MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  binomfallfaclem2 Structured version   Visualization version   GIF version

Theorem binomfallfaclem2 14977
Description: Lemma for binomfallfac 14978. Inductive step. (Contributed by Scott Fenton, 13-Mar-2018.)
Hypotheses
Ref Expression
binomfallfaclem.1 (𝜑𝐴 ∈ ℂ)
binomfallfaclem.2 (𝜑𝐵 ∈ ℂ)
binomfallfaclem.3 (𝜑𝑁 ∈ ℕ0)
binomfallfaclem.4 (𝜓 → ((𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘))))
Assertion
Ref Expression
binomfallfaclem2 ((𝜑𝜓) → ((𝐴 + 𝐵) FallFac (𝑁 + 1)) = Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁 + 1)C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))))
Distinct variable groups:   𝜑,𝑘   𝑘,𝑁   𝐴,𝑘   𝐵,𝑘
Allowed substitution hint:   𝜓(𝑘)

Proof of Theorem binomfallfaclem2
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 binomfallfaclem.3 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
2 elfzelz 12549 . . . . . . . 8 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ)
3 bccl 13313 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁C𝑘) ∈ ℕ0)
41, 2, 3syl2an 575 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℕ0)
54nn0cnd 11555 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℂ)
6 binomfallfaclem.1 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
7 fznn0sub 12580 . . . . . . . 8 (𝑘 ∈ (0...𝑁) → (𝑁𝑘) ∈ ℕ0)
8 fallfaccl 14953 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑁𝑘) ∈ ℕ0) → (𝐴 FallFac (𝑁𝑘)) ∈ ℂ)
96, 7, 8syl2an 575 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴 FallFac (𝑁𝑘)) ∈ ℂ)
10 binomfallfaclem.2 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
11 elfznn0 12640 . . . . . . . 8 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
12 fallfaccl 14953 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐵 FallFac 𝑘) ∈ ℂ)
1310, 11, 12syl2an 575 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐵 FallFac 𝑘) ∈ ℂ)
149, 13mulcld 10262 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘)) ∈ ℂ)
156, 10addcld 10261 . . . . . . . 8 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
161nn0cnd 11555 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
1715, 16subcld 10594 . . . . . . 7 (𝜑 → ((𝐴 + 𝐵) − 𝑁) ∈ ℂ)
1817adantr 466 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝐴 + 𝐵) − 𝑁) ∈ ℂ)
195, 14, 18mulassd 10265 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘))) · ((𝐴 + 𝐵) − 𝑁)) = ((𝑁C𝑘) · (((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘)) · ((𝐴 + 𝐵) − 𝑁))))
207nn0cnd 11555 . . . . . . . . 9 (𝑘 ∈ (0...𝑁) → (𝑁𝑘) ∈ ℂ)
21 subcl 10482 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑁𝑘) ∈ ℂ) → (𝐴 − (𝑁𝑘)) ∈ ℂ)
226, 20, 21syl2an 575 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴 − (𝑁𝑘)) ∈ ℂ)
2311nn0cnd 11555 . . . . . . . . 9 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℂ)
24 subcl 10482 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐵𝑘) ∈ ℂ)
2510, 23, 24syl2an 575 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐵𝑘) ∈ ℂ)
2614, 22, 25adddid 10266 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘)) · ((𝐴 − (𝑁𝑘)) + (𝐵𝑘))) = ((((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘)) · (𝐴 − (𝑁𝑘))) + (((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘)) · (𝐵𝑘))))
276adantr 466 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ)
