| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscard3 | Structured version Visualization version GIF version | ||
| Description: Two ways to express the property of being a cardinal number. (Contributed by NM, 9-Nov-2003.) |
| Ref | Expression |
|---|---|
| iscard3 | ⊢ ((card‘𝐴) = 𝐴 ↔ 𝐴 ∈ (ω ∪ ran ℵ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardon 9897 | . . . . . . . . 9 ⊢ (card‘𝐴) ∈ On | |
| 2 | eleq1 2816 | . . . . . . . . 9 ⊢ ((card‘𝐴) = 𝐴 → ((card‘𝐴) ∈ On ↔ 𝐴 ∈ On)) | |
| 3 | 1, 2 | mpbii 233 | . . . . . . . 8 ⊢ ((card‘𝐴) = 𝐴 → 𝐴 ∈ On) |
| 4 | eloni 6342 | . . . . . . . 8 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 5 | 3, 4 | syl 17 | . . . . . . 7 ⊢ ((card‘𝐴) = 𝐴 → Ord 𝐴) |
| 6 | ordom 7852 | . . . . . . 7 ⊢ Ord ω | |
| 7 | ordtri2or 6432 | . . . . . . 7 ⊢ ((Ord 𝐴 ∧ Ord ω) → (𝐴 ∈ ω ∨ ω ⊆ 𝐴)) | |
| 8 | 5, 6, 7 | sylancl 586 | . . . . . 6 ⊢ ((card‘𝐴) = 𝐴 → (𝐴 ∈ ω ∨ ω ⊆ 𝐴)) |
| 9 | 8 | ord 864 | . . . . 5 ⊢ ((card‘𝐴) = 𝐴 → (¬ 𝐴 ∈ ω → ω ⊆ 𝐴)) |
| 10 | isinfcard 10045 | . . . . . . 7 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ↔ 𝐴 ∈ ran ℵ) | |
| 11 | 10 | biimpi 216 | . . . . . 6 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → 𝐴 ∈ ran ℵ) |
| 12 | 11 | expcom 413 | . . . . 5 ⊢ ((card‘𝐴) = 𝐴 → (ω ⊆ 𝐴 → 𝐴 ∈ ran ℵ)) |
| 13 | 9, 12 | syld 47 | . . . 4 ⊢ ((card‘𝐴) = 𝐴 → (¬ 𝐴 ∈ ω → 𝐴 ∈ ran ℵ)) |
| 14 | 13 | orrd 863 | . . 3 ⊢ ((card‘𝐴) = 𝐴 → (𝐴 ∈ ω ∨ 𝐴 ∈ ran ℵ)) |
| 15 | cardnn 9916 | . . . 4 ⊢ (𝐴 ∈ ω → (card‘𝐴) = 𝐴) | |
| 16 | 10 | bicomi 224 | . . . . 5 ⊢ (𝐴 ∈ ran ℵ ↔ (ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴)) |
| 17 | 16 | simprbi 496 | . . . 4 ⊢ (𝐴 ∈ ran ℵ → (card‘𝐴) = 𝐴) |
| 18 | 15, 17 | jaoi 857 | . . 3 ⊢ ((𝐴 ∈ ω ∨ 𝐴 ∈ ran ℵ) → (card‘𝐴) = 𝐴) |
| 19 | 14, 18 | impbii 209 | . 2 ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ ω ∨ 𝐴 ∈ ran ℵ)) |
| 20 | elun 4116 | . 2 ⊢ (𝐴 ∈ (ω ∪ ran ℵ) ↔ (𝐴 ∈ ω ∨ 𝐴 ∈ ran ℵ)) | |
| 21 | 19, 20 | bitr4i 278 | 1 ⊢ ((card‘𝐴) = 𝐴 ↔ 𝐴 ∈ (ω ∪ ran ℵ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∪ cun 3912 ⊆ wss 3914 ran crn 5639 Ord word 6331 Oncon0 6332 ‘cfv 6511 ωcom 7842 cardccrd 9888 ℵcale 9889 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-oi 9463 df-har 9510 df-card 9892 df-aleph 9893 |
| This theorem is referenced by: cardnum 10047 carduniima 10049 cardinfima 10050 cfpwsdom 10537 gch2 10628 |
| Copyright terms: Public domain | W3C validator |