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) ∧ 𝑛 ∈ β„•0) ∧ Β¬ 𝑛 = 0) β†’ (1 / 𝑛) ∈ β„‚)
2112, 20ifclda 4563 . . . . 5 (((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) ∧ 𝑛 ∈ β„•0) β†’ if(𝑛 = 0, 0, (1 / 𝑛)) ∈ β„‚)
22 expcl 14052 . . . . . 6 ((𝐴 ∈ β„‚ ∧ 𝑛 ∈ β„•0) β†’ (𝐴↑𝑛) ∈ β„‚)
2322adantlr 712 . . . . 5 (((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) ∧ 𝑛 ∈ β„•0) β†’ (𝐴↑𝑛) ∈ β„‚)
2421, 23mulcld 11241 . . . 4 (((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) ∧ 𝑛 ∈ β„•0) β†’ (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝐴↑𝑛)) ∈ β„‚)
25 logtayllem 26508 . . . 4 ((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) β†’ seq0( + , (π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜)))) ∈ dom ⇝ )
261, 2, 11, 24, 25isumclim2 15711 . . 3 ((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) β†’ seq0( + , (π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜)))) ⇝ Σ𝑛 ∈ β„•0 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝐴↑𝑛)))
27 simpl 482 . . . . . . . 8 ((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) β†’ 𝐴 ∈ β„‚)
28 0cn 11213 . . . . . . . 8 0 ∈ β„‚
29 eqid 2731 . . . . . . . . 9 (abs ∘ βˆ’ ) = (abs ∘ βˆ’ )
3029cnmetdval 24608 . . . . . . . 8 ((𝐴 ∈ β„‚ ∧ 0 ∈ β„‚) β†’ (𝐴(abs ∘ βˆ’ )0) = (absβ€˜(𝐴 βˆ’ 0)))
3127, 28, 30sylancl 585 . . . . . . 7 ((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) β†’ (𝐴(abs ∘ βˆ’ )0) = (absβ€˜(𝐴 βˆ’ 0)))
32 subid1 11487 . . . . . . . . 9 (𝐴 ∈ β„‚ β†’ (𝐴 βˆ’ 0) = 𝐴)
3332adantr 480 . . . . . . . 8 ((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) β†’ (𝐴 βˆ’ 0) = 𝐴)
3433fveq2d 6895 . . . . . . 7 ((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) β†’ (absβ€˜(𝐴 βˆ’ 0)) = (absβ€˜π΄))
3531, 34eqtrd 2771 . . . . . 6 ((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) β†’ (𝐴(abs ∘ βˆ’ )0) = (absβ€˜π΄))
36 simpr 484 . . . . . 6 ((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) β†’ (absβ€˜π΄) < 1)
3735, 36eqbrtrd 5170 . . . . 5 ((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) β†’ (𝐴(abs ∘ βˆ’ )0) < 1)
38 cnxmet 24610 . . . . . . 7 (abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚)
39 1xr 11280 . . . . . . 7 1 ∈ ℝ*
40 elbl3 24219 . . . . . . 7 ((((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ 1 ∈ ℝ*) ∧ (0 ∈ β„‚ ∧ 𝐴 ∈ β„‚)) β†’ (𝐴 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↔ (𝐴(abs ∘ βˆ’ )0) < 1))
4138, 39, 40mpanl12 699 . . . . . 6 ((0 ∈ β„‚ ∧ 𝐴 ∈ β„‚) β†’ (𝐴 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↔ (𝐴(abs ∘ βˆ’ )0) < 1))
4228, 27, 41sylancr 586 . . . . 5 ((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) β†’ (𝐴 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↔ (𝐴(abs ∘ βˆ’ )0) < 1))
4337, 42mpbird 257 . . . 4 ((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) β†’ 𝐴 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1))
44 tru 1544 . . . . . 6 ⊀
45 eqid 2731 . . . . . . . 8 (0(ballβ€˜(abs ∘ βˆ’ ))1) = (0(ballβ€˜(abs ∘ βˆ’ ))1)
46 0cnd 11214 . . . . . . . 8 (⊀ β†’ 0 ∈ β„‚)
4739a1i 11 . . . . . . . 8 (⊀ β†’ 1 ∈ ℝ*)
48 ax-1cn 11174 . . . . . . . . . . . . 13 1 ∈ β„‚
49 blssm 24245 . . . . . . . . . . . . . . 15 (((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ 0 ∈ β„‚ ∧ 1 ∈ ℝ*) β†’ (0(ballβ€˜(abs ∘ βˆ’ ))1) βŠ† β„‚)
5038, 28, 39, 49mp3an 1460 . . . . . . . . . . . . . 14 (0(ballβ€˜(abs ∘ βˆ’ ))1) βŠ† β„‚
5150sseli 3978 . . . . . . . . . . . . 13 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ 𝑦 ∈ β„‚)
52 subcl 11466 . . . . . . . . . . . . 13 ((1 ∈ β„‚ ∧ 𝑦 ∈ β„‚) β†’ (1 βˆ’ 𝑦) ∈ β„‚)
5348, 51, 52sylancr 586 . . . . . . . . . . . 12 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (1 βˆ’ 𝑦) ∈ β„‚)
5451abscld 15390 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (absβ€˜π‘¦) ∈ ℝ)
5529cnmetdval 24608 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ β„‚ ∧ 0 ∈ β„‚) β†’ (𝑦(abs ∘ βˆ’ )0) = (absβ€˜(𝑦 βˆ’ 0)))
5651, 28, 55sylancl 585 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (𝑦(abs ∘ βˆ’ )0) = (absβ€˜(𝑦 βˆ’ 0)))
5751subid1d 11567 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (𝑦 βˆ’ 0) = 𝑦)
5857fveq2d 6895 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (absβ€˜(𝑦 βˆ’ 0)) = (absβ€˜π‘¦))
5956, 58eqtrd 2771 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (𝑦(abs ∘ βˆ’ )0) = (absβ€˜π‘¦))
60 elbl3 24219 . . . . . . . . . . . . . . . . . . 19 ((((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ 1 ∈ ℝ*) ∧ (0 ∈ β„‚ ∧ 𝑦 ∈ β„‚)) β†’ (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↔ (𝑦(abs ∘ βˆ’ )0) < 1))
6138, 39, 60mpanl12 699 . . . . . . . . . . . . . . . . . 18 ((0 ∈ β„‚ ∧ 𝑦 ∈ β„‚) β†’ (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↔ (𝑦(abs ∘ βˆ’ )0) < 1))
6228, 51, 61sylancr 586 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↔ (𝑦(abs ∘ βˆ’ )0) < 1))
6362ibi 267 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (𝑦(abs ∘ βˆ’ )0) < 1)
6459, 63eqbrtrrd 5172 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (absβ€˜π‘¦) < 1)
6554, 64gtned 11356 . . . . . . . . . . . . . 14 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ 1 β‰  (absβ€˜π‘¦))
66 abs1 15251 . . . . . . . . . . . . . . . 16 (absβ€˜1) = 1
67 fveq2 6891 . . . . . . . . . . . . . . . 16 (1 = 𝑦 β†’ (absβ€˜1) = (absβ€˜π‘¦))
6866, 67eqtr3id 2785 . . . . . . . . . . . . . . 15 (1 = 𝑦 β†’ 1 = (absβ€˜π‘¦))
6968necon3i 2972 . . . . . . . . . . . . . 14 (1 β‰  (absβ€˜π‘¦) β†’ 1 β‰  𝑦)
7065, 69syl 17 . . . . . . . . . . . . 13 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ 1 β‰  𝑦)
71 subeq0 11493 . . . . . . . . . . . . . . 15 ((1 ∈ β„‚ ∧ 𝑦 ∈ β„‚) β†’ ((1 βˆ’ 𝑦) = 0 ↔ 1 = 𝑦))
7271necon3bid 2984 . . . . . . . . . . . . . 14 ((1 ∈ β„‚ ∧ 𝑦 ∈ β„‚) β†’ ((1 βˆ’ 𝑦) β‰  0 ↔ 1 β‰  𝑦))
7348, 51, 72sylancr 586 . . . . . . . . . . . . 13 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ ((1 βˆ’ 𝑦) β‰  0 ↔ 1 β‰  𝑦))
7470, 73mpbird 257 . . . . . . . . . . . 12 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (1 βˆ’ 𝑦) β‰  0)
7553, 74logcld 26420 . . . . . . . . . . 11 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (logβ€˜(1 βˆ’ 𝑦)) ∈ β„‚)
7675negcld 11565 . . . . . . . . . 10 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ -(logβ€˜(1 βˆ’ 𝑦)) ∈ β„‚)
7776adantl 481 . . . . . . . . 9 ((⊀ ∧ 𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1)) β†’ -(logβ€˜(1 βˆ’ 𝑦)) ∈ β„‚)
7877fmpttd 7116 . . . . . . . 8 (⊀ β†’ (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ -(logβ€˜(1 βˆ’ 𝑦))):(0(ballβ€˜(abs ∘ βˆ’ ))1)βŸΆβ„‚)
7951absge0d 15398 . . . . . . . . . . . 12 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ 0 ≀ (absβ€˜π‘¦))
8054rexrd 11271 . . . . . . . . . . . . 13 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (absβ€˜π‘¦) ∈ ℝ*)
81 peano2re 11394 . . . . . . . . . . . . . . . 16 ((absβ€˜π‘¦) ∈ ℝ β†’ ((absβ€˜π‘¦) + 1) ∈ ℝ)
8254, 81syl 17 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ ((absβ€˜π‘¦) + 1) ∈ ℝ)
8382rehalfcld 12466 . . . . . . . . . . . . . 14 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (((absβ€˜π‘¦) + 1) / 2) ∈ ℝ)
8483rexrd 11271 . . . . . . . . . . . . 13 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (((absβ€˜π‘¦) + 1) / 2) ∈ ℝ*)
85 iccssxr 13414 . . . . . . . . . . . . . . 15 (0[,]+∞) βŠ† ℝ*
86 eqeq1 2735 . . . . . . . . . . . . . . . . . . . . . 22 (π‘š = 𝑗 β†’ (π‘š = 0 ↔ 𝑗 = 0))
87 oveq2 7420 . . . . . . . . . . . . . . . . . . . . . 22 (π‘š = 𝑗 β†’ (1 / π‘š) = (1 / 𝑗))
8886, 87ifbieq2d 4554 . . . . . . . . . . . . . . . . . . . . 21 (π‘š = 𝑗 β†’ if(π‘š = 0, 0, (1 / π‘š)) = if(𝑗 = 0, 0, (1 / 𝑗)))
89 eqid 2731 . . . . . . . . . . . . . . . . . . . . 21 (π‘š ∈ β„•0 ↦ if(π‘š = 0, 0, (1 / π‘š))) = (π‘š ∈ β„•0 ↦ if(π‘š = 0, 0, (1 / π‘š)))
90 c0ex 11215 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ V
91 ovex 7445 . . . . . . . . . . . . . . . . . . . . . 22 (1 / 𝑗) ∈ V
9290, 91ifex 4578 . . . . . . . . . . . . . . . . . . . . 21 if(𝑗 = 0, 0, (1 / 𝑗)) ∈ V
9388, 89, 92fvmpt 6998 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ β„•0 β†’ ((π‘š ∈ β„•0 ↦ if(π‘š = 0, 0, (1 / π‘š)))β€˜π‘—) = if(𝑗 = 0, 0, (1 / 𝑗)))
9493eqcomd 2737 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ β„•0 β†’ if(𝑗 = 0, 0, (1 / 𝑗)) = ((π‘š ∈ β„•0 ↦ if(π‘š = 0, 0, (1 / π‘š)))β€˜π‘—))