2816adantr 466 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑁 ∈ ℂ)
2927, 28subcld 10594 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴𝑁) ∈ ℂ)
3023adantl 467 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℂ)
3110adantr 466 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐵 ∈ ℂ)
3229, 30, 31ppncand 10634 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝐴𝑁) + 𝑘) + (𝐵𝑘)) = ((𝐴𝑁) + 𝐵))
3327, 28, 30subsubd 10622 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴 − (𝑁𝑘)) = ((𝐴𝑁) + 𝑘))
3433oveq1d 6808 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝐴 − (𝑁𝑘)) + (𝐵𝑘)) = (((𝐴𝑁) + 𝑘) + (𝐵𝑘)))
3527, 31, 28addsubd 10615 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝐴 + 𝐵) − 𝑁) = ((𝐴𝑁) + 𝐵))
3632, 34, 353eqtr4d 2815 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝐴 − (𝑁𝑘)) + (𝐵𝑘)) = ((𝐴 + 𝐵) − 𝑁))
3736oveq2d 6809 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘)) · ((𝐴 − (𝑁𝑘)) + (𝐵𝑘))) = (((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘)) · ((𝐴 + 𝐵) − 𝑁)))
389, 13, 22mul32d 10448 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘)) · (𝐴 − (𝑁𝑘))) = (((𝐴 FallFac (𝑁𝑘)) · (𝐴 − (𝑁𝑘))) · (𝐵 FallFac 𝑘)))
39 1cnd 10258 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...𝑁)) → 1 ∈ ℂ)
4028, 39, 30addsubd 10615 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁 + 1) − 𝑘) = ((𝑁𝑘) + 1))
4140oveq2d 6809 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴 FallFac ((𝑁 + 1) − 𝑘)) = (𝐴 FallFac ((𝑁𝑘) + 1)))
42 fallfacp1 14967 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (𝑁𝑘) ∈ ℕ0) → (𝐴 FallFac ((𝑁𝑘) + 1)) = ((𝐴 FallFac (𝑁𝑘)) · (𝐴 − (𝑁𝑘))))
436, 7, 42syl2an 575 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴 FallFac ((𝑁𝑘) + 1)) = ((𝐴 FallFac (𝑁𝑘)) · (𝐴 − (𝑁𝑘))))
4441, 43eqtrd 2805 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴 FallFac ((𝑁 + 1) − 𝑘)) = ((𝐴 FallFac (𝑁𝑘)) · (𝐴 − (𝑁𝑘))))
4544oveq1d 6808 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)) = (((𝐴 FallFac (𝑁𝑘)) · (𝐴 − (𝑁𝑘))) · (𝐵 FallFac 𝑘)))
4638, 45eqtr4d 2808 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘)) · (𝐴 − (𝑁𝑘))) = ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)))
479, 13, 25mulassd 10265 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘)) · (𝐵𝑘)) = ((𝐴 FallFac (𝑁𝑘)) · ((𝐵 FallFac 𝑘) · (𝐵𝑘))))
48 fallfacp1 14967 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐵 FallFac (𝑘 + 1)) = ((𝐵 FallFac 𝑘) · (𝐵𝑘)))
4910, 11, 48syl2an 575 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐵 FallFac (𝑘 + 1)) = ((𝐵 FallFac 𝑘) · (𝐵𝑘)))
5049oveq2d 6809 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac (𝑘 + 1))) = ((𝐴 FallFac (𝑁𝑘)) · ((𝐵 FallFac 𝑘) · (𝐵𝑘))))
5147, 50eqtr4d 2808 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘)) · (𝐵𝑘)) = ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac (𝑘 + 1))))
5246, 51oveq12d 6811 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → ((((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘)) · (𝐴 − (𝑁𝑘))) + (((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘)) · (𝐵𝑘))) = (((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)) + ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac (𝑘 + 1)))))
