![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscard3 | Structured version Visualization version GIF version |
Description: Two ways to express the property of being a cardinal number. (Contributed by NM, 9-Nov-2003.) |
Ref | Expression |
---|---|
iscard3 | β’ ((cardβπ΄) = π΄ β π΄ β (Ο βͺ ran β΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardon 9941 | . . . . . . . . 9 β’ (cardβπ΄) β On | |
2 | eleq1 2821 | . . . . . . . . 9 β’ ((cardβπ΄) = π΄ β ((cardβπ΄) β On β π΄ β On)) | |
3 | 1, 2 | mpbii 232 | . . . . . . . 8 β’ ((cardβπ΄) = π΄ β π΄ β On) |
4 | eloni 6374 | . . . . . . . 8 β’ (π΄ β On β Ord π΄) | |
5 | 3, 4 | syl 17 | . . . . . . 7 β’ ((cardβπ΄) = π΄ β Ord π΄) |
6 | ordom 7867 | . . . . . . 7 β’ Ord Ο | |
7 | ordtri2or 6462 | . . . . . . 7 β’ ((Ord π΄ β§ Ord Ο) β (π΄ β Ο β¨ Ο β π΄)) | |
8 | 5, 6, 7 | sylancl 586 | . . . . . 6 β’ ((cardβπ΄) = π΄ β (π΄ β Ο β¨ Ο β π΄)) |
9 | 8 | ord 862 | . . . . 5 β’ ((cardβπ΄) = π΄ β (Β¬ π΄ β Ο β Ο β π΄)) |
10 | isinfcard 10089 | . . . . . . 7 β’ ((Ο β π΄ β§ (cardβπ΄) = π΄) β π΄ β ran β΅) | |
11 | 10 | biimpi 215 | . . . . . 6 β’ ((Ο β π΄ β§ (cardβπ΄) = π΄) β π΄ β ran β΅) |
12 | 11 | expcom 414 | . . . . 5 β’ ((cardβπ΄) = π΄ β (Ο β π΄ β π΄ β ran β΅)) |
13 | 9, 12 | syld 47 | . . . 4 β’ ((cardβπ΄) = π΄ β (Β¬ π΄ β Ο β π΄ β ran β΅)) |
14 | 13 | orrd 861 | . . 3 β’ ((cardβπ΄) = π΄ β (π΄ β Ο β¨ π΄ β ran β΅)) |
15 | cardnn 9960 | . . . 4 β’ (π΄ β Ο β (cardβπ΄) = π΄) | |
16 | 10 | bicomi 223 | . . . . 5 β’ (π΄ β ran β΅ β (Ο β π΄ β§ (cardβπ΄) = π΄)) |
17 | 16 | simprbi 497 | . . . 4 β’ (π΄ β ran β΅ β (cardβπ΄) = π΄) |
18 | 15, 17 | jaoi 855 | . . 3 β’ ((π΄ β Ο β¨ π΄ β ran β΅) β (cardβπ΄) = π΄) |
19 | 14, 18 | impbii 208 | . 2 β’ ((cardβπ΄) = π΄ β (π΄ β Ο β¨ π΄ β ran β΅)) |
20 | elun 4148 | . 2 β’ (π΄ β (Ο βͺ ran β΅) β (π΄ β Ο β¨ π΄ β ran β΅)) | |
21 | 19, 20 | bitr4i 277 | 1 β’ ((cardβπ΄) = π΄ β π΄ β (Ο βͺ ran β΅)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wb 205 β§ wa 396 β¨ wo 845 = wceq 1541 β wcel 2106 βͺ cun 3946 β wss 3948 ran crn 5677 Ord word 6363 Oncon0 6364 βcfv 6543 Οcom 7857 cardccrd 9932 β΅cale 9933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-inf2 9638 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-oi 9507 df-har 9554 df-card 9936 df-aleph 9937 |
This theorem is referenced by: cardnum 10091 carduniima 10093 cardinfima 10094 cfpwsdom 10581 gch2 10672 |
Copyright terms: Public domain | W3C validator |