9594oveq1d 7427 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ β„•0 β†’ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗)) = (((π‘š ∈ β„•0 ↦ if(π‘š = 0, 0, (1 / π‘š)))β€˜π‘—) Β· (π‘₯↑𝑗)))
9695mpteq2ia 5251 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗))) = (𝑗 ∈ β„•0 ↦ (((π‘š ∈ β„•0 ↦ if(π‘š = 0, 0, (1 / π‘š)))β€˜π‘—) Β· (π‘₯↑𝑗)))
9796mpteq2i 5253 . . . . . . . . . . . . . . . 16 (π‘₯ ∈ β„‚ ↦ (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗)))) = (π‘₯ ∈ β„‚ ↦ (𝑗 ∈ β„•0 ↦ (((π‘š ∈ β„•0 ↦ if(π‘š = 0, 0, (1 / π‘š)))β€˜π‘—) Β· (π‘₯↑𝑗))))
98 0cnd 11214 . . . . . . . . . . . . . . . . . 18 (((⊀ ∧ π‘š ∈ β„•0) ∧ π‘š = 0) β†’ 0 ∈ β„‚)
99 nn0cn 12489 . . . . . . . . . . . . . . . . . . . 20 (π‘š ∈ β„•0 β†’ π‘š ∈ β„‚)
10099adantl 481 . . . . . . . . . . . . . . . . . . 19 ((⊀ ∧ π‘š ∈ β„•0) β†’ π‘š ∈ β„‚)
101 neqne 2947 . . . . . . . . . . . . . . . . . . 19 (Β¬ π‘š = 0 β†’ π‘š β‰  0)
102 reccl 11886 . . . . . . . . . . . . . . . . . . 19 ((π‘š ∈ β„‚ ∧ π‘š β‰  0) β†’ (1 / π‘š) ∈ β„‚)
103100, 101, 102syl2an 595 . . . . . . . . . . . . . . . . . 18 (((⊀ ∧ π‘š ∈ β„•0) ∧ Β¬ π‘š = 0) β†’ (1 / π‘š) ∈ β„‚)
10498, 103ifclda 4563 . . . . . . . . . . . . . . . . 17 ((⊀ ∧ π‘š ∈ β„•0) β†’ if(π‘š = 0, 0, (1 / π‘š)) ∈ β„‚)
105104fmpttd 7116 . . . . . . . . . . . . . . . 16 (⊀ β†’ (π‘š ∈ β„•0 ↦ if(π‘š = 0, 0, (1 / π‘š))):β„•0βŸΆβ„‚)
106 recn 11206 . . . . . . . . . . . . . . . . . . . . . 22 (π‘Ÿ ∈ ℝ β†’ π‘Ÿ ∈ β„‚)
107 oveq1 7419 . . . . . . . . . . . . . . . . . . . . . . . . 25 (π‘₯ = π‘Ÿ β†’ (π‘₯↑𝑗) = (π‘Ÿβ†‘π‘—))
108107oveq2d 7428 . . . . . . . . . . . . . . . . . . . . . . . 24 (π‘₯ = π‘Ÿ β†’ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗)) = (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))
109108mpteq2dv 5250 . . . . . . . . . . . . . . . . . . . . . . 23 (π‘₯ = π‘Ÿ β†’ (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗))) = (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—))))
110 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . 23 (π‘₯ ∈ β„‚ ↦ (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗)))) = (π‘₯ ∈ β„‚ ↦ (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗))))
111 nn0ex 12485 . . . . . . . . . . . . . . . . . . . . . . . 24 β„•0 ∈ V
112111mptex 7227 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—))) ∈ V
113109, 110, 112fvmpt 6998 . . . . . . . . . . . . . . . . . . . . . 22 (π‘Ÿ ∈ β„‚ β†’ ((π‘₯ ∈ β„‚ ↦ (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗))))β€˜π‘Ÿ) = (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—))))
114106, 113syl 17 . . . . . . . . . . . . . . . . . . . . 21 (π‘Ÿ ∈ ℝ β†’ ((π‘₯ ∈ β„‚ ↦ (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗))))β€˜π‘Ÿ) = (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—))))
115114eqcomd 2737 . . . . . . . . . . . . . . . . . . . 20 (π‘Ÿ ∈ ℝ β†’ (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—))) = ((π‘₯ ∈ β„‚ ↦ (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗))))β€˜π‘Ÿ))
116115seqeq3d 13981 . . . . . . . . . . . . . . . . . . 19 (π‘Ÿ ∈ ℝ β†’ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) = seq0( + , ((π‘₯ ∈ β„‚ ↦ (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗))))β€˜π‘Ÿ)))
117116eleq1d 2817 . . . . . . . . . . . . . . . . . 18 (π‘Ÿ ∈ ℝ β†’ (seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ ↔ seq0( + , ((π‘₯ ∈ β„‚ ↦ (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗))))β€˜π‘Ÿ)) ∈ dom ⇝ ))
118117rabbiia 3435 . . . . . . . . . . . . . . . . 17 {π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ } = {π‘Ÿ ∈ ℝ ∣ seq0( + , ((π‘₯ ∈ β„‚ ↦ (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗))))β€˜π‘Ÿ)) ∈ dom ⇝ }
119118supeq1i 9448 . . . . . . . . . . . . . . . 16 sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ) = sup({π‘Ÿ ∈ ℝ ∣ seq0( + , ((π‘₯ ∈ β„‚ ↦ (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗))))β€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < )
12097, 105, 119radcnvcl 26269 . . . . . . . . . . . . . . 15 (⊀ β†’ sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ) ∈ (0[,]+∞))
12185, 120sselid 3980 . . . . . . . . . . . . . 14 (⊀ β†’ sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*)
12244, 121mp1i 13 . . . . . . . . . . . . 13 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*)
123 1re 11221 . . . . . . . . . . . . . . 15 1 ∈ ℝ
124 avglt1 12457 . . . . . . . . . . . . . . 15 (((absβ€˜π‘¦) ∈ ℝ ∧ 1 ∈ ℝ) β†’ ((absβ€˜π‘¦) < 1 ↔ (absβ€˜π‘¦) < (((absβ€˜π‘¦) + 1) / 2)))
12554, 123, 124sylancl 585 . . . . . . . . . . . . . 14 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ ((absβ€˜π‘¦) < 1 ↔ (absβ€˜π‘¦) < (((absβ€˜π‘¦) + 1) / 2)))
12664, 125mpbid 231 . . . . . . . . . . . . 13 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (absβ€˜π‘¦) < (((absβ€˜π‘¦) + 1) / 2))
127 0red 11224 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ 0 ∈ ℝ)
128127, 54, 83, 79, 126lelttrd 11379 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ 0 < (((absβ€˜π‘¦) + 1) / 2))
129127, 83, 128ltled 11369 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ 0 ≀ (((absβ€˜π‘¦) + 1) / 2))
13083, 129absidd 15376 . . . . . . . . . . . . . 14 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (absβ€˜(((absβ€˜π‘¦) + 1) / 2)) = (((absβ€˜π‘¦) + 1) / 2))
13144, 105mp1i 13 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (π‘š ∈ β„•0 ↦ if(π‘š = 0, 0, (1 / π‘š))):β„•0βŸΆβ„‚)
13283recnd 11249 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (((absβ€˜π‘¦) + 1) / 2) ∈ β„‚)
133 oveq1 7419 . . . . . . . . . . . . . . . . . . . . 21 (π‘₯ = (((absβ€˜π‘¦) + 1) / 2) β†’ (π‘₯↑𝑗) = ((((absβ€˜π‘¦) + 1) / 2)↑𝑗))
134133oveq2d 7428 . . . . . . . . . . . . . . . . . . . 20 (π‘₯ = (((absβ€˜π‘¦) + 1) / 2) β†’ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗)) = (if(𝑗 = 0, 0, (1 / 𝑗)) Β· ((((absβ€˜π‘¦) + 1) / 2)↑𝑗)))
135134mpteq2dv 5250 . . . . . . . . . . . . . . . . . . 19 (π‘₯ = (((absβ€˜π‘¦) + 1) / 2) β†’ (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗))) = (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· ((((absβ€˜π‘¦) + 1) / 2)↑𝑗))))
136111mptex 7227 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· ((((absβ€˜π‘¦) + 1) / 2)↑𝑗))) ∈ V
137135, 110, 136fvmpt 6998 . . . . . . . . . . . . . . . . . 18 ((((absβ€˜π‘¦) + 1) / 2) ∈ β„‚ β†’ ((π‘₯ ∈ β„‚ ↦ (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗))))β€˜(((absβ€˜π‘¦) + 1) / 2)) = (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· ((((absβ€˜π‘¦) + 1) / 2)↑𝑗))))
138132, 137syl 17 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ ((π‘₯ ∈ β„‚ ↦ (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗))))β€˜(((absβ€˜π‘¦) + 1) / 2)) = (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· ((((absβ€˜π‘¦) + 1) / 2)↑𝑗))))
139138seqeq3d 13981 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ seq0( + , ((π‘₯ ∈ β„‚ ↦ (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗))))β€˜(((absβ€˜π‘¦) + 1) / 2))) = seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· ((((absβ€˜π‘¦) + 1) / 2)↑𝑗)))))
140 avglt2 12458 . . . . . . . . . . . . . . . . . . . 20 (((absβ€˜π‘¦) ∈ ℝ ∧ 1 ∈ ℝ) β†’ ((absβ€˜π‘¦) < 1 ↔ (((absβ€˜π‘¦) + 1) / 2) < 1))
14154, 123, 140sylancl 585 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ ((absβ€˜π‘¦) < 1 ↔ (((absβ€˜π‘¦) + 1) / 2) < 1))
14264, 141mpbid 231 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (((absβ€˜π‘¦) + 1) / 2) < 1)
143130, 142eqbrtrd 5170 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (absβ€˜(((absβ€˜π‘¦) + 1) / 2)) < 1)
144 logtayllem 26508 . . . . . . . . . . . . . . . . 17 (((((absβ€˜π‘¦) + 1) / 2) ∈ β„‚ ∧ (absβ€˜(((absβ€˜π‘¦) + 1) / 2)) < 1) β†’ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· ((((absβ€˜π‘¦) + 1) / 2)↑𝑗)))) ∈ dom ⇝ )
145132, 143, 144syl2anc 583 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· ((((absβ€˜π‘¦) + 1) / 2)↑𝑗)))) ∈ dom ⇝ )
146139, 145eqeltrd 2832 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ seq0( + , ((π‘₯ ∈ β„‚ ↦ (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗))))β€˜(((absβ€˜π‘¦) + 1) / 2))) ∈ dom ⇝ )