5326, 37, 523eqtr3d 2813 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘)) · ((𝐴 + 𝐵) − 𝑁)) = (((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)) + ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac (𝑘 + 1)))))
5453oveq2d 6809 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘)) · ((𝐴 + 𝐵) − 𝑁))) = ((𝑁C𝑘) · (((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)) + ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac (𝑘 + 1))))))
551nn0zd 11682 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
56 uzid 11903 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
57 peano2uz 11943 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑁) → (𝑁 + 1) ∈ (ℤ𝑁))
58 fzss2 12588 . . . . . . . . . 10 ((𝑁 + 1) ∈ (ℤ𝑁) → (0...𝑁) ⊆ (0...(𝑁 + 1)))
5955, 56, 57, 584syl 19 . . . . . . . . 9 (𝜑 → (0...𝑁) ⊆ (0...(𝑁 + 1)))
6059sselda 3752 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ (0...(𝑁 + 1)))
61 fznn0sub 12580 . . . . . . . . 9 (𝑘 ∈ (0...(𝑁 + 1)) → ((𝑁 + 1) − 𝑘) ∈ ℕ0)
62 fallfaccl 14953 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((𝑁 + 1) − 𝑘) ∈ ℕ0) → (𝐴 FallFac ((𝑁 + 1) − 𝑘)) ∈ ℂ)
636, 61, 62syl2an 575 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝐴 FallFac ((𝑁 + 1) − 𝑘)) ∈ ℂ)
6460, 63syldan 571 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴 FallFac ((𝑁 + 1) − 𝑘)) ∈ ℂ)
6564, 13mulcld 10262 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)) ∈ ℂ)
66 peano2nn0 11535 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
6711, 66syl 17 . . . . . . . 8 (𝑘 ∈ (0...𝑁) → (𝑘 + 1) ∈ ℕ0)
68 fallfaccl 14953 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ0) → (𝐵 FallFac (𝑘 + 1)) ∈ ℂ)
6910, 67, 68syl2an 575 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐵 FallFac (𝑘 + 1)) ∈ ℂ)
709, 69mulcld 10262 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac (𝑘 + 1))) ∈ ℂ)
715, 65, 70adddid 10266 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)) + ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac (𝑘 + 1))))) = (((𝑁C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) + ((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac (𝑘 + 1))))))
7219, 54, 713eqtrd 2809 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘))) · ((𝐴 + 𝐵) − 𝑁)) = (((𝑁C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) + ((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac (𝑘 + 1))))))
7372sumeq2dv 14641 . . 3 (𝜑 → Σ𝑘 ∈ (0...𝑁)(((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘))) · ((𝐴 + 𝐵) − 𝑁)) = Σ𝑘 ∈ (0...𝑁)(((𝑁C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) + ((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac (𝑘 + 1))))))
7473adantr 466 . 2 ((𝜑𝜓) → Σ𝑘 ∈ (0...𝑁)(((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘))) · ((𝐴 + 𝐵) − 𝑁)) = Σ𝑘 ∈ (0...𝑁)(((𝑁C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) + ((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac (𝑘 + 1))))))
7515, 1fallfacp1d 14969 . . . 4 (𝜑 → ((𝐴 + 𝐵) FallFac (𝑁 + 1)) = (((𝐴 + 𝐵) FallFac 𝑁) · ((𝐴 + 𝐵) − 𝑁)))
76 binomfallfaclem.4 . . . . 5 (𝜓 → ((𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘))))
7776oveq1d 6808 . . . 4 (𝜓 → (((𝐴 + 𝐵) FallFac 𝑁) · ((𝐴 + 𝐵) − 𝑁)) = (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘))) · ((𝐴 + 𝐵) − 𝑁)))
7875, 77sylan9eq 2825 . . 3 ((𝜑𝜓) → ((𝐴 + 𝐵) FallFac (𝑁 + 1)) = (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘))) · ((𝐴 + 𝐵) − 𝑁)))
