| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscard3 | Structured version Visualization version GIF version | ||
| Description: Two ways to express the property of being a cardinal number. (Contributed by NM, 9-Nov-2003.) |
| Ref | Expression |
|---|---|
| iscard3 | ⊢ ((card‘𝐴) = 𝐴 ↔ 𝐴 ∈ (ω ∪ ran ℵ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardon 9832 | . . . . . . . . 9 ⊢ (card‘𝐴) ∈ On | |
| 2 | eleq1 2819 | . . . . . . . . 9 ⊢ ((card‘𝐴) = 𝐴 → ((card‘𝐴) ∈ On ↔ 𝐴 ∈ On)) | |
| 3 | 1, 2 | mpbii 233 | . . . . . . . 8 ⊢ ((card‘𝐴) = 𝐴 → 𝐴 ∈ On) |
| 4 | eloni 6311 | . . . . . . . 8 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 5 | 3, 4 | syl 17 | . . . . . . 7 ⊢ ((card‘𝐴) = 𝐴 → Ord 𝐴) |
| 6 | ordom 7801 | . . . . . . 7 ⊢ Ord ω | |
| 7 | ordtri2or 6401 | . . . . . . 7 ⊢ ((Ord 𝐴 ∧ Ord ω) → (𝐴 ∈ ω ∨ ω ⊆ 𝐴)) | |
| 8 | 5, 6, 7 | sylancl 586 | . . . . . 6 ⊢ ((card‘𝐴) = 𝐴 → (𝐴 ∈ ω ∨ ω ⊆ 𝐴)) |
| 9 | 8 | ord 864 | . . . . 5 ⊢ ((card‘𝐴) = 𝐴 → (¬ 𝐴 ∈ ω → ω ⊆ 𝐴)) |
| 10 | isinfcard 9978 | . . . . . . 7 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ↔ 𝐴 ∈ ran ℵ) | |
| 11 | 10 | biimpi 216 | . . . . . 6 ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → 𝐴 ∈ ran ℵ) |
| 12 | 11 | expcom 413 | . . . . 5 ⊢ ((card‘𝐴) = 𝐴 → (ω ⊆ 𝐴 → 𝐴 ∈ ran ℵ)) |
| 13 | 9, 12 | syld 47 | . . . 4 ⊢ ((card‘𝐴) = 𝐴 → (¬ 𝐴 ∈ ω → 𝐴 ∈ ran ℵ)) |
| 14 | 13 | orrd 863 | . . 3 ⊢ ((card‘𝐴) = 𝐴 → (𝐴 ∈ ω ∨ 𝐴 ∈ ran ℵ)) |
| 15 | cardnn 9851 | . . . 4 ⊢ (𝐴 ∈ ω → (card‘𝐴) = 𝐴) | |
| 16 | 10 | bicomi 224 | . . . . 5 ⊢ (𝐴 ∈ ran ℵ ↔ (ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴)) |
| 17 | 16 | simprbi 496 | . . . 4 ⊢ (𝐴 ∈ ran ℵ → (card‘𝐴) = 𝐴) |
| 18 | 15, 17 | jaoi 857 | . . 3 ⊢ ((𝐴 ∈ ω ∨ 𝐴 ∈ ran ℵ) → (card‘𝐴) = 𝐴) |
| 19 | 14, 18 | impbii 209 | . 2 ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ ω ∨ 𝐴 ∈ ran ℵ)) |
| 20 | elun 4098 | . 2 ⊢ (𝐴 ∈ (ω ∪ ran ℵ) ↔ (𝐴 ∈ ω ∨ 𝐴 ∈ ran ℵ)) | |
| 21 | 19, 20 | bitr4i 278 | 1 ⊢ ((card‘𝐴) = 𝐴 ↔ 𝐴 ∈ (ω ∪ ran ℵ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∪ cun 3895 ⊆ wss 3897 ran crn 5612 Ord word 6300 Oncon0 6301 ‘cfv 6476 ωcom 7791 cardccrd 9823 ℵcale 9824 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-oi 9391 df-har 9438 df-card 9827 df-aleph 9828 |
| This theorem is referenced by: cardnum 9980 carduniima 9982 cardinfima 9983 cfpwsdom 10470 gch2 10561 |
| Copyright terms: Public domain | W3C validator |