14797, 131, 119, 132, 146radcnvle 26272 . . . . . . . . . . . . . 14 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (absβ€˜(((absβ€˜π‘¦) + 1) / 2)) ≀ sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ))
148130, 147eqbrtrrd 5172 . . . . . . . . . . . . 13 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (((absβ€˜π‘¦) + 1) / 2) ≀ sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ))
14980, 84, 122, 126, 148xrltletrd 13147 . . . . . . . . . . . 12 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (absβ€˜π‘¦) < sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ))
150 0re 11223 . . . . . . . . . . . . 13 0 ∈ ℝ
151 elico2 13395 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*) β†’ ((absβ€˜π‘¦) ∈ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < )) ↔ ((absβ€˜π‘¦) ∈ ℝ ∧ 0 ≀ (absβ€˜π‘¦) ∧ (absβ€˜π‘¦) < sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ))))
152150, 122, 151sylancr 586 . . . . . . . . . . . 12 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ ((absβ€˜π‘¦) ∈ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < )) ↔ ((absβ€˜π‘¦) ∈ ℝ ∧ 0 ≀ (absβ€˜π‘¦) ∧ (absβ€˜π‘¦) < sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ))))
15354, 79, 149, 152mpbir3and 1341 . . . . . . . . . . 11 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (absβ€˜π‘¦) ∈ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < )))
154 absf 15291 . . . . . . . . . . . 12 abs:β„‚βŸΆβ„
155 ffn 6717 . . . . . . . . . . . 12 (abs:β„‚βŸΆβ„ β†’ abs Fn β„‚)
156 elpreima 7059 . . . . . . . . . . . 12 (abs Fn β„‚ β†’ (𝑦 ∈ (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ))) ↔ (𝑦 ∈ β„‚ ∧ (absβ€˜π‘¦) ∈ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < )))))
157154, 155, 156mp2b 10 . . . . . . . . . . 11 (𝑦 ∈ (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ))) ↔ (𝑦 ∈ β„‚ ∧ (absβ€˜π‘¦) ∈ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ))))
15851, 153, 157sylanbrc 582 . . . . . . . . . 10 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ 𝑦 ∈ (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ))))
159 cnvimass 6080 . . . . . . . . . . . . . . . . 17 (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ))) βŠ† dom abs
160154fdmi 6729 . . . . . . . . . . . . . . . . 17 dom abs = β„‚
161159, 160sseqtri 4018 . . . . . . . . . . . . . . . 16 (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ))) βŠ† β„‚
162161sseli 3978 . . . . . . . . . . . . . . 15 (𝑦 ∈ (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ))) β†’ 𝑦 ∈ β„‚)
163 oveq1 7419 . . . . . . . . . . . . . . . . . . . . . 22 (π‘₯ = 𝑦 β†’ (π‘₯↑𝑗) = (𝑦↑𝑗))
164163oveq2d 7428 . . . . . . . . . . . . . . . . . . . . 21 (π‘₯ = 𝑦 β†’ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗)) = (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (𝑦↑𝑗)))
165164mpteq2dv 5250 . . . . . . . . . . . . . . . . . . . 20 (π‘₯ = 𝑦 β†’ (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗))) = (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (𝑦↑𝑗))))
166111mptex 7227 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (𝑦↑𝑗))) ∈ V
167165, 110, 166fvmpt 6998 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ β„‚ β†’ ((π‘₯ ∈ β„‚ ↦ (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗))))β€˜π‘¦) = (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (𝑦↑𝑗))))
168167adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ β„‚ ∧ 𝑛 ∈ β„•0) β†’ ((π‘₯ ∈ β„‚ ↦ (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗))))β€˜π‘¦) = (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (𝑦↑𝑗))))
169168fveq1d 6893 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ β„‚ ∧ 𝑛 ∈ β„•0) β†’ (((π‘₯ ∈ β„‚ ↦ (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗))))β€˜π‘¦)β€˜π‘›) = ((𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (𝑦↑𝑗)))β€˜π‘›))
170 eqeq1 2735 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑛 β†’ (𝑗 = 0 ↔ 𝑛 = 0))
171 oveq2 7420 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑛 β†’ (1 / 𝑗) = (1 / 𝑛))
172170, 171ifbieq2d 4554 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑛 β†’ if(𝑗 = 0, 0, (1 / 𝑗)) = if(𝑛 = 0, 0, (1 / 𝑛)))
173 oveq2 7420 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑛 β†’ (𝑦↑𝑗) = (𝑦↑𝑛))
174172, 173oveq12d 7430 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑛 β†’ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (𝑦↑𝑗)) = (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛)))
175 eqid 2731 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (𝑦↑𝑗))) = (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (𝑦↑𝑗)))
176 ovex 7445 . . . . . . . . . . . . . . . . . . 19 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛)) ∈ V
177174, 175, 176fvmpt 6998 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ β„•0 β†’ ((𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (𝑦↑𝑗)))β€˜π‘›) = (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛)))
178177adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ β„‚ ∧ 𝑛 ∈ β„•0) β†’ ((𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (𝑦↑𝑗)))β€˜π‘›) = (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛)))
179169, 178eqtr2d 2772 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ β„‚ ∧ 𝑛 ∈ β„•0) β†’ (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛)) = (((π‘₯ ∈ β„‚ ↦ (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗))))β€˜π‘¦)β€˜π‘›))
180179sumeq2dv 15656 . . . . . . . . . . . . . . 15 (𝑦 ∈ β„‚ β†’ Σ𝑛 ∈ β„•0 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛)) = Σ𝑛 ∈ β„•0 (((π‘₯ ∈ β„‚ ↦ (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗))))β€˜π‘¦)β€˜π‘›))
181162, 180syl 17 . . . . . . . . . . . . . 14 (𝑦 ∈ (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ))) β†’ Σ𝑛 ∈ β„•0 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛)) = Σ𝑛 ∈ β„•0 (((π‘₯ ∈ β„‚ ↦ (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗))))β€˜π‘¦)β€˜π‘›))
182181mpteq2ia 5251 . . . . . . . . . . . . 13 (𝑦 ∈ (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ β„•0 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛))) = (𝑦 ∈ (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ β„•0 (((π‘₯ ∈ β„‚ ↦ (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗))))β€˜π‘¦)β€˜π‘›))
183 eqid 2731 . . . . . . . . . . . . 13 (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ))) = (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < )))
184 eqid 2731 . . . . . . . . . . . . 13 if(sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((absβ€˜π‘§) + sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < )) / 2), ((absβ€˜π‘§) + 1)) = if(sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((absβ€˜π‘§) + sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < )) / 2), ((absβ€˜π‘§) + 1))
18597, 182, 105, 119, 183, 184psercn 26279 . . . . . . . . . . . 12 (⊀ β†’ (𝑦 ∈ (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ β„•0 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛))) ∈ ((β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < )))–cnβ†’β„‚))
186 cncff 24734 . . . . . . . . . . . 12 ((𝑦 ∈ (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ β„•0 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛))) ∈ ((β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < )))–cnβ†’β„‚) β†’ (𝑦 ∈ (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ β„•0 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛))):(β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < )))βŸΆβ„‚)
187185, 186syl 17 . . . . . . . . . . 11 (⊀ β†’ (𝑦 ∈ (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ β„•0 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛))):(β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < )))βŸΆβ„‚)
188187fvmptelcdm 7114 . . . . . . . . . 10 ((⊀ ∧ 𝑦 ∈ (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < )))) β†’ Σ𝑛 ∈ β„•0 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛)) ∈ β„‚)
189158, 188sylan2 592 . . . . . . . . 9 ((⊀ ∧ 𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1)) β†’ Σ𝑛 ∈ β„•0 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛)) ∈ β„‚)
190189fmpttd 7116 . . . . . . . 8 (⊀ β†’ (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ Σ𝑛 ∈ β„•0 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛))):(0(ballβ€˜(abs ∘ βˆ’ ))1)βŸΆβ„‚)
191 cnelprrecn 11209 . . . . . . . . . . . . 13 β„‚ ∈ {ℝ, β„‚}