79 fzfid 12980 . . . . 5 (𝜑 → (0...𝑁) ∈ Fin)
805, 14mulcld 10262 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘))) ∈ ℂ)
8179, 17, 80fsummulc1 14724 . . . 4 (𝜑 → (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘))) · ((𝐴 + 𝐵) − 𝑁)) = Σ𝑘 ∈ (0...𝑁)(((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘))) · ((𝐴 + 𝐵) − 𝑁)))
8281adantr 466 . . 3 ((𝜑𝜓) → (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘))) · ((𝐴 + 𝐵) − 𝑁)) = Σ𝑘 ∈ (0...𝑁)(((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘))) · ((𝐴 + 𝐵) − 𝑁)))
8378, 82eqtrd 2805 . 2 ((𝜑𝜓) → ((𝐴 + 𝐵) FallFac (𝑁 + 1)) = Σ𝑘 ∈ (0...𝑁)(((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac 𝑘))) · ((𝐴 + 𝐵) − 𝑁)))
84 elfzelz 12549 . . . . . . . 8 (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℤ)
85 bcpasc 13312 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → ((𝑁C𝑘) + (𝑁C(𝑘 − 1))) = ((𝑁 + 1)C𝑘))
861, 84, 85syl2an 575 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) + (𝑁C(𝑘 − 1))) = ((𝑁 + 1)C𝑘))
8786oveq1d 6808 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) = (((𝑁 + 1)C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))))
881, 84, 3syl2an 575 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C𝑘) ∈ ℕ0)
8988nn0cnd 11555 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C𝑘) ∈ ℂ)
90 peano2zm 11622 . . . . . . . . . 10 (𝑘 ∈ ℤ → (𝑘 − 1) ∈ ℤ)
9184, 90syl 17 . . . . . . . . 9 (𝑘 ∈ (0...(𝑁 + 1)) → (𝑘 − 1) ∈ ℤ)
92 bccl 13313 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑘 − 1) ∈ ℤ) → (𝑁C(𝑘 − 1)) ∈ ℕ0)
931, 91, 92syl2an 575 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C(𝑘 − 1)) ∈ ℕ0)
9493nn0cnd 11555 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C(𝑘 − 1)) ∈ ℂ)
95 elfznn0 12640 . . . . . . . . 9 (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℕ0)
9610, 95, 12syl2an 575 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝐵 FallFac 𝑘) ∈ ℂ)
9763, 96mulcld 10262 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)) ∈ ℂ)
9889, 94, 97adddird 10267 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) = (((𝑁C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) + ((𝑁C(𝑘 − 1)) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)))))
9987, 98eqtr3d 2807 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁 + 1)C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) = (((𝑁C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) + ((𝑁C(𝑘 − 1)) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)))))
10099sumeq2dv 14641 . . . 4 (𝜑 → Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁 + 1)C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) = Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) + ((𝑁C(𝑘 − 1)) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)))))
101 nn0uz 11924 . . . . . . . . 9 0 = (ℤ‘0)
1021, 101syl6eleq 2860 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ‘0))
10389, 97mulcld 10262 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) ∈ ℂ)
104 oveq2 6801 . . . . . . . . 9 (𝑘 = (𝑁 + 1) → (𝑁C𝑘) = (𝑁C(𝑁 + 1)))
105 oveq2 6801 . . . . . . . . . . 11 (𝑘 = (𝑁 + 1) → ((𝑁 + 1) − 𝑘) = ((𝑁 + 1) − (𝑁 + 1)))
106105oveq2d 6809 . . . . . . . . . 10 (𝑘 = (𝑁 + 1) → (𝐴 FallFac ((𝑁 + 1) − 𝑘)) = (𝐴 FallFac ((𝑁 + 1) − (𝑁 + 1))))
107 oveq2 6801 . . . . . . . . . 10 (𝑘 = (𝑁 + 1) → (𝐵 FallFac 𝑘) = (𝐵 FallFac (𝑁 + 1)))
