MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscard3 Structured version   Visualization version   GIF version

Theorem iscard3 10107
Description: Two ways to express the property of being a cardinal number. (Contributed by NM, 9-Nov-2003.)
Assertion
Ref Expression
iscard3 ((card‘𝐴) = 𝐴𝐴 ∈ (ω ∪ ran ℵ))

Proof of Theorem iscard3
StepHypRef Expression
1 cardon 9958 . . . . . . . . 9 (card‘𝐴) ∈ On
2 eleq1 2822 . . . . . . . . 9 ((card‘𝐴) = 𝐴 → ((card‘𝐴) ∈ On ↔ 𝐴 ∈ On))
31, 2mpbii 233 . . . . . . . 8 ((card‘𝐴) = 𝐴𝐴 ∈ On)
4 eloni 6362 . . . . . . . 8 (𝐴 ∈ On → Ord 𝐴)
53, 4syl 17 . . . . . . 7 ((card‘𝐴) = 𝐴 → Ord 𝐴)
6 ordom 7871 . . . . . . 7 Ord ω
7 ordtri2or 6452 . . . . . . 7 ((Ord 𝐴 ∧ Ord ω) → (𝐴 ∈ ω ∨ ω ⊆ 𝐴))
85, 6, 7sylancl 586 . . . . . 6 ((card‘𝐴) = 𝐴 → (𝐴 ∈ ω ∨ ω ⊆ 𝐴))
98ord 864 . . . . 5 ((card‘𝐴) = 𝐴 → (¬ 𝐴 ∈ ω → ω ⊆ 𝐴))
10 isinfcard 10106 . . . . . . 7 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ↔ 𝐴 ∈ ran ℵ)
1110biimpi 216 . . . . . 6 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → 𝐴 ∈ ran ℵ)
1211expcom 413 . . . . 5 ((card‘𝐴) = 𝐴 → (ω ⊆ 𝐴𝐴 ∈ ran ℵ))
139, 12syld 47 . . . 4 ((card‘𝐴) = 𝐴 → (¬ 𝐴 ∈ ω → 𝐴 ∈ ran ℵ))
1413orrd 863 . . 3 ((card‘𝐴) = 𝐴 → (𝐴 ∈ ω ∨ 𝐴 ∈ ran ℵ))
15 cardnn 9977 . . . 4 (𝐴 ∈ ω → (card‘𝐴) = 𝐴)
1610bicomi 224 . . . . 5 (𝐴 ∈ ran ℵ ↔ (ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴))
1716simprbi 496 . . . 4 (𝐴 ∈ ran ℵ → (card‘𝐴) = 𝐴)
1815, 17jaoi 857 . . 3 ((𝐴 ∈ ω ∨ 𝐴 ∈ ran ℵ) → (card‘𝐴) = 𝐴)
1914, 18impbii 209 . 2 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ ω ∨ 𝐴 ∈ ran ℵ))
20 elun 4128 . 2 (𝐴 ∈ (ω ∪ ran ℵ) ↔ (𝐴 ∈ ω ∨ 𝐴 ∈ ran ℵ))
2119, 20bitr4i 278 1 ((card‘𝐴) = 𝐴𝐴 ∈ (ω ∪ ran ℵ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  cun 3924  wss 3926  ran crn 5655  Ord word 6351  Oncon0 6352  cfv 6531  ωcom 7861  cardccrd 9949  cale 9950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-oi 9524  df-har 9571  df-card 9953  df-aleph 9954
This theorem is referenced by:  cardnum  10108  carduniima  10110  cardinfima  10111  cfpwsdom  10598  gch2  10689
  Copyright terms: Public domain W3C validator