192191a1i 11 . . . . . . . . . . . 12 (⊀ β†’ β„‚ ∈ {ℝ, β„‚})
19375adantl 481 . . . . . . . . . . . 12 ((⊀ ∧ 𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1)) β†’ (logβ€˜(1 βˆ’ 𝑦)) ∈ β„‚)
194 ovexd 7447 . . . . . . . . . . . 12 ((⊀ ∧ 𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1)) β†’ ((1 / (1 βˆ’ 𝑦)) Β· -1) ∈ V)
19529cnmetdval 24608 . . . . . . . . . . . . . . . . . 18 ((1 ∈ β„‚ ∧ (1 βˆ’ 𝑦) ∈ β„‚) β†’ (1(abs ∘ βˆ’ )(1 βˆ’ 𝑦)) = (absβ€˜(1 βˆ’ (1 βˆ’ 𝑦))))
19648, 53, 195sylancr 586 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (1(abs ∘ βˆ’ )(1 βˆ’ 𝑦)) = (absβ€˜(1 βˆ’ (1 βˆ’ 𝑦))))
197 nncan 11496 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ β„‚ ∧ 𝑦 ∈ β„‚) β†’ (1 βˆ’ (1 βˆ’ 𝑦)) = 𝑦)
19848, 51, 197sylancr 586 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (1 βˆ’ (1 βˆ’ 𝑦)) = 𝑦)
199198fveq2d 6895 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (absβ€˜(1 βˆ’ (1 βˆ’ 𝑦))) = (absβ€˜π‘¦))
200196, 199eqtrd 2771 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (1(abs ∘ βˆ’ )(1 βˆ’ 𝑦)) = (absβ€˜π‘¦))
201200, 64eqbrtrd 5170 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (1(abs ∘ βˆ’ )(1 βˆ’ 𝑦)) < 1)
202 elbl 24215 . . . . . . . . . . . . . . . 16 (((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ 1 ∈ β„‚ ∧ 1 ∈ ℝ*) β†’ ((1 βˆ’ 𝑦) ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) ↔ ((1 βˆ’ 𝑦) ∈ β„‚ ∧ (1(abs ∘ βˆ’ )(1 βˆ’ 𝑦)) < 1)))
20338, 48, 39, 202mp3an 1460 . . . . . . . . . . . . . . 15 ((1 βˆ’ 𝑦) ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) ↔ ((1 βˆ’ 𝑦) ∈ β„‚ ∧ (1(abs ∘ βˆ’ )(1 βˆ’ 𝑦)) < 1))
20453, 201, 203sylanbrc 582 . . . . . . . . . . . . . 14 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (1 βˆ’ 𝑦) ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1))
205204adantl 481 . . . . . . . . . . . . 13 ((⊀ ∧ 𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1)) β†’ (1 βˆ’ 𝑦) ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1))
206 neg1cn 12333 . . . . . . . . . . . . . 14 -1 ∈ β„‚
207206a1i 11 . . . . . . . . . . . . 13 ((⊀ ∧ 𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1)) β†’ -1 ∈ β„‚)
208 eqid 2731 . . . . . . . . . . . . . . . . . 18 (1(ballβ€˜(abs ∘ βˆ’ ))1) = (1(ballβ€˜(abs ∘ βˆ’ ))1)
209208dvlog2lem 26501 . . . . . . . . . . . . . . . . 17 (1(ballβ€˜(abs ∘ βˆ’ ))1) βŠ† (β„‚ βˆ– (-∞(,]0))
210209sseli 3978 . . . . . . . . . . . . . . . 16 (π‘₯ ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) β†’ π‘₯ ∈ (β„‚ βˆ– (-∞(,]0)))
211210eldifad 3960 . . . . . . . . . . . . . . 15 (π‘₯ ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) β†’ π‘₯ ∈ β„‚)
212 eqid 2731 . . . . . . . . . . . . . . . . 17 (β„‚ βˆ– (-∞(,]0)) = (β„‚ βˆ– (-∞(,]0))
213212logdmn0 26489 . . . . . . . . . . . . . . . 16 (π‘₯ ∈ (β„‚ βˆ– (-∞(,]0)) β†’ π‘₯ β‰  0)
214210, 213syl 17 . . . . . . . . . . . . . . 15 (π‘₯ ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) β†’ π‘₯ β‰  0)
215211, 214logcld 26420 . . . . . . . . . . . . . 14 (π‘₯ ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (logβ€˜π‘₯) ∈ β„‚)
216215adantl 481 . . . . . . . . . . . . 13 ((⊀ ∧ π‘₯ ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1)) β†’ (logβ€˜π‘₯) ∈ β„‚)
217 ovexd 7447 . . . . . . . . . . . . 13 ((⊀ ∧ π‘₯ ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1)) β†’ (1 / π‘₯) ∈ V)
218 simpr 484 . . . . . . . . . . . . . . 15 ((⊀ ∧ 𝑦 ∈ β„‚) β†’ 𝑦 ∈ β„‚)
21948, 218, 52sylancr 586 . . . . . . . . . . . . . 14 ((⊀ ∧ 𝑦 ∈ β„‚) β†’ (1 βˆ’ 𝑦) ∈ β„‚)
220206a1i 11 . . . . . . . . . . . . . 14 ((⊀ ∧ 𝑦 ∈ β„‚) β†’ -1 ∈ β„‚)
221 1cnd 11216 . . . . . . . . . . . . . . . 16 ((⊀ ∧ 𝑦 ∈ β„‚) β†’ 1 ∈ β„‚)
222 0cnd 11214 . . . . . . . . . . . . . . . 16 ((⊀ ∧ 𝑦 ∈ β„‚) β†’ 0 ∈ β„‚)
223 1cnd 11216 . . . . . . . . . . . . . . . . 17 (⊀ β†’ 1 ∈ β„‚)
224192, 223dvmptc 25811 . . . . . . . . . . . . . . . 16 (⊀ β†’ (β„‚ D (𝑦 ∈ β„‚ ↦ 1)) = (𝑦 ∈ β„‚ ↦ 0))
225192dvmptid 25810 . . . . . . . . . . . . . . . 16 (⊀ β†’ (β„‚ D (𝑦 ∈ β„‚ ↦ 𝑦)) = (𝑦 ∈ β„‚ ↦ 1))
226192, 221, 222, 224, 218, 221, 225dvmptsub 25820 . . . . . . . . . . . . . . 15 (⊀ β†’ (β„‚ D (𝑦 ∈ β„‚ ↦ (1 βˆ’ 𝑦))) = (𝑦 ∈ β„‚ ↦ (0 βˆ’ 1)))
227 df-neg 11454 . . . . . . . . . . . . . . . 16 -1 = (0 βˆ’ 1)
228227mpteq2i 5253 . . . . . . . . . . . . . . 15 (𝑦 ∈ β„‚ ↦ -1) = (𝑦 ∈ β„‚ ↦ (0 βˆ’ 1))
229226, 228eqtr4di 2789 . . . . . . . . . . . . . 14 (⊀ β†’ (β„‚ D (𝑦 ∈ β„‚ ↦ (1 βˆ’ 𝑦))) = (𝑦 ∈ β„‚ ↦ -1))
23050a1i 11 . . . . . . . . . . . . . 14 (⊀ β†’ (0(ballβ€˜(abs ∘ βˆ’ ))1) βŠ† β„‚)
231 eqid 2731 . . . . . . . . . . . . . . . 16 (TopOpenβ€˜β„‚fld) = (TopOpenβ€˜β„‚fld)
232231cnfldtopon 24620 . . . . . . . . . . . . . . 15 (TopOpenβ€˜β„‚fld) ∈ (TopOnβ€˜β„‚)
233232toponrestid 22744 . . . . . . . . . . . . . 14 (TopOpenβ€˜β„‚fld) = ((TopOpenβ€˜β„‚fld) β†Ύt β„‚)
234231cnfldtopn 24619 . . . . . . . . . . . . . . . . 17 (TopOpenβ€˜β„‚fld) = (MetOpenβ€˜(abs ∘ βˆ’ ))
235234blopn 24330 . . . . . . . . . . . . . . . 16 (((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ 0 ∈ β„‚ ∧ 1 ∈ ℝ*) β†’ (0(ballβ€˜(abs ∘ βˆ’ ))1) ∈ (TopOpenβ€˜β„‚fld))
23638, 28, 39, 235mp3an 1460 . . . . . . . . . . . . . . 15 (0(ballβ€˜(abs ∘ βˆ’ ))1) ∈ (TopOpenβ€˜β„‚fld)
237236a1i 11 . . . . . . . . . . . . . 14 (⊀ β†’ (0(ballβ€˜(abs ∘ βˆ’ ))1) ∈ (TopOpenβ€˜β„‚fld))
238192, 219, 220, 229, 230, 233, 231, 237dvmptres 25816 . . . . . . . . . . . . 13 (⊀ β†’ (β„‚ D (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ (1 βˆ’ 𝑦))) = (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ -1))
239 logf1o 26414 . . . . . . . . . . . . . . . . . . . 20 log:(β„‚ βˆ– {0})–1-1-ontoβ†’ran log
240 f1of 6833 . . . . . . . . . . . . . . . . . . . 20 (log:(β„‚ βˆ– {0})–1-1-ontoβ†’ran log β†’ log:(β„‚ βˆ– {0})⟢ran log)
241239, 240ax-mp 5 . . . . . . . . . . . . . . . . . . 19 log:(β„‚ βˆ– {0})⟢ran log
242212logdmss 26491 . . . . . . . . . . . . . . . . . . . 20 (β„‚ βˆ– (-∞(,]0)) βŠ† (β„‚ βˆ– {0})
243209, 242sstri 3991 . . . . . . . . . . . . . . . . . . 19 (1(ballβ€˜(abs ∘ βˆ’ ))1) βŠ† (β„‚ βˆ– {0})
244 fssres 6757 . . . . . . . . . . . . . . . . . . 19 ((log:(β„‚ βˆ– {0})⟢ran log ∧ (1(ballβ€˜(abs ∘ βˆ’ ))1) βŠ† (β„‚ βˆ– {0})) β†’ (log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1)):(1(ballβ€˜(abs ∘ βˆ’ ))1)⟢ran log)
245241, 243, 244mp2an 689 . . . . . . . . . . . . . . . . . 18 (log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1)):(1(ballβ€˜(abs ∘ βˆ’ ))1)⟢ran log
246245a1i 11 . . . . . . . . . . . . . . . . 17 (⊀ β†’ (log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1)):(1(ballβ€˜(abs ∘ βˆ’ ))1)⟢ran log)
247246feqmptd 6960 . . . . . . . . . . . . . . . 16 (⊀ β†’ (log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1)) = (π‘₯ ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) ↦ ((log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1))β€˜π‘₯)))
248 fvres 6910 . . . . . . . . . . . . . . . . 17 (π‘₯ ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) β†’ ((log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1))β€˜π‘₯) = (logβ€˜π‘₯))
249248mpteq2ia 5251 . . . . . . . . . . . . . . . 16 (π‘₯ ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) ↦ ((log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1))β€˜π‘₯)) = (π‘₯ ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) ↦ (logβ€˜π‘₯))
250247, 249eqtrdi 2787 . . . . . . . . . . . . . . 15 (⊀ β†’ (log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1)) = (π‘₯ ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) ↦ (logβ€˜π‘₯)))
251250oveq2d 7428 . . . . . . . . . . . . . 14 (⊀ β†’ (β„‚ D (log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1))) = (β„‚ D (π‘₯ ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) ↦ (logβ€˜π‘₯))))
252208dvlog2 26502 . . . . . . . . . . . . . 14 (β„‚ D (log β†Ύ (1(ballβ€˜(abs ∘ βˆ’ ))1))) = (π‘₯ ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) ↦ (1 / π‘₯))
253251, 252eqtr3di 2786 . . . . . . . . . . . . 13 (⊀ β†’ (β„‚ D (π‘₯ ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) ↦ (logβ€˜π‘₯))) = (π‘₯ ∈ (1(ballβ€˜(abs ∘ βˆ’ ))1) ↦ (1 / π‘₯)))
254 fveq2 6891 . . . . . . . . . . . . 13 (π‘₯ = (1 βˆ’ 𝑦) β†’ (logβ€˜π‘₯) = (logβ€˜(1 βˆ’ 𝑦)))
255 oveq2 7420 . . . . . . . . . . . . 13 (π‘₯ = (1 βˆ’ 𝑦) β†’ (1 / π‘₯) = (1 / (1 βˆ’ 𝑦)))