108106, 107oveq12d 6811 . . . . . . . . 9 (𝑘 = (𝑁 + 1) → ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)) = ((𝐴 FallFac ((𝑁 + 1) − (𝑁 + 1))) · (𝐵 FallFac (𝑁 + 1))))
109104, 108oveq12d 6811 . . . . . . . 8 (𝑘 = (𝑁 + 1) → ((𝑁C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) = ((𝑁C(𝑁 + 1)) · ((𝐴 FallFac ((𝑁 + 1) − (𝑁 + 1))) · (𝐵 FallFac (𝑁 + 1)))))
110102, 103, 109fsump1 14695 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) = (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) + ((𝑁C(𝑁 + 1)) · ((𝐴 FallFac ((𝑁 + 1) − (𝑁 + 1))) · (𝐵 FallFac (𝑁 + 1))))))
111 peano2nn0 11535 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
1121, 111syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑁 + 1) ∈ ℕ0)
113112nn0zd 11682 . . . . . . . . . . 11 (𝜑 → (𝑁 + 1) ∈ ℤ)
1141nn0red 11554 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℝ)
115114ltp1d 11156 . . . . . . . . . . . 12 (𝜑𝑁 < (𝑁 + 1))
116115olcd 853 . . . . . . . . . . 11 (𝜑 → ((𝑁 + 1) < 0 ∨ 𝑁 < (𝑁 + 1)))
117 bcval4 13298 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℤ ∧ ((𝑁 + 1) < 0 ∨ 𝑁 < (𝑁 + 1))) → (𝑁C(𝑁 + 1)) = 0)
1181, 113, 116, 117syl3anc 1476 . . . . . . . . . 10 (𝜑 → (𝑁C(𝑁 + 1)) = 0)
119118oveq1d 6808 . . . . . . . . 9 (𝜑 → ((𝑁C(𝑁 + 1)) · ((𝐴 FallFac ((𝑁 + 1) − (𝑁 + 1))) · (𝐵 FallFac (𝑁 + 1)))) = (0 · ((𝐴 FallFac ((𝑁 + 1) − (𝑁 + 1))) · (𝐵 FallFac (𝑁 + 1)))))
120112nn0cnd 11555 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 + 1) ∈ ℂ)
121120subidd 10582 . . . . . . . . . . . . 13 (𝜑 → ((𝑁 + 1) − (𝑁 + 1)) = 0)
122121oveq2d 6809 . . . . . . . . . . . 12 (𝜑 → (𝐴 FallFac ((𝑁 + 1) − (𝑁 + 1))) = (𝐴 FallFac 0))
123 0nn0 11509 . . . . . . . . . . . . 13 0 ∈ ℕ0
124 fallfaccl 14953 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 0 ∈ ℕ0) → (𝐴 FallFac 0) ∈ ℂ)
1256, 123, 124sylancl 566 . . . . . . . . . . . 12 (𝜑 → (𝐴 FallFac 0) ∈ ℂ)
126122, 125eqeltrd 2850 . . . . . . . . . . 11 (𝜑 → (𝐴 FallFac ((𝑁 + 1) − (𝑁 + 1))) ∈ ℂ)
127 fallfaccl 14953 . . . . . . . . . . . 12 ((𝐵 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ0) → (𝐵 FallFac (𝑁 + 1)) ∈ ℂ)
12810, 112, 127syl2anc 565 . . . . . . . . . . 11 (𝜑 → (𝐵 FallFac (𝑁 + 1)) ∈ ℂ)
129126, 128mulcld 10262 . . . . . . . . . 10 (𝜑 → ((𝐴 FallFac ((𝑁 + 1) − (𝑁 + 1))) · (𝐵 FallFac (𝑁 + 1))) ∈ ℂ)
130129mul02d 10436 . . . . . . . . 9 (𝜑 → (0 · ((𝐴 FallFac ((𝑁 + 1) − (𝑁 + 1))) · (𝐵 FallFac (𝑁 + 1)))) = 0)
131119, 130eqtrd 2805 . . . . . . . 8 (𝜑 → ((𝑁C(𝑁 + 1)) · ((𝐴 FallFac ((𝑁 + 1) − (𝑁 + 1))) · (𝐵 FallFac (𝑁 + 1)))) = 0)
132131oveq2d 6809 . . . . . . 7 (𝜑 → (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) + ((𝑁C(𝑁 + 1)) · ((𝐴 FallFac ((𝑁 + 1) − (𝑁 + 1))) · (𝐵 FallFac (𝑁 + 1))))) = (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) + 0))
13360, 103syldan 571 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) ∈ ℂ)
13479, 133fsumcl 14672 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) ∈ ℂ)
135134addid1d 10438 . . . . . . 7 (𝜑 → (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) + 0) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))))
136110, 132, 1353eqtrd 2809 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))))
137112, 101syl6eleq 2860 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ (ℤ‘0))
