MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unwf Structured version   Visualization version   GIF version

Theorem unwf 9824
Description: A binary union is well-founded iff its elements are. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
unwf ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) ↔ (𝐴𝐵) ∈ (𝑅1 “ On))

Proof of Theorem unwf
StepHypRef Expression
1 r1rankidb 9818 . . . . . . . 8 (𝐴 (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
21adantr 480 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
3 ssun1 4153 . . . . . . . 8 (rank‘𝐴) ⊆ ((rank‘𝐴) ∪ (rank‘𝐵))
4 rankdmr1 9815 . . . . . . . . 9 (rank‘𝐴) ∈ dom 𝑅1
5 r1funlim 9780 . . . . . . . . . . . 12 (Fun 𝑅1 ∧ Lim dom 𝑅1)
65simpri 485 . . . . . . . . . . 11 Lim dom 𝑅1
7 limord 6413 . . . . . . . . . . 11 (Lim dom 𝑅1 → Ord dom 𝑅1)
86, 7ax-mp 5 . . . . . . . . . 10 Ord dom 𝑅1
9 rankdmr1 9815 . . . . . . . . . 10 (rank‘𝐵) ∈ dom 𝑅1
10 ordunel 7821 . . . . . . . . . 10 ((Ord dom 𝑅1 ∧ (rank‘𝐴) ∈ dom 𝑅1 ∧ (rank‘𝐵) ∈ dom 𝑅1) → ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ dom 𝑅1)
118, 4, 9, 10mp3an 1463 . . . . . . . . 9 ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ dom 𝑅1
12 r1ord3g 9793 . . . . . . . . 9 (((rank‘𝐴) ∈ dom 𝑅1 ∧ ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ dom 𝑅1) → ((rank‘𝐴) ⊆ ((rank‘𝐴) ∪ (rank‘𝐵)) → (𝑅1‘(rank‘𝐴)) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵)))))
134, 11, 12mp2an 692 . . . . . . . 8 ((rank‘𝐴) ⊆ ((rank‘𝐴) ∪ (rank‘𝐵)) → (𝑅1‘(rank‘𝐴)) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
143, 13ax-mp 5 . . . . . . 7 (𝑅1‘(rank‘𝐴)) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵)))
152, 14sstrdi 3971 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → 𝐴 ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
16 r1rankidb 9818 . . . . . . . 8 (𝐵 (𝑅1 “ On) → 𝐵 ⊆ (𝑅1‘(rank‘𝐵)))
1716adantl 481 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → 𝐵 ⊆ (𝑅1‘(rank‘𝐵)))
18 ssun2 4154 . . . . . . . 8 (rank‘𝐵) ⊆ ((rank‘𝐴) ∪ (rank‘𝐵))
19 r1ord3g 9793 . . . . . . . . 9 (((rank‘𝐵) ∈ dom 𝑅1 ∧ ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ dom 𝑅1) → ((rank‘𝐵) ⊆ ((rank‘𝐴) ∪ (rank‘𝐵)) → (𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵)))))
209, 11, 19mp2an 692 . . . . . . . 8 ((rank‘𝐵) ⊆ ((rank‘𝐴) ∪ (rank‘𝐵)) → (𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
2118, 20ax-mp 5 . . . . . . 7 (𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵)))
2217, 21sstrdi 3971 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → 𝐵 ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
2315, 22unssd 4167 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝐴𝐵) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
24 fvex 6889 . . . . . 6 (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))) ∈ V
2524elpw2 5304 . . . . 5 ((𝐴𝐵) ∈ 𝒫 (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))) ↔ (𝐴𝐵) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
2623, 25sylibr 234 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝐴𝐵) ∈ 𝒫 (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
27 r1sucg 9783 . . . . 5 (((rank‘𝐴) ∪ (rank‘𝐵)) ∈ dom 𝑅1 → (𝑅1‘suc ((rank‘𝐴) ∪ (rank‘𝐵))) = 𝒫 (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
2811, 27ax-mp 5 . . . 4 (𝑅1‘suc ((rank‘𝐴) ∪ (rank‘𝐵))) = 𝒫 (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵)))
2926, 28eleqtrrdi 2845 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝐴𝐵) ∈ (𝑅1‘suc ((rank‘𝐴) ∪ (rank‘𝐵))))
30 r1elwf 9810 . . 3 ((𝐴𝐵) ∈ (𝑅1‘suc ((rank‘𝐴) ∪ (rank‘𝐵))) → (𝐴𝐵) ∈ (𝑅1 “ On))
3129, 30syl 17 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝐴𝐵) ∈ (𝑅1 “ On))
32 ssun1 4153 . . . 4 𝐴 ⊆ (𝐴𝐵)
33 sswf 9822 . . . 4 (((𝐴𝐵) ∈ (𝑅1 “ On) ∧ 𝐴 ⊆ (𝐴𝐵)) → 𝐴 (𝑅1 “ On))
3432, 33mpan2 691 . . 3 ((𝐴𝐵) ∈ (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
35 ssun2 4154 . . . 4 𝐵 ⊆ (𝐴𝐵)
36 sswf 9822 . . . 4 (((𝐴𝐵) ∈ (𝑅1 “ On) ∧ 𝐵 ⊆ (𝐴𝐵)) → 𝐵 (𝑅1 “ On))
3735, 36mpan2 691 . . 3 ((𝐴𝐵) ∈ (𝑅1 “ On) → 𝐵 (𝑅1 “ On))
3834, 37jca 511 . 2 ((𝐴𝐵) ∈ (𝑅1 “ On) → (𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)))
3931, 38impbii 209 1 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) ↔ (𝐴𝐵) ∈ (𝑅1 “ On))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  cun 3924  wss 3926  𝒫 cpw 4575   cuni 4883  dom cdm 5654  cima 5657  Ord word 6351  Oncon0 6352  Lim wlim 6353  suc csuc 6354  Fun wfun 6525  cfv 6531  𝑅1cr1 9776  rankcrnk 9777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-r1 9778  df-rank 9779
This theorem is referenced by:  prwf  9825  rankunb  9864  xpwf  44989
  Copyright terms: Public domain W3C validator