256192, 192, 205, 207, 216, 217, 238, 253, 254, 255dvmptco 25825 . . . . . . . . . . . 12 (⊀ β†’ (β„‚ D (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ (logβ€˜(1 βˆ’ 𝑦)))) = (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ ((1 / (1 βˆ’ 𝑦)) Β· -1)))
257192, 193, 194, 256dvmptneg 25819 . . . . . . . . . . 11 (⊀ β†’ (β„‚ D (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ -(logβ€˜(1 βˆ’ 𝑦)))) = (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ -((1 / (1 βˆ’ 𝑦)) Β· -1)))
25853, 74reccld 11990 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (1 / (1 βˆ’ 𝑦)) ∈ β„‚)
259 mulcom 11202 . . . . . . . . . . . . . . . 16 (((1 / (1 βˆ’ 𝑦)) ∈ β„‚ ∧ -1 ∈ β„‚) β†’ ((1 / (1 βˆ’ 𝑦)) Β· -1) = (-1 Β· (1 / (1 βˆ’ 𝑦))))
260258, 206, 259sylancl 585 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ ((1 / (1 βˆ’ 𝑦)) Β· -1) = (-1 Β· (1 / (1 βˆ’ 𝑦))))
261258mulm1d 11673 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (-1 Β· (1 / (1 βˆ’ 𝑦))) = -(1 / (1 βˆ’ 𝑦)))
262260, 261eqtrd 2771 . . . . . . . . . . . . . 14 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ ((1 / (1 βˆ’ 𝑦)) Β· -1) = -(1 / (1 βˆ’ 𝑦)))
263262negeqd 11461 . . . . . . . . . . . . 13 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ -((1 / (1 βˆ’ 𝑦)) Β· -1) = --(1 / (1 βˆ’ 𝑦)))
264258negnegd 11569 . . . . . . . . . . . . 13 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ --(1 / (1 βˆ’ 𝑦)) = (1 / (1 βˆ’ 𝑦)))
265263, 264eqtrd 2771 . . . . . . . . . . . 12 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ -((1 / (1 βˆ’ 𝑦)) Β· -1) = (1 / (1 βˆ’ 𝑦)))
266265mpteq2ia 5251 . . . . . . . . . . 11 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ -((1 / (1 βˆ’ 𝑦)) Β· -1)) = (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ (1 / (1 βˆ’ 𝑦)))
267257, 266eqtrdi 2787 . . . . . . . . . 10 (⊀ β†’ (β„‚ D (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ -(logβ€˜(1 βˆ’ 𝑦)))) = (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ (1 / (1 βˆ’ 𝑦))))
268267dmeqd 5905 . . . . . . . . 9 (⊀ β†’ dom (β„‚ D (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ -(logβ€˜(1 βˆ’ 𝑦)))) = dom (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ (1 / (1 βˆ’ 𝑦))))
269 dmmptg 6241 . . . . . . . . . 10 (βˆ€π‘¦ ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1)(1 / (1 βˆ’ 𝑦)) ∈ V β†’ dom (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ (1 / (1 βˆ’ 𝑦))) = (0(ballβ€˜(abs ∘ βˆ’ ))1))
270 ovexd 7447 . . . . . . . . . 10 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ (1 / (1 βˆ’ 𝑦)) ∈ V)
271269, 270mprg 3066 . . . . . . . . 9 dom (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ (1 / (1 βˆ’ 𝑦))) = (0(ballβ€˜(abs ∘ βˆ’ ))1)
272268, 271eqtrdi 2787 . . . . . . . 8 (⊀ β†’ dom (β„‚ D (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ -(logβ€˜(1 βˆ’ 𝑦)))) = (0(ballβ€˜(abs ∘ βˆ’ ))1))
273 sumex 15641 . . . . . . . . . . . 12 Σ𝑛 ∈ β„• ((𝑛 Β· ((π‘š ∈ β„•0 ↦ if(π‘š = 0, 0, (1 / π‘š)))β€˜π‘›)) Β· (𝑦↑(𝑛 βˆ’ 1))) ∈ V
274273a1i 11 . . . . . . . . . . 11 ((⊀ ∧ 𝑦 ∈ (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < )))) β†’ Σ𝑛 ∈ β„• ((𝑛 Β· ((π‘š ∈ β„•0 ↦ if(π‘š = 0, 0, (1 / π‘š)))β€˜π‘›)) Β· (𝑦↑(𝑛 βˆ’ 1))) ∈ V)
275 fveq2 6891 . . . . . . . . . . . . . . 15 (𝑛 = π‘˜ β†’ (((π‘₯ ∈ β„‚ ↦ (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗))))β€˜π‘¦)β€˜π‘›) = (((π‘₯ ∈ β„‚ ↦ (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗))))β€˜π‘¦)β€˜π‘˜))
276275cbvsumv 15649 . . . . . . . . . . . . . 14 Σ𝑛 ∈ β„•0 (((π‘₯ ∈ β„‚ ↦ (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗))))β€˜π‘¦)β€˜π‘›) = Ξ£π‘˜ ∈ β„•0 (((π‘₯ ∈ β„‚ ↦ (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗))))β€˜π‘¦)β€˜π‘˜)
277181, 276eqtrdi 2787 . . . . . . . . . . . . 13 (𝑦 ∈ (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ))) β†’ Σ𝑛 ∈ β„•0 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛)) = Ξ£π‘˜ ∈ β„•0 (((π‘₯ ∈ β„‚ ↦ (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗))))β€˜π‘¦)β€˜π‘˜))
278277mpteq2ia 5251 . . . . . . . . . . . 12 (𝑦 ∈ (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ β„•0 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛))) = (𝑦 ∈ (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ))) ↦ Ξ£π‘˜ ∈ β„•0 (((π‘₯ ∈ β„‚ ↦ (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘₯↑𝑗))))β€˜π‘¦)β€˜π‘˜))
279 eqid 2731 . . . . . . . . . . . 12 (0(ballβ€˜(abs ∘ βˆ’ ))(((absβ€˜π‘§) + if(sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((absβ€˜π‘§) + sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < )) / 2), ((absβ€˜π‘§) + 1))) / 2)) = (0(ballβ€˜(abs ∘ βˆ’ ))(((absβ€˜π‘§) + if(sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((absβ€˜π‘§) + sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < )) / 2), ((absβ€˜π‘§) + 1))) / 2))
28097, 278, 105, 119, 183, 184, 279pserdv2 26283 . . . . . . . . . . 11 (⊀ β†’ (β„‚ D (𝑦 ∈ (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ β„•0 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛)))) = (𝑦 ∈ (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ))) ↦ Σ𝑛 ∈ β„• ((𝑛 Β· ((π‘š ∈ β„•0 ↦ if(π‘š = 0, 0, (1 / π‘š)))β€˜π‘›)) Β· (𝑦↑(𝑛 βˆ’ 1)))))
281158ssriv 3986 . . . . . . . . . . . 12 (0(ballβ€˜(abs ∘ βˆ’ ))1) βŠ† (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < )))
282281a1i 11 . . . . . . . . . . 11 (⊀ β†’ (0(ballβ€˜(abs ∘ βˆ’ ))1) βŠ† (β—‘abs β€œ (0[,)sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (𝑗 ∈ β„•0 ↦ (if(𝑗 = 0, 0, (1 / 𝑗)) Β· (π‘Ÿβ†‘π‘—)))) ∈ dom ⇝ }, ℝ*, < ))))
283192, 188, 274, 280, 282, 233, 231, 237dvmptres 25816 . . . . . . . . . 10 (⊀ β†’ (β„‚ D (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ Σ𝑛 ∈ β„•0 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛)))) = (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ Σ𝑛 ∈ β„• ((𝑛 Β· ((π‘š ∈ β„•0 ↦ if(π‘š = 0, 0, (1 / π‘š)))β€˜π‘›)) Β· (𝑦↑(𝑛 βˆ’ 1)))))
284 nnnn0 12486 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ β„• β†’ 𝑛 ∈ β„•0)
285284adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ∧ 𝑛 ∈ β„•) β†’ 𝑛 ∈ β„•0)
286 eqeq1 2735 . . . . . . . . . . . . . . . . . . . . 21 (π‘š = 𝑛 β†’ (π‘š = 0 ↔ 𝑛 = 0))
287 oveq2 7420 . . . . . . . . . . . . . . . . . . . . 21 (π‘š = 𝑛 β†’ (1 / π‘š) = (1 / 𝑛))
288286, 287ifbieq2d 4554 . . . . . . . . . . . . . . . . . . . 20 (π‘š = 𝑛 β†’ if(π‘š = 0, 0, (1 / π‘š)) = if(𝑛 = 0, 0, (1 / 𝑛)))
289 ovex 7445 . . . . . . . . . . . . . . . . . . . . 21 (1 / 𝑛) ∈ V
29090, 289ifex 4578 . . . . . . . . . . . . . . . . . . . 20 if(𝑛 = 0, 0, (1 / 𝑛)) ∈ V
291288, 89, 290fvmpt 6998 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ β„•0 β†’ ((π‘š ∈ β„•0 ↦ if(π‘š = 0, 0, (1 / π‘š)))β€˜π‘›) = if(𝑛 = 0, 0, (1 / 𝑛)))
292285, 291syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ∧ 𝑛 ∈ β„•) β†’ ((π‘š ∈ β„•0 ↦ if(π‘š = 0, 0, (1 / π‘š)))β€˜π‘›) = if(𝑛 = 0, 0, (1 / 𝑛)))
293 nnne0 12253 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ β„• β†’ 𝑛 β‰  0)
294293adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ∧ 𝑛 ∈ β„•) β†’ 𝑛 β‰  0)
295294neneqd 2944 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ∧ 𝑛 ∈ β„•) β†’ Β¬ 𝑛 = 0)
296295iffalsed 4539 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ∧ 𝑛 ∈ β„•) β†’ if(𝑛 = 0, 0, (1 / 𝑛)) = (1 / 𝑛))
297292, 296eqtrd 2771 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ∧ 𝑛 ∈ β„•) β†’ ((π‘š ∈ β„•0 ↦ if(π‘š = 0, 0, (1 / π‘š)))β€˜π‘›) = (1 / 𝑛))
298297oveq2d 7428 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ∧ 𝑛 ∈ β„•) β†’ (𝑛 Β· ((π‘š ∈ β„•0 ↦ if(π‘š = 0, 0, (1 / π‘š)))β€˜π‘›)) = (𝑛 Β· (1 / 𝑛)))
299 nncn 12227 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ β„• β†’ 𝑛 ∈ β„‚)
300299adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ∧ 𝑛 ∈ β„•) β†’ 𝑛 ∈ β„‚)
301300, 294recidd 11992 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ∧ 𝑛 ∈ β„•) β†’ (𝑛 Β· (1 / 𝑛)) = 1)
302298, 301eqtrd 2771 . . . . . . . . . . . . . . 15 ((𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ∧ 𝑛 ∈ β„•) β†’ (𝑛 Β· ((π‘š ∈ β„•0 ↦ if(π‘š = 0, 0, (1 / π‘š)))β€˜π‘›)) = 1)
303302oveq1d 7427 . . . . . . . . . . . . . 14 ((𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ∧ 𝑛 ∈ β„•) β†’ ((𝑛 Β· ((π‘š ∈ β„•0 ↦ if(π‘š = 0, 0, (1 / π‘š)))β€˜π‘›)) Β· (𝑦↑(𝑛 βˆ’ 1))) = (1 Β· (𝑦↑(𝑛 βˆ’ 1))))