13894, 97mulcld 10262 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C(𝑘 − 1)) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) ∈ ℂ)
139 oveq1 6800 . . . . . . . . . . 11 (𝑘 = 0 → (𝑘 − 1) = (0 − 1))
140 df-neg 10471 . . . . . . . . . . 11 -1 = (0 − 1)
141139, 140syl6eqr 2823 . . . . . . . . . 10 (𝑘 = 0 → (𝑘 − 1) = -1)
142141oveq2d 6809 . . . . . . . . 9 (𝑘 = 0 → (𝑁C(𝑘 − 1)) = (𝑁C-1))
143 oveq2 6801 . . . . . . . . . . 11 (𝑘 = 0 → ((𝑁 + 1) − 𝑘) = ((𝑁 + 1) − 0))
144143oveq2d 6809 . . . . . . . . . 10 (𝑘 = 0 → (𝐴 FallFac ((𝑁 + 1) − 𝑘)) = (𝐴 FallFac ((𝑁 + 1) − 0)))
145 oveq2 6801 . . . . . . . . . 10 (𝑘 = 0 → (𝐵 FallFac 𝑘) = (𝐵 FallFac 0))
146144, 145oveq12d 6811 . . . . . . . . 9 (𝑘 = 0 → ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)) = ((𝐴 FallFac ((𝑁 + 1) − 0)) · (𝐵 FallFac 0)))
147142, 146oveq12d 6811 . . . . . . . 8 (𝑘 = 0 → ((𝑁C(𝑘 − 1)) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) = ((𝑁C-1) · ((𝐴 FallFac ((𝑁 + 1) − 0)) · (𝐵 FallFac 0))))
148137, 138, 147fsum1p 14690 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) = (((𝑁C-1) · ((𝐴 FallFac ((𝑁 + 1) − 0)) · (𝐵 FallFac 0))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)))))
149 neg1z 11615 . . . . . . . . . . . 12 -1 ∈ ℤ
150 neg1lt0 11329 . . . . . . . . . . . . 13 -1 < 0
151150orci 844 . . . . . . . . . . . 12 (-1 < 0 ∨ 𝑁 < -1)
152 bcval4 13298 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ -1 ∈ ℤ ∧ (-1 < 0 ∨ 𝑁 < -1)) → (𝑁C-1) = 0)
153149, 151, 152mp3an23 1564 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑁C-1) = 0)
1541, 153syl 17 . . . . . . . . . 10 (𝜑 → (𝑁C-1) = 0)
155154oveq1d 6808 . . . . . . . . 9 (𝜑 → ((𝑁C-1) · ((𝐴 FallFac ((𝑁 + 1) − 0)) · (𝐵 FallFac 0))) = (0 · ((𝐴 FallFac ((𝑁 + 1) − 0)) · (𝐵 FallFac 0))))
156120subid1d 10583 . . . . . . . . . . . . 13 (𝜑 → ((𝑁 + 1) − 0) = (𝑁 + 1))
157156oveq2d 6809 . . . . . . . . . . . 12 (𝜑 → (𝐴 FallFac ((𝑁 + 1) − 0)) = (𝐴 FallFac (𝑁 + 1)))
158 fallfaccl 14953 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ0) → (𝐴 FallFac (𝑁 + 1)) ∈ ℂ)
1596, 112, 158syl2anc 565 . . . . . . . . . . . 12 (𝜑 → (𝐴 FallFac (𝑁 + 1)) ∈ ℂ)
160157, 159eqeltrd 2850 . . . . . . . . . . 11 (𝜑 → (𝐴 FallFac ((𝑁 + 1) − 0)) ∈ ℂ)
161 fallfaccl 14953 . . . . . . . . . . . 12 ((𝐵 ∈ ℂ ∧ 0 ∈ ℕ0) → (𝐵 FallFac 0) ∈ ℂ)
16210, 123, 161sylancl 566 . . . . . . . . . . 11 (𝜑 → (𝐵 FallFac 0) ∈ ℂ)
163160, 162mulcld 10262 . . . . . . . . . 10 (𝜑 → ((𝐴 FallFac ((𝑁 + 1) − 0)) · (𝐵 FallFac 0)) ∈ ℂ)
164163mul02d 10436 . . . . . . . . 9 (𝜑 → (0 · ((𝐴 FallFac ((𝑁 + 1) − 0)) · (𝐵 FallFac 0))) = 0)
165155, 164eqtrd 2805 . . . . . . . 8 (𝜑 → ((𝑁C-1) · ((𝐴 FallFac ((𝑁 + 1) − 0)) · (𝐵 FallFac 0))) = 0)
166 1zzd 11610 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℤ)
167 0zd 11591 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℤ)
1686, 10, 1binomfallfaclem1 14976 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑁)) → ((𝑁C𝑗) · ((𝐴 FallFac (𝑁𝑗)) · (𝐵 FallFac (𝑗 + 1)))) ∈ ℂ)
169 oveq2 6801 . . . . . . . . . . . 12 (𝑗 = (𝑘 − 1) → (𝑁C𝑗) = (𝑁C(𝑘 − 1)))
170 oveq2 6801 . . . . . . . . . . . . . 14 (𝑗 = (𝑘 − 1) → (𝑁𝑗) = (𝑁 − (𝑘 − 1)))
171170oveq2d 6809 . . . . . . . . . . . . 13 (𝑗 = (𝑘 − 1) → (𝐴 FallFac (𝑁𝑗)) = (𝐴 FallFac (𝑁 − (𝑘 − 1))))
172 oveq1 6800 . . . . . . . . . . . . . 14 (𝑗 = (𝑘 − 1) → (𝑗 + 1) = ((𝑘 − 1) + 1))
173172oveq2d 6809 . . . . . . . . . . . . 13 (𝑗 = (𝑘 − 1) → (𝐵 FallFac (𝑗 + 1)) = (𝐵 FallFac ((𝑘 − 1) + 1)))
