MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unwf Structured version   Visualization version   GIF version

Theorem unwf 9879
Description: A binary union is well-founded iff its elements are. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
unwf ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) ↔ (𝐴𝐵) ∈ (𝑅1 “ On))

Proof of Theorem unwf
StepHypRef Expression
1 r1rankidb 9873 . . . . . . . 8 (𝐴 (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
21adantr 480 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
3 ssun1 4201 . . . . . . . 8 (rank‘𝐴) ⊆ ((rank‘𝐴) ∪ (rank‘𝐵))
4 rankdmr1 9870 . . . . . . . . 9 (rank‘𝐴) ∈ dom 𝑅1
5 r1funlim 9835 . . . . . . . . . . . 12 (Fun 𝑅1 ∧ Lim dom 𝑅1)
65simpri 485 . . . . . . . . . . 11 Lim dom 𝑅1
7 limord 6455 . . . . . . . . . . 11 (Lim dom 𝑅1 → Ord dom 𝑅1)
86, 7ax-mp 5 . . . . . . . . . 10 Ord dom 𝑅1
9 rankdmr1 9870 . . . . . . . . . 10 (rank‘𝐵) ∈ dom 𝑅1
10 ordunel 7863 . . . . . . . . . 10 ((Ord dom 𝑅1 ∧ (rank‘𝐴) ∈ dom 𝑅1 ∧ (rank‘𝐵) ∈ dom 𝑅1) → ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ dom 𝑅1)
118, 4, 9, 10mp3an 1461 . . . . . . . . 9 ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ dom 𝑅1
12 r1ord3g 9848 . . . . . . . . 9 (((rank‘𝐴) ∈ dom 𝑅1 ∧ ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ dom 𝑅1) → ((rank‘𝐴) ⊆ ((rank‘𝐴) ∪ (rank‘𝐵)) → (𝑅1‘(rank‘𝐴)) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵)))))
134, 11, 12mp2an 691 . . . . . . . 8 ((rank‘𝐴) ⊆ ((rank‘𝐴) ∪ (rank‘𝐵)) → (𝑅1‘(rank‘𝐴)) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
143, 13ax-mp 5 . . . . . . 7 (𝑅1‘(rank‘𝐴)) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵)))
152, 14sstrdi 4021 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → 𝐴 ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
16 r1rankidb 9873 . . . . . . . 8 (𝐵 (𝑅1 “ On) → 𝐵 ⊆ (𝑅1‘(rank‘𝐵)))
1716adantl 481 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → 𝐵 ⊆ (𝑅1‘(rank‘𝐵)))
18 ssun2 4202 . . . . . . . 8 (rank‘𝐵) ⊆ ((rank‘𝐴) ∪ (rank‘𝐵))
19 r1ord3g 9848 . . . . . . . . 9 (((rank‘𝐵) ∈ dom 𝑅1 ∧ ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ dom 𝑅1) → ((rank‘𝐵) ⊆ ((rank‘𝐴) ∪ (rank‘𝐵)) → (𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵)))))
209, 11, 19mp2an 691 . . . . . . . 8 ((rank‘𝐵) ⊆ ((rank‘𝐴) ∪ (rank‘𝐵)) → (𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
2118, 20ax-mp 5 . . . . . . 7 (𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵)))
2217, 21sstrdi 4021 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → 𝐵 ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
2315, 22unssd 4215 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝐴𝐵) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
24 fvex 6933 . . . . . 6 (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))) ∈ V
2524elpw2 5352 . . . . 5 ((𝐴𝐵) ∈ 𝒫 (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))) ↔ (𝐴𝐵) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
2623, 25sylibr 234 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝐴𝐵) ∈ 𝒫 (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
27 r1sucg 9838 . . . . 5 (((rank‘𝐴) ∪ (rank‘𝐵)) ∈ dom 𝑅1 → (𝑅1‘suc ((rank‘𝐴) ∪ (rank‘𝐵))) = 𝒫 (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
2811, 27ax-mp 5 . . . 4 (𝑅1‘suc ((rank‘𝐴) ∪ (rank‘𝐵))) = 𝒫 (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵)))
2926, 28eleqtrrdi 2855 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝐴𝐵) ∈ (𝑅1‘suc ((rank‘𝐴) ∪ (rank‘𝐵))))
30 r1elwf 9865 . . 3 ((𝐴𝐵) ∈ (𝑅1‘suc ((rank‘𝐴) ∪ (rank‘𝐵))) → (𝐴𝐵) ∈ (𝑅1 “ On))
3129, 30syl 17 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝐴𝐵) ∈ (𝑅1 “ On))
32 ssun1 4201 . . . 4 𝐴 ⊆ (𝐴𝐵)
33 sswf 9877 . . . 4 (((𝐴𝐵) ∈ (𝑅1 “ On) ∧ 𝐴 ⊆ (𝐴𝐵)) → 𝐴 (𝑅1 “ On))
3432, 33mpan2 690 . . 3 ((𝐴𝐵) ∈ (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
35 ssun2 4202 . . . 4 𝐵 ⊆ (𝐴𝐵)
36 sswf 9877 . . . 4 (((𝐴𝐵) ∈ (𝑅1 “ On) ∧ 𝐵 ⊆ (𝐴𝐵)) → 𝐵 (𝑅1 “ On))
3735, 36mpan2 690 . . 3 ((𝐴𝐵) ∈ (𝑅1 “ On) → 𝐵 (𝑅1 “ On))
3834, 37jca 511 . 2 ((𝐴𝐵) ∈ (𝑅1 “ On) → (𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)))
3931, 38impbii 209 1 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) ↔ (𝐴𝐵) ∈ (𝑅1 “ On))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  cun 3974  wss 3976  𝒫 cpw 4622   cuni 4931  dom cdm 5700  cima 5703  Ord word 6394  Oncon0 6395  Lim wlim 6396  suc csuc 6397  Fun wfun 6567  cfv 6573  𝑅1cr1 9831  rankcrnk 9832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-r1 9833  df-rank 9834
This theorem is referenced by:  prwf  9880  rankunb  9919  xpwf  44912
  Copyright terms: Public domain W3C validator