304 nnm1nn0 12520 . . . . . . . . . . . . . . . 16 (𝑛 ∈ β„• β†’ (𝑛 βˆ’ 1) ∈ β„•0)
305 expcl 14052 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ β„‚ ∧ (𝑛 βˆ’ 1) ∈ β„•0) β†’ (𝑦↑(𝑛 βˆ’ 1)) ∈ β„‚)
30651, 304, 305syl2an 595 . . . . . . . . . . . . . . 15 ((𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ∧ 𝑛 ∈ β„•) β†’ (𝑦↑(𝑛 βˆ’ 1)) ∈ β„‚)
307306mullidd 11239 . . . . . . . . . . . . . 14 ((𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ∧ 𝑛 ∈ β„•) β†’ (1 Β· (𝑦↑(𝑛 βˆ’ 1))) = (𝑦↑(𝑛 βˆ’ 1)))
308303, 307eqtrd 2771 . . . . . . . . . . . . 13 ((𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ∧ 𝑛 ∈ β„•) β†’ ((𝑛 Β· ((π‘š ∈ β„•0 ↦ if(π‘š = 0, 0, (1 / π‘š)))β€˜π‘›)) Β· (𝑦↑(𝑛 βˆ’ 1))) = (𝑦↑(𝑛 βˆ’ 1)))
309308sumeq2dv 15656 . . . . . . . . . . . 12 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ Σ𝑛 ∈ β„• ((𝑛 Β· ((π‘š ∈ β„•0 ↦ if(π‘š = 0, 0, (1 / π‘š)))β€˜π‘›)) Β· (𝑦↑(𝑛 βˆ’ 1))) = Σ𝑛 ∈ β„• (𝑦↑(𝑛 βˆ’ 1)))
310 nnuz 12872 . . . . . . . . . . . . . . 15 β„• = (β„€β‰₯β€˜1)
311 1e0p1 12726 . . . . . . . . . . . . . . . 16 1 = (0 + 1)
312311fveq2i 6894 . . . . . . . . . . . . . . 15 (β„€β‰₯β€˜1) = (β„€β‰₯β€˜(0 + 1))
313310, 312eqtri 2759 . . . . . . . . . . . . . 14 β„• = (β„€β‰₯β€˜(0 + 1))
314 oveq1 7419 . . . . . . . . . . . . . . 15 (𝑛 = (1 + π‘š) β†’ (𝑛 βˆ’ 1) = ((1 + π‘š) βˆ’ 1))
315314oveq2d 7428 . . . . . . . . . . . . . 14 (𝑛 = (1 + π‘š) β†’ (𝑦↑(𝑛 βˆ’ 1)) = (𝑦↑((1 + π‘š) βˆ’ 1)))
316 1zzd 12600 . . . . . . . . . . . . . 14 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ 1 ∈ β„€)
317 0zd 12577 . . . . . . . . . . . . . 14 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ 0 ∈ β„€)
3181, 313, 315, 316, 317, 306isumshft 15792 . . . . . . . . . . . . 13 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ Σ𝑛 ∈ β„• (𝑦↑(𝑛 βˆ’ 1)) = Ξ£π‘š ∈ β„•0 (𝑦↑((1 + π‘š) βˆ’ 1)))
319 pncan2 11474 . . . . . . . . . . . . . . . 16 ((1 ∈ β„‚ ∧ π‘š ∈ β„‚) β†’ ((1 + π‘š) βˆ’ 1) = π‘š)
32048, 99, 319sylancr 586 . . . . . . . . . . . . . . 15 (π‘š ∈ β„•0 β†’ ((1 + π‘š) βˆ’ 1) = π‘š)
321320oveq2d 7428 . . . . . . . . . . . . . 14 (π‘š ∈ β„•0 β†’ (𝑦↑((1 + π‘š) βˆ’ 1)) = (π‘¦β†‘π‘š))
322321sumeq2i 15652 . . . . . . . . . . . . 13 Ξ£π‘š ∈ β„•0 (𝑦↑((1 + π‘š) βˆ’ 1)) = Ξ£π‘š ∈ β„•0 (π‘¦β†‘π‘š)
323318, 322eqtrdi 2787 . . . . . . . . . . . 12 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ Σ𝑛 ∈ β„• (𝑦↑(𝑛 βˆ’ 1)) = Ξ£π‘š ∈ β„•0 (π‘¦β†‘π‘š))
324 geoisum 15830 . . . . . . . . . . . . 13 ((𝑦 ∈ β„‚ ∧ (absβ€˜π‘¦) < 1) β†’ Ξ£π‘š ∈ β„•0 (π‘¦β†‘π‘š) = (1 / (1 βˆ’ 𝑦)))
32551, 64, 324syl2anc 583 . . . . . . . . . . . 12 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ Ξ£π‘š ∈ β„•0 (π‘¦β†‘π‘š) = (1 / (1 βˆ’ 𝑦)))
326309, 323, 3253eqtrd 2775 . . . . . . . . . . 11 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ Σ𝑛 ∈ β„• ((𝑛 Β· ((π‘š ∈ β„•0 ↦ if(π‘š = 0, 0, (1 / π‘š)))β€˜π‘›)) Β· (𝑦↑(𝑛 βˆ’ 1))) = (1 / (1 βˆ’ 𝑦)))
327326mpteq2ia 5251 . . . . . . . . . 10 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ Σ𝑛 ∈ β„• ((𝑛 Β· ((π‘š ∈ β„•0 ↦ if(π‘š = 0, 0, (1 / π‘š)))β€˜π‘›)) Β· (𝑦↑(𝑛 βˆ’ 1)))) = (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ (1 / (1 βˆ’ 𝑦)))
328283, 327eqtrdi 2787 . . . . . . . . 9 (⊀ β†’ (β„‚ D (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ Σ𝑛 ∈ β„•0 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛)))) = (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ (1 / (1 βˆ’ 𝑦))))
329267, 328eqtr4d 2774 . . . . . . . 8 (⊀ β†’ (β„‚ D (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ -(logβ€˜(1 βˆ’ 𝑦)))) = (β„‚ D (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ Σ𝑛 ∈ β„•0 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛)))))
330 1rp 12985 . . . . . . . . . 10 1 ∈ ℝ+
331 blcntr 24240 . . . . . . . . . 10 (((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ 0 ∈ β„‚ ∧ 1 ∈ ℝ+) β†’ 0 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1))
33238, 28, 330, 331mp3an 1460 . . . . . . . . 9 0 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1)
333332a1i 11 . . . . . . . 8 (⊀ β†’ 0 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1))
334 oveq2 7420 . . . . . . . . . . . . . . . 16 (𝑦 = 0 β†’ (1 βˆ’ 𝑦) = (1 βˆ’ 0))
335 1m0e1 12340 . . . . . . . . . . . . . . . 16 (1 βˆ’ 0) = 1
336334, 335eqtrdi 2787 . . . . . . . . . . . . . . 15 (𝑦 = 0 β†’ (1 βˆ’ 𝑦) = 1)
337336fveq2d 6895 . . . . . . . . . . . . . 14 (𝑦 = 0 β†’ (logβ€˜(1 βˆ’ 𝑦)) = (logβ€˜1))
338 log1 26435 . . . . . . . . . . . . . 14 (logβ€˜1) = 0
339337, 338eqtrdi 2787 . . . . . . . . . . . . 13 (𝑦 = 0 β†’ (logβ€˜(1 βˆ’ 𝑦)) = 0)
340339negeqd 11461 . . . . . . . . . . . 12 (𝑦 = 0 β†’ -(logβ€˜(1 βˆ’ 𝑦)) = -0)
341 neg0 11513 . . . . . . . . . . . 12 -0 = 0
342340, 341eqtrdi 2787 . . . . . . . . . . 11 (𝑦 = 0 β†’ -(logβ€˜(1 βˆ’ 𝑦)) = 0)
343 eqid 2731 . . . . . . . . . . 11 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ -(logβ€˜(1 βˆ’ 𝑦))) = (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ -(logβ€˜(1 βˆ’ 𝑦)))
344342, 343, 90fvmpt 6998 . . . . . . . . . 10 (0 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ ((𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ -(logβ€˜(1 βˆ’ 𝑦)))β€˜0) = 0)
345332, 344mp1i 13 . . . . . . . . 9 (⊀ β†’ ((𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ -(logβ€˜(1 βˆ’ 𝑦)))β€˜0) = 0)
346 oveq1 7419 . . . . . . . . . . . . . . 15 (0 = if(𝑛 = 0, 0, (1 / 𝑛)) β†’ (0 Β· (𝑦↑𝑛)) = (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛)))
347346eqeq1d 2733 . . . . . . . . . . . . . 14 (0 = if(𝑛 = 0, 0, (1 / 𝑛)) β†’ ((0 Β· (𝑦↑𝑛)) = 0 ↔ (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛)) = 0))
348 oveq1 7419 . . . . . . . . . . . . . . 15 ((1 / 𝑛) = if(𝑛 = 0, 0, (1 / 𝑛)) β†’ ((1 / 𝑛) Β· (𝑦↑𝑛)) = (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛)))
349348eqeq1d 2733 . . . . . . . . . . . . . 14 ((1 / 𝑛) = if(𝑛 = 0, 0, (1 / 𝑛)) β†’ (((1 / 𝑛) Β· (𝑦↑𝑛)) = 0 ↔ (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛)) = 0))
350 simpll 764 . . . . . . . . . . . . . . . . 17 (((𝑦 = 0 ∧ 𝑛 ∈ β„•0) ∧ 𝑛 = 0) β†’ 𝑦 = 0)
351350, 28eqeltrdi 2840 . . . . . . . . . . . . . . . 16 (((𝑦 = 0 ∧ 𝑛 ∈ β„•0) ∧ 𝑛 = 0) β†’ 𝑦 ∈ β„‚)
352 simplr 766 . . . . . . . . . . . . . . . 16 (((𝑦 = 0 ∧ 𝑛 ∈ β„•0) ∧ 𝑛 = 0) β†’ 𝑛 ∈ β„•0)
353351, 352expcld 14118 . . . . . . . . . . . . . . 15 (((𝑦 = 0 ∧ 𝑛 ∈ β„•0) ∧ 𝑛 = 0) β†’ (𝑦↑𝑛) ∈ β„‚)
354353mul02d 11419 . . . . . . . . . . . . . 14 (((𝑦 = 0 ∧ 𝑛 ∈ β„•0) ∧ 𝑛 = 0) β†’ (0 Β· (𝑦↑𝑛)) = 0)
355 simpll 764 . . . . . . . . . . . . . . . . . 18 (((𝑦 = 0 ∧ 𝑛 ∈ β„•0) ∧ Β¬ 𝑛 = 0) β†’ 𝑦 = 0)
356355oveq1d 7427 . . . . . . . . . . . . . . . . 17 (((𝑦 = 0 ∧ 𝑛 ∈ β„•0) ∧ Β¬ 𝑛 = 0) β†’ (𝑦↑𝑛) = (0↑𝑛))
357 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 = 0 ∧ 𝑛 ∈ β„•0) β†’ 𝑛 ∈ β„•0)
358357, 14sylib 217 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 = 0 ∧ 𝑛 ∈ β„•0) β†’ (𝑛 ∈ β„• ∨ 𝑛 = 0))
359358ord 861 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 = 0 ∧ 𝑛 ∈ β„•0) β†’ (Β¬ 𝑛 ∈ β„• β†’ 𝑛 = 0))
360359con1d 145 . . . . . . . . . . . . . . . . . . 19 ((𝑦 = 0 ∧ 𝑛 ∈ β„•0) β†’ (Β¬ 𝑛 = 0 β†’ 𝑛 ∈ β„•))
361360imp 406 . . . . . . . . . . . . . . . . . 18 (((𝑦 = 0 ∧ 𝑛 ∈ β„•0) ∧ Β¬ 𝑛 = 0) β†’ 𝑛 ∈ β„•)
3623610expd 14111 . . . . . . . . . . . . . . . . 17 (((𝑦 = 0 ∧ 𝑛 ∈ β„•0) ∧ Β¬ 𝑛 = 0) β†’ (0↑𝑛) = 0)
363356, 362eqtrd 2771 . . . . . . . . . . . . . . . 16 (((𝑦 = 0 ∧ 𝑛 ∈ β„•0) ∧ Β¬ 𝑛 = 0) β†’ (𝑦↑𝑛) = 0)
364363oveq2d 7428 . . . . . . . . . . . . . . 15 (((𝑦 = 0 ∧ 𝑛 ∈ β„•0) ∧ Β¬ 𝑛 = 0) β†’ ((1 / 𝑛) Β· (𝑦↑𝑛)) = ((1 / 𝑛) Β· 0))
365361nnrecred 12270 . . . . . . . . . . . . . . . . 17 (((𝑦 = 0 ∧ 𝑛 ∈ β„•0) ∧ Β¬ 𝑛 = 0) β†’ (1 / 𝑛) ∈ ℝ)
366365recnd 11249 . . . . . . . . . . . . . . . 16 (((𝑦 = 0 ∧ 𝑛 ∈ β„•0) ∧ Β¬ 𝑛 = 0) β†’ (1 / 𝑛) ∈ β„‚)
367366mul01d 11420 . . . . . . . . . . . . . . 15 (((𝑦 = 0 ∧ 𝑛 ∈ β„•0) ∧ Β¬ 𝑛 = 0) β†’ ((1 / 𝑛) Β· 0) = 0)
368364, 367eqtrd 2771 . . . . . . . . . . . . . 14 (((𝑦 = 0 ∧ 𝑛 ∈ β„•0) ∧ Β¬ 𝑛 = 0) β†’ ((1 / 𝑛) Β· (𝑦↑𝑛)) = 0)
369347, 349, 354, 368ifbothda 4566 . . . . . . . . . . . . 13 ((𝑦 = 0 ∧ 𝑛 ∈ β„•0) β†’ (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛)) = 0)
370369sumeq2dv 15656 . . . . . . . . . . . 12 (𝑦 = 0 β†’ Σ𝑛 ∈ β„•0 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛)) = Σ𝑛 ∈ β„•0 0)
