| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscard3 | Structured version Visualization version GIF version | ||
| Description: Two ways to express the property of being a cardinal number. (Contributed by NM, 9-Nov-2003.) |
| Ref | Expression |
|---|---|
| iscard3 | ⊢ ((card‘𝐴) = 𝐴 ↔ 𝐴 ∈ (ω ∪ ran ℵ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardon 9958 | . . . . . . . . 9 ⊢ (card‘𝐴) ∈ On | |
| 2 | eleq1 2822 | . . . . . . . . 9 ⊢ ((card‘𝐴) = 𝐴 → ((card‘𝐴) ∈ On ↔ 𝐴 ∈ On)) | |
| 3 | 1, 2 | mpbii 233 | . . . . . . . 8 ⊢ ((card‘𝐴) = 𝐴 → 𝐴 ∈ On) |
| 4 | eloni 6362 | . . . . . . . 8 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 5 | 3, 4 | syl 17 | . . . . . . 7 ⊢ ((card‘𝐴) = 𝐴 → Ord 𝐴) |
| 6 | ordom 7871 | . . . . . . 7 ⊢ Ord ω | |
| 7 | ordtri2or 6452 | . . . . . . 7 ⊢ ((Ord 𝐴 ∧ Ord ω) → (𝐴 ∈ ω ∨ ω ⊆ 𝐴)) | |
| 8 | 5, 6, 7 | sylancl 586 | . . . . . 6 ⊢ ((card‘𝐴) = 𝐴 → (𝐴 ∈ ω ∨ ω ⊆ 𝐴)) |
| 9 | 8 | ord 864 | . . . . 5 ⊢ ((card‘𝐴) = 𝐴 → (¬ 𝐴 ∈ ω → ω ⊆ 𝐴)) |
| 10 | isinfcard 10106 | . . . . . . 7 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ↔ 𝐴 ∈ ran ℵ) | |
| 11 | 10 | biimpi 216 | . . . . . 6 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → 𝐴 ∈ ran ℵ) |
| 12 | 11 | expcom 413 | . . . . 5 ⊢ ((card‘𝐴) = 𝐴 → (ω ⊆ 𝐴 → 𝐴 ∈ ran ℵ)) |
| 13 | 9, 12 | syld 47 | . . . 4 ⊢ ((card‘𝐴) = 𝐴 → (¬ 𝐴 ∈ ω → 𝐴 ∈ ran ℵ)) |
| 14 | 13 | orrd 863 | . . 3 ⊢ ((card‘𝐴) = 𝐴 → (𝐴 ∈ ω ∨ 𝐴 ∈ ran ℵ)) |
| 15 | cardnn 9977 | . . . 4 ⊢ (𝐴 ∈ ω → (card‘𝐴) = 𝐴) | |
| 16 | 10 | bicomi 224 | . . . . 5 ⊢ (𝐴 ∈ ran ℵ ↔ (ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴)) |
| 17 | 16 | simprbi 496 | . . . 4 ⊢ (𝐴 ∈ ran ℵ → (card‘𝐴) = 𝐴) |
| 18 | 15, 17 | jaoi 857 | . . 3 ⊢ ((𝐴 ∈ ω ∨ 𝐴 ∈ ran ℵ) → (card‘𝐴) = 𝐴) |
| 19 | 14, 18 | impbii 209 | . 2 ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ ω ∨ 𝐴 ∈ ran ℵ)) |
| 20 | elun 4128 | . 2 ⊢ (𝐴 ∈ (ω ∪ ran ℵ) ↔ (𝐴 ∈ ω ∨ 𝐴 ∈ ran ℵ)) | |
| 21 | 19, 20 | bitr4i 278 | 1 ⊢ ((card‘𝐴) = 𝐴 ↔ 𝐴 ∈ (ω ∪ ran ℵ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ∪ cun 3924 ⊆ wss 3926 ran crn 5655 Ord word 6351 Oncon0 6352 ‘cfv 6531 ωcom 7861 cardccrd 9949 ℵcale 9950 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-oi 9524 df-har 9571 df-card 9953 df-aleph 9954 |
| This theorem is referenced by: cardnum 10108 carduniima 10110 cardinfima 10111 cfpwsdom 10598 gch2 10689 |
| Copyright terms: Public domain | W3C validator |