174171, 173oveq12d 6811 . . . . . . . . . . . 12 (𝑗 = (𝑘 − 1) → ((𝐴 FallFac (𝑁𝑗)) · (𝐵 FallFac (𝑗 + 1))) = ((𝐴 FallFac (𝑁 − (𝑘 − 1))) · (𝐵 FallFac ((𝑘 − 1) + 1))))
175169, 174oveq12d 6811 . . . . . . . . . . 11 (𝑗 = (𝑘 − 1) → ((𝑁C𝑗) · ((𝐴 FallFac (𝑁𝑗)) · (𝐵 FallFac (𝑗 + 1)))) = ((𝑁C(𝑘 − 1)) · ((𝐴 FallFac (𝑁 − (𝑘 − 1))) · (𝐵 FallFac ((𝑘 − 1) + 1)))))
176166, 167, 55, 168, 175fsumshft 14719 . . . . . . . . . 10 (𝜑 → Σ𝑗 ∈ (0...𝑁)((𝑁C𝑗) · ((𝐴 FallFac (𝑁𝑗)) · (𝐵 FallFac (𝑗 + 1)))) = Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((𝐴 FallFac (𝑁 − (𝑘 − 1))) · (𝐵 FallFac ((𝑘 − 1) + 1)))))
17716adantr 466 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑁 ∈ ℂ)
178 elfzelz 12549 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ((0 + 1)...(𝑁 + 1)) → 𝑘 ∈ ℤ)
179178adantl 467 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑘 ∈ ℤ)
180179zcnd 11685 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑘 ∈ ℂ)
181 1cnd 10258 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → 1 ∈ ℂ)
182177, 180, 181subsub3d 10624 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → (𝑁 − (𝑘 − 1)) = ((𝑁 + 1) − 𝑘))
183182oveq2d 6809 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → (𝐴 FallFac (𝑁 − (𝑘 − 1))) = (𝐴 FallFac ((𝑁 + 1) − 𝑘)))
184180, 181npcand 10598 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑘 − 1) + 1) = 𝑘)
185184oveq2d 6809 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → (𝐵 FallFac ((𝑘 − 1) + 1)) = (𝐵 FallFac 𝑘))
186183, 185oveq12d 6811 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝐴 FallFac (𝑁 − (𝑘 − 1))) · (𝐵 FallFac ((𝑘 − 1) + 1))) = ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)))
187186oveq2d 6809 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁C(𝑘 − 1)) · ((𝐴 FallFac (𝑁 − (𝑘 − 1))) · (𝐵 FallFac ((𝑘 − 1) + 1)))) = ((𝑁C(𝑘 − 1)) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))))
188187sumeq2dv 14641 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((𝐴 FallFac (𝑁 − (𝑘 − 1))) · (𝐵 FallFac ((𝑘 − 1) + 1)))) = Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))))
189176, 188eqtr2d 2806 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) = Σ𝑗 ∈ (0...𝑁)((𝑁C𝑗) · ((𝐴 FallFac (𝑁𝑗)) · (𝐵 FallFac (𝑗 + 1)))))
190 oveq2 6801 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝑁C𝑘) = (𝑁C𝑗))
191 oveq2 6801 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑁𝑘) = (𝑁𝑗))
192191oveq2d 6809 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝐴 FallFac (𝑁𝑘)) = (𝐴 FallFac (𝑁𝑗)))
193 oveq1 6800 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑘 + 1) = (𝑗 + 1))
194193oveq2d 6809 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝐵 FallFac (𝑘 + 1)) = (𝐵 FallFac (𝑗 + 1)))
195192, 194oveq12d 6811 . . . . . . . . . . 11 (𝑘 = 𝑗 → ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac (𝑘 + 1))) = ((𝐴 FallFac (𝑁𝑗)) · (𝐵 FallFac (𝑗 + 1))))
196190, 195oveq12d 6811 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac (𝑘 + 1)))) = ((𝑁C𝑗) · ((𝐴 FallFac (𝑁𝑗)) · (𝐵 FallFac (𝑗 + 1)))))
197196cbvsumv 14634 . . . . . . . . 9 Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac (𝑘 + 1)))) = Σ𝑗 ∈ (0...𝑁)((𝑁C𝑗) · ((𝐴 FallFac (𝑁𝑗)) · (𝐵 FallFac (𝑗 + 1))))
198189, 197syl6eqr 2823 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac (𝑘 + 1)))))