3711eqimssi 4042 . . . . . . . . . . . . . 14 β„•0 βŠ† (β„€β‰₯β€˜0)
372371orci 862 . . . . . . . . . . . . 13 (β„•0 βŠ† (β„€β‰₯β€˜0) ∨ β„•0 ∈ Fin)
373 sumz 15675 . . . . . . . . . . . . 13 ((β„•0 βŠ† (β„€β‰₯β€˜0) ∨ β„•0 ∈ Fin) β†’ Σ𝑛 ∈ β„•0 0 = 0)
374372, 373ax-mp 5 . . . . . . . . . . . 12 Σ𝑛 ∈ β„•0 0 = 0
375370, 374eqtrdi 2787 . . . . . . . . . . 11 (𝑦 = 0 β†’ Σ𝑛 ∈ β„•0 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛)) = 0)
376 eqid 2731 . . . . . . . . . . 11 (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ Σ𝑛 ∈ β„•0 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛))) = (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ Σ𝑛 ∈ β„•0 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛)))
377375, 376, 90fvmpt 6998 . . . . . . . . . 10 (0 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ ((𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ Σ𝑛 ∈ β„•0 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛)))β€˜0) = 0)
378332, 377mp1i 13 . . . . . . . . 9 (⊀ β†’ ((𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ Σ𝑛 ∈ β„•0 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛)))β€˜0) = 0)
379345, 378eqtr4d 2774 . . . . . . . 8 (⊀ β†’ ((𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ -(logβ€˜(1 βˆ’ 𝑦)))β€˜0) = ((𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ Σ𝑛 ∈ β„•0 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛)))β€˜0))
38045, 46, 47, 78, 190, 272, 329, 333, 379dv11cn 25855 . . . . . . 7 (⊀ β†’ (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ -(logβ€˜(1 βˆ’ 𝑦))) = (𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ Σ𝑛 ∈ β„•0 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛))))
381380fveq1d 6893 . . . . . 6 (⊀ β†’ ((𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ -(logβ€˜(1 βˆ’ 𝑦)))β€˜π΄) = ((𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ Σ𝑛 ∈ β„•0 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛)))β€˜π΄))
38244, 381mp1i 13 . . . . 5 (𝐴 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ ((𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ -(logβ€˜(1 βˆ’ 𝑦)))β€˜π΄) = ((𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ Σ𝑛 ∈ β„•0 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛)))β€˜π΄))
383 oveq2 7420 . . . . . . . 8 (𝑦 = 𝐴 β†’ (1 βˆ’ 𝑦) = (1 βˆ’ 𝐴))
384383fveq2d 6895 . . . . . . 7 (𝑦 = 𝐴 β†’ (logβ€˜(1 βˆ’ 𝑦)) = (logβ€˜(1 βˆ’ 𝐴)))
385384negeqd 11461 . . . . . 6 (𝑦 = 𝐴 β†’ -(logβ€˜(1 βˆ’ 𝑦)) = -(logβ€˜(1 βˆ’ 𝐴)))
386 negex 11465 . . . . . 6 -(logβ€˜(1 βˆ’ 𝐴)) ∈ V
387385, 343, 386fvmpt 6998 . . . . 5 (𝐴 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ ((𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ -(logβ€˜(1 βˆ’ 𝑦)))β€˜π΄) = -(logβ€˜(1 βˆ’ 𝐴)))
388 oveq1 7419 . . . . . . . 8 (𝑦 = 𝐴 β†’ (𝑦↑𝑛) = (𝐴↑𝑛))
389388oveq2d 7428 . . . . . . 7 (𝑦 = 𝐴 β†’ (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛)) = (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝐴↑𝑛)))
390389sumeq2sdv 15657 . . . . . 6 (𝑦 = 𝐴 β†’ Σ𝑛 ∈ β„•0 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛)) = Σ𝑛 ∈ β„•0 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝐴↑𝑛)))
391 sumex 15641 . . . . . 6 Σ𝑛 ∈ β„•0 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝐴↑𝑛)) ∈ V
392390, 376, 391fvmpt 6998 . . . . 5 (𝐴 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ ((𝑦 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) ↦ Σ𝑛 ∈ β„•0 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝑦↑𝑛)))β€˜π΄) = Σ𝑛 ∈ β„•0 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝐴↑𝑛)))
393382, 387, 3923eqtr3d 2779 . . . 4 (𝐴 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))1) β†’ -(logβ€˜(1 βˆ’ 𝐴)) = Σ𝑛 ∈ β„•0 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝐴↑𝑛)))
39443, 393syl 17 . . 3 ((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) β†’ -(logβ€˜(1 βˆ’ 𝐴)) = Σ𝑛 ∈ β„•0 (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝐴↑𝑛)))
39526, 394breqtrrd 5176 . 2 ((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) β†’ seq0( + , (π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜)))) ⇝ -(logβ€˜(1 βˆ’ 𝐴)))
396 seqex 13975 . . . 4 seq0( + , (π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜)))) ∈ V
397396a1i 11 . . 3 ((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) β†’ seq0( + , (π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜)))) ∈ V)
398 seqex 13975 . . . 4 seq1( + , (π‘˜ ∈ β„• ↦ ((π΄β†‘π‘˜) / π‘˜))) ∈ V
399398a1i 11 . . 3 ((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) β†’ seq1( + , (π‘˜ ∈ β„• ↦ ((π΄β†‘π‘˜) / π‘˜))) ∈ V)
400 1zzd 12600 . . 3 ((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) β†’ 1 ∈ β„€)
401 elnnuz 12873 . . . . . 6 (𝑛 ∈ β„• ↔ 𝑛 ∈ (β„€β‰₯β€˜1))
402 fvres 6910 . . . . . 6 (𝑛 ∈ (β„€β‰₯β€˜1) β†’ ((seq0( + , (π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜)))) β†Ύ (β„€β‰₯β€˜1))β€˜π‘›) = (seq0( + , (π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜))))β€˜π‘›))
403401, 402sylbi 216 . . . . 5 (𝑛 ∈ β„• β†’ ((seq0( + , (π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜)))) β†Ύ (β„€β‰₯β€˜1))β€˜π‘›) = (seq0( + , (π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜))))β€˜π‘›))
404403eqcomd 2737 . . . 4 (𝑛 ∈ β„• β†’ (seq0( + , (π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜))))β€˜π‘›) = ((seq0( + , (π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜)))) β†Ύ (β„€β‰₯β€˜1))β€˜π‘›))
405 addlid 11404 . . . . . . . 8 (𝑛 ∈ β„‚ β†’ (0 + 𝑛) = 𝑛)
406405adantl 481 . . . . . . 7 (((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) ∧ 𝑛 ∈ β„‚) β†’ (0 + 𝑛) = 𝑛)
407 0cnd 11214 . . . . . . 7 ((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) β†’ 0 ∈ β„‚)
408 1eluzge0 12883 . . . . . . . 8 1 ∈ (β„€β‰₯β€˜0)
409408a1i 11 . . . . . . 7 ((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) β†’ 1 ∈ (β„€β‰₯β€˜0))
410 0cnd 11214 . . . . . . . . . . 11 ((((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) ∧ π‘˜ ∈ β„•0) ∧ π‘˜ = 0) β†’ 0 ∈ β„‚)
411 nn0cn 12489 . . . . . . . . . . . . 13 (π‘˜ ∈ β„•0 β†’ π‘˜ ∈ β„‚)
412411adantl 481 . . . . . . . . . . . 12 (((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) ∧ π‘˜ ∈ β„•0) β†’ π‘˜ ∈ β„‚)
413 neqne 2947 . . . . . . . . . . . 12 (Β¬ π‘˜ = 0 β†’ π‘˜ β‰  0)
414 reccl 11886 . . . . . . . . . . . 12 ((π‘˜ ∈ β„‚ ∧ π‘˜ β‰  0) β†’ (1 / π‘˜) ∈ β„‚)
415412, 413, 414syl2an 595 . . . . . . . . . . 11 ((((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) ∧ π‘˜ ∈ β„•0) ∧ Β¬ π‘˜ = 0) β†’ (1 / π‘˜) ∈ β„‚)
416410, 415ifclda 4563 . . . . . . . . . 10 (((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) ∧ π‘˜ ∈ β„•0) β†’ if(π‘˜ = 0, 0, (1 / π‘˜)) ∈ β„‚)
417 expcl 14052 . . . . . . . . . . 11 ((𝐴 ∈ β„‚ ∧ π‘˜ ∈ β„•0) β†’ (π΄β†‘π‘˜) ∈ β„‚)
418417adantlr 712 . . . . . . . . . 10 (((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) ∧ π‘˜ ∈ β„•0) β†’ (π΄β†‘π‘˜) ∈ β„‚)
419416, 418mulcld 11241 . . . . . . . . 9 (((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) ∧ π‘˜ ∈ β„•0) β†’ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜)) ∈ β„‚)
420419fmpttd 7116 . . . . . . . 8 ((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) β†’ (π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜))):β„•0βŸΆβ„‚)
421 1nn0 12495 . . . . . . . 8 1 ∈ β„•0
422 ffvelcdm 7083 . . . . . . . 8 (((π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜))):β„•0βŸΆβ„‚ ∧ 1 ∈ β„•0) β†’ ((π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜)))β€˜1) ∈ β„‚)
423420, 421, 422sylancl 585 . . . . . . 7 ((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) β†’ ((π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜)))β€˜1) ∈ β„‚)
424 elfz1eq 13519 . . . . . . . . . 10 (𝑛 ∈ (0...0) β†’ 𝑛 = 0)
425 1m1e0 12291 . . . . . . . . . . 11 (1 βˆ’ 1) = 0
426425oveq2i 7423 . . . . . . . . . 10 (0...(1 βˆ’ 1)) = (0...0)
427424, 426eleq2s 2850 . . . . . . . . 9 (𝑛 ∈ (0...(1 βˆ’ 1)) β†’ 𝑛 = 0)
428427fveq2d 6895 . . . . . . . 8 (𝑛 ∈ (0...(1 βˆ’ 1)) β†’ ((π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜)))β€˜π‘›) = ((π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜)))β€˜0))
429 0nn0 12494 . . . . . . . . . 10 0 ∈ β„•0
430 iftrue 4534 . . . . . . . . . . . 12 (π‘˜ = 0 β†’ if(π‘˜ = 0, 0, (1 / π‘˜)) = 0)
431 oveq2 7420 . . . . . . . . . . . 12 (π‘˜ = 0 β†’ (π΄β†‘π‘˜) = (𝐴↑0))
432430, 431oveq12d 7430 . . . . . . . . . . 11 (π‘˜ = 0 β†’ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜)) = (0 Β· (𝐴↑0)))
433 ovex 7445 . . . . . . . . . . 11 (0 Β· (𝐴↑0)) ∈ V
434432, 8, 433fvmpt 6998 . . . . . . . . . 10 (0 ∈ β„•0 β†’ ((π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜)))β€˜0) = (0 Β· (𝐴↑0)))
435429, 434ax-mp 5 . . . . . . . . 9 ((π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜)))β€˜0) = (0 Β· (𝐴↑0))
436 expcl 14052 . . . . . . . . . . 11 ((𝐴 ∈ β„‚ ∧ 0 ∈ β„•0) β†’ (𝐴↑0) ∈ β„‚)
43727, 429, 436sylancl 585 . . . . . . . . . 10 ((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) β†’ (𝐴↑0) ∈ β„‚)
438437mul02d 11419 . . . . . . . . 9 ((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) β†’ (0 Β· (𝐴↑0)) = 0)
439435, 438eqtrid 2783 . . . . . . . 8 ((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) β†’ ((π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜)))β€˜0) = 0)
440428, 439sylan9eqr 2793 . . . . . . 7 (((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) ∧ 𝑛 ∈ (0...(1 βˆ’ 1))) β†’ ((π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜)))β€˜π‘›) = 0)
441406, 407, 409, 423, 440seqid 14020 . . . . . 6 ((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) β†’ (seq0( + , (π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜)))) β†Ύ (β„€β‰₯β€˜1)) = seq1( + , (π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜)))))
442293adantl 481 . . . . . . . . . . . . 13 (((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) ∧ 𝑛 ∈ β„•) β†’ 𝑛 β‰  0)
443442neneqd 2944 . . . . . . . . . . . 12 (((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) ∧ 𝑛 ∈ β„•) β†’ Β¬ 𝑛 = 0)
444443iffalsed 4539 . . . . . . . . . . 11 (((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) ∧ 𝑛 ∈ β„•) β†’ if(𝑛 = 0, 0, (1 / 𝑛)) = (1 / 𝑛))
445444oveq1d 7427 . . . . . . . . . 10 (((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) ∧ 𝑛 ∈ β„•) β†’ (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝐴↑𝑛)) = ((1 / 𝑛) Β· (𝐴↑𝑛)))
446284, 23sylan2 592 . . . . . . . . . . 11 (((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) ∧ 𝑛 ∈ β„•) β†’ (𝐴↑𝑛) ∈ β„‚)
447299adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) ∧ 𝑛 ∈ β„•) β†’ 𝑛 ∈ β„‚)
448446, 447, 442divrec2d 12001 . . . . . . . . . 10 (((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) ∧ 𝑛 ∈ β„•) β†’ ((𝐴↑𝑛) / 𝑛) = ((1 / 𝑛) Β· (𝐴↑𝑛)))
449445, 448eqtr4d 2774 . . . . . . . . 9 (((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) ∧ 𝑛 ∈ β„•) β†’ (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝐴↑𝑛)) = ((𝐴↑𝑛) / 𝑛))
450284, 11sylan2 592 . . . . . . . . 9 (((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) ∧ 𝑛 ∈ β„•) β†’ ((π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜)))β€˜π‘›) = (if(𝑛 = 0, 0, (1 / 𝑛)) Β· (𝐴↑𝑛)))
451 id 22 . . . . . . . . . . . 12 (π‘˜ = 𝑛 β†’ π‘˜ = 𝑛)
4526, 451oveq12d 7430 . . . . . . . . . . 11 (π‘˜ = 𝑛 β†’ ((π΄β†‘π‘˜) / π‘˜) = ((𝐴↑𝑛) / 𝑛))
453 eqid 2731 . . . . . . . . . . 11 (π‘˜ ∈ β„• ↦ ((π΄β†‘π‘˜) / π‘˜)) = (π‘˜ ∈ β„• ↦ ((π΄β†‘π‘˜) / π‘˜))
454 ovex 7445 . . . . . . . . . . 11 ((𝐴↑𝑛) / 𝑛) ∈ V
455452, 453, 454fvmpt 6998 . . . . . . . . . 10 (𝑛 ∈ β„• β†’ ((π‘˜ ∈ β„• ↦ ((π΄β†‘π‘˜) / π‘˜))β€˜π‘›) = ((𝐴↑𝑛) / 𝑛))
456455adantl 481 . . . . . . . . 9 (((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) ∧ 𝑛 ∈ β„•) β†’ ((π‘˜ ∈ β„• ↦ ((π΄β†‘π‘˜) / π‘˜))β€˜π‘›) = ((𝐴↑𝑛) / 𝑛))
457449, 450, 4563eqtr4d 2781 . . . . . . . 8 (((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) ∧ 𝑛 ∈ β„•) β†’ ((π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜)))β€˜π‘›) = ((π‘˜ ∈ β„• ↦ ((π΄β†‘π‘˜) / π‘˜))β€˜π‘›))
458401, 457sylan2br 594 . . . . . . 7 (((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) ∧ 𝑛 ∈ (β„€β‰₯β€˜1)) β†’ ((π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜)))β€˜π‘›) = ((π‘˜ ∈ β„• ↦ ((π΄β†‘π‘˜) / π‘˜))β€˜π‘›))
459400, 458seqfeq 14000 . . . . . 6 ((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) β†’ seq1( + , (π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜)))) = seq1( + , (π‘˜ ∈ β„• ↦ ((π΄β†‘π‘˜) / π‘˜))))
460441, 459eqtrd 2771 . . . . 5 ((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) β†’ (seq0( + , (π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜)))) β†Ύ (β„€β‰₯β€˜1)) = seq1( + , (π‘˜ ∈ β„• ↦ ((π΄β†‘π‘˜) / π‘˜))))
461460fveq1d 6893 . . . 4 ((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) β†’ ((seq0( + , (π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜)))) β†Ύ (β„€β‰₯β€˜1))β€˜π‘›) = (seq1( + , (π‘˜ ∈ β„• ↦ ((π΄β†‘π‘˜) / π‘˜)))β€˜π‘›))
462404, 461sylan9eqr 2793 . . 3 (((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) ∧ 𝑛 ∈ β„•) β†’ (seq0( + , (π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜))))β€˜π‘›) = (seq1( + , (π‘˜ ∈ β„• ↦ ((π΄β†‘π‘˜) / π‘˜)))β€˜π‘›))
463310, 397, 399, 400, 462climeq 15518 . 2 ((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) β†’ (seq0( + , (π‘˜ ∈ β„•0 ↦ (if(π‘˜ = 0, 0, (1 / π‘˜)) Β· (π΄β†‘π‘˜)))) ⇝ -(logβ€˜(1 βˆ’ 𝐴)) ↔ seq1( + , (π‘˜ ∈ β„• ↦ ((π΄β†‘π‘˜) / π‘˜))) ⇝ -(logβ€˜(1 βˆ’ 𝐴))))
464395, 463mpbid 231 1 ((𝐴 ∈ β„‚ ∧ (absβ€˜π΄) < 1) β†’ seq1( + , (π‘˜ ∈ β„• ↦ ((π΄β†‘π‘˜) / π‘˜))) ⇝ -(logβ€˜(1 βˆ’ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∨ wo 844   ∧ w3a 1086   = wceq 1540  βŠ€wtru 1541   ∈ wcel 2105   β‰  wne 2939  {crab 3431  Vcvv 3473   βˆ– cdif 3945   βŠ† wss 3948  ifcif 4528  {csn 4628  {cpr 4630   class class class wbr 5148   ↦ cmpt 5231  β—‘ccnv 5675  dom cdm 5676  ran crn 5677   β†Ύ cres 5678   β€œ cima 5679   ∘ ccom 5680   Fn wfn 6538  βŸΆwf 6539  β€“1-1-ontoβ†’wf1o 6542  β€˜cfv 6543  (class class class)co 7412  Fincfn 8945  supcsup 9441  β„‚cc 11114  β„cr 11115  0cc0 11116  1c1 11117   + caddc 11119   Β· cmul 11121  +∞cpnf 11252  -∞cmnf 11253  β„*cxr 11254   < clt 11255   ≀ cle 11256   βˆ’ cmin 11451  -cneg 11452   / cdiv 11878  β„•cn 12219  2c2 12274  β„•0cn0 12479  β„€β‰₯cuz 12829  β„+crp 12981  (,]cioc 13332  [,)cico 13333  [,]cicc 13334  ...cfz 13491  seqcseq 13973  β†‘cexp 14034  abscabs 15188   ⇝ cli 15435  Ξ£csu 15639  TopOpenctopn 17374  βˆžMetcxmet 21219  ballcbl 21221  β„‚fldccnfld 21234  β€“cnβ†’ccncf 24717   D cdv 25713  logclog 26404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9642  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194  ax-addf 11195
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-2o 8473  df-er 8709  df-map 8828  df-pm 8829  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-fi 9412  df-sup 9443  df-inf 9444  df-oi 9511  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-q 12940  df-rp 12982  df-xneg 13099  df-xadd 13100  df-xmul 13101  df-ioo 13335  df-ioc 13336  df-ico 13337  df-icc 13338  df-fz 13492  df-fzo 13635  df-fl 13764  df-mod 13842  df-seq 13974  df-exp 14035  df-fac 14241  df-bc 14270  df-hash 14298  df-shft 15021  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-limsup 15422  df-clim 15439  df-rlim 15440  df-sum 15640  df-ef 16018  df-sin 16020  df-cos 16021  df-tan 16022  df-pi 16023  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-starv 17219  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-hom 17228  df-cco 17229  df-rest 17375  df-topn 17376  df-0g 17394  df-gsum 17395  df-topgen 17396  df-pt 17397  df-prds 17400  df-xrs 17455  df-qtop 17460  df-imas 17461  df-xps 17463  df-mre 17537  df-mrc 17538  df-acs 17540  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-submnd 18712  df-mulg 18994  df-cntz 19229  df-cmn 19698  df-psmet 21226  df-xmet 21227  df-met 21228  df-bl 21229  df-mopn 21230  df-fbas 21231  df-fg 21232  df-cnfld 21235  df-top 22717  df-topon 22734  df-topsp 22756  df-bases 22770  df-cld 22844  df-ntr 22845  df-cls 22846  df-nei 22923  df-lp 22961  df-perf 22962  df-cn 23052  df-cnp 23053  df-haus 23140  df-cmp 23212  df-tx 23387  df-hmeo 23580  df-fil 23671  df-fm 23763  df-flim 23764  df-flf 23765  df-xms 24147  df-ms 24148  df-tms 24149  df-cncf 24719  df-limc 25716  df-dv 25717  df-ulm 26229  df-log 26406
This theorem is referenced by:  logtaylsum  26510  logtayl2  26511  atantayl  26784  stirlinglem5  45256
  Copyright terms: Public domain W3C validator