199165, 198oveq12d 6811 . . . . . . 7 (𝜑 → (((𝑁C-1) · ((𝐴 FallFac ((𝑁 + 1) − 0)) · (𝐵 FallFac 0))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)))) = (0 + Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac (𝑘 + 1))))))
2006, 10, 1binomfallfaclem1 14976 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac (𝑘 + 1)))) ∈ ℂ)
20179, 200fsumcl 14672 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac (𝑘 + 1)))) ∈ ℂ)
202201addid2d 10439 . . . . . . 7 (𝜑 → (0 + Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac (𝑘 + 1))))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac (𝑘 + 1)))))
203148, 199, 2023eqtrd 2809 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac (𝑘 + 1)))))
204136, 203oveq12d 6811 . . . . 5 (𝜑 → (Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) + Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)))) = (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) + Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac (𝑘 + 1))))))
205 fzfid 12980 . . . . . 6 (𝜑 → (0...(𝑁 + 1)) ∈ Fin)
206205, 103, 138fsumadd 14678 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) + ((𝑁C(𝑘 − 1)) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)))) = (Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) + Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)))))
20779, 133, 200fsumadd 14678 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...𝑁)(((𝑁C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) + ((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac (𝑘 + 1))))) = (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) + Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac (𝑘 + 1))))))
208204, 206, 2073eqtr4d 2815 . . . 4 (𝜑 → Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) + ((𝑁C(𝑘 − 1)) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)))) = Σ𝑘 ∈ (0...𝑁)(((𝑁C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) + ((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac (𝑘 + 1))))))
209100, 208eqtrd 2805 . . 3 (𝜑 → Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁 + 1)C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) = Σ𝑘 ∈ (0...𝑁)(((𝑁C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) + ((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac (𝑘 + 1))))))
210209adantr 466 . 2 ((𝜑𝜓) → Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁 + 1)C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) = Σ𝑘 ∈ (0...𝑁)(((𝑁C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))) + ((𝑁C𝑘) · ((𝐴 FallFac (𝑁𝑘)) · (𝐵 FallFac (𝑘 + 1))))))
21174, 83, 2103eqtr4d 2815 1 ((𝜑𝜓) → ((𝐴 + 𝐵) FallFac (𝑁 + 1)) = Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁 + 1)C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wo 826   = wceq 1631  wcel 2145  wss 3723   class class class wbr 4786  cfv 6031  (class class class)co 6793  cc 10136  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143   < clt 10276  cmin 10468  -cneg 10469  0cn0 11494  cz 11579  cuz 11888  ...cfz 12533  Ccbc 13293  Σcsu 14624   FallFac cfallfac 14941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-oi 8571  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-sum 14625  df-prod 14843  df-fallfac 14944
This theorem is referenced by:  binomfallfac  14978
  Copyright terms: Public domain W3C validator