Step | Hyp | Ref
| Expression |
1 | | r1rankidb 9799 |
. . . . . . . 8
β’ (π΄ β βͺ (π
1 β On) β π΄ β
(π
1β(rankβπ΄))) |
2 | 1 | adantr 482 |
. . . . . . 7
β’ ((π΄ β βͺ (π
1 β On) β§ π΅ β βͺ (π
1 β On)) β π΄ β
(π
1β(rankβπ΄))) |
3 | | ssun1 4173 |
. . . . . . . 8
β’
(rankβπ΄)
β ((rankβπ΄)
βͺ (rankβπ΅)) |
4 | | rankdmr1 9796 |
. . . . . . . . 9
β’
(rankβπ΄)
β dom π
1 |
5 | | r1funlim 9761 |
. . . . . . . . . . . 12
β’ (Fun
π
1 β§ Lim dom π
1) |
6 | 5 | simpri 487 |
. . . . . . . . . . 11
β’ Lim dom
π
1 |
7 | | limord 6425 |
. . . . . . . . . . 11
β’ (Lim dom
π
1 β Ord dom π
1) |
8 | 6, 7 | ax-mp 5 |
. . . . . . . . . 10
β’ Ord dom
π
1 |
9 | | rankdmr1 9796 |
. . . . . . . . . 10
β’
(rankβπ΅)
β dom π
1 |
10 | | ordunel 7815 |
. . . . . . . . . 10
β’ ((Ord dom
π
1 β§ (rankβπ΄) β dom π
1 β§
(rankβπ΅) β dom
π
1) β ((rankβπ΄) βͺ (rankβπ΅)) β dom
π
1) |
11 | 8, 4, 9, 10 | mp3an 1462 |
. . . . . . . . 9
β’
((rankβπ΄)
βͺ (rankβπ΅))
β dom π
1 |
12 | | r1ord3g 9774 |
. . . . . . . . 9
β’
(((rankβπ΄)
β dom π
1 β§ ((rankβπ΄) βͺ (rankβπ΅)) β dom π
1) β
((rankβπ΄) β
((rankβπ΄) βͺ
(rankβπ΅)) β
(π
1β(rankβπ΄)) β
(π
1β((rankβπ΄) βͺ (rankβπ΅))))) |
13 | 4, 11, 12 | mp2an 691 |
. . . . . . . 8
β’
((rankβπ΄)
β ((rankβπ΄)
βͺ (rankβπ΅))
β (π
1β(rankβπ΄)) β
(π
1β((rankβπ΄) βͺ (rankβπ΅)))) |
14 | 3, 13 | ax-mp 5 |
. . . . . . 7
β’
(π
1β(rankβπ΄)) β
(π
1β((rankβπ΄) βͺ (rankβπ΅))) |
15 | 2, 14 | sstrdi 3995 |
. . . . . 6
β’ ((π΄ β βͺ (π
1 β On) β§ π΅ β βͺ (π
1 β On)) β π΄ β
(π
1β((rankβπ΄) βͺ (rankβπ΅)))) |
16 | | r1rankidb 9799 |
. . . . . . . 8
β’ (π΅ β βͺ (π
1 β On) β π΅ β
(π
1β(rankβπ΅))) |
17 | 16 | adantl 483 |
. . . . . . 7
β’ ((π΄ β βͺ (π
1 β On) β§ π΅ β βͺ (π
1 β On)) β π΅ β
(π
1β(rankβπ΅))) |
18 | | ssun2 4174 |
. . . . . . . 8
β’
(rankβπ΅)
β ((rankβπ΄)
βͺ (rankβπ΅)) |
19 | | r1ord3g 9774 |
. . . . . . . . 9
β’
(((rankβπ΅)
β dom π
1 β§ ((rankβπ΄) βͺ (rankβπ΅)) β dom π
1) β
((rankβπ΅) β
((rankβπ΄) βͺ
(rankβπ΅)) β
(π
1β(rankβπ΅)) β
(π
1β((rankβπ΄) βͺ (rankβπ΅))))) |
20 | 9, 11, 19 | mp2an 691 |
. . . . . . . 8
β’
((rankβπ΅)
β ((rankβπ΄)
βͺ (rankβπ΅))
β (π
1β(rankβπ΅)) β
(π
1β((rankβπ΄) βͺ (rankβπ΅)))) |
21 | 18, 20 | ax-mp 5 |
. . . . . . 7
β’
(π
1β(rankβπ΅)) β
(π
1β((rankβπ΄) βͺ (rankβπ΅))) |
22 | 17, 21 | sstrdi 3995 |
. . . . . 6
β’ ((π΄ β βͺ (π
1 β On) β§ π΅ β βͺ (π
1 β On)) β π΅ β
(π
1β((rankβπ΄) βͺ (rankβπ΅)))) |
23 | 15, 22 | unssd 4187 |
. . . . 5
β’ ((π΄ β βͺ (π
1 β On) β§ π΅ β βͺ (π
1 β On)) β (π΄ βͺ π΅) β
(π
1β((rankβπ΄) βͺ (rankβπ΅)))) |
24 | | fvex 6905 |
. . . . . 6
β’
(π
1β((rankβπ΄) βͺ (rankβπ΅))) β V |
25 | 24 | elpw2 5346 |
. . . . 5
β’ ((π΄ βͺ π΅) β π«
(π
1β((rankβπ΄) βͺ (rankβπ΅))) β (π΄ βͺ π΅) β
(π
1β((rankβπ΄) βͺ (rankβπ΅)))) |
26 | 23, 25 | sylibr 233 |
. . . 4
β’ ((π΄ β βͺ (π
1 β On) β§ π΅ β βͺ (π
1 β On)) β (π΄ βͺ π΅) β π«
(π
1β((rankβπ΄) βͺ (rankβπ΅)))) |
27 | | r1sucg 9764 |
. . . . 5
β’
(((rankβπ΄)
βͺ (rankβπ΅))
β dom π
1 β (π
1βsuc
((rankβπ΄) βͺ
(rankβπ΅))) =
π« (π
1β((rankβπ΄) βͺ (rankβπ΅)))) |
28 | 11, 27 | ax-mp 5 |
. . . 4
β’
(π
1βsuc ((rankβπ΄) βͺ (rankβπ΅))) = π«
(π
1β((rankβπ΄) βͺ (rankβπ΅))) |
29 | 26, 28 | eleqtrrdi 2845 |
. . 3
β’ ((π΄ β βͺ (π
1 β On) β§ π΅ β βͺ (π
1 β On)) β (π΄ βͺ π΅) β (π
1βsuc
((rankβπ΄) βͺ
(rankβπ΅)))) |
30 | | r1elwf 9791 |
. . 3
β’ ((π΄ βͺ π΅) β (π
1βsuc
((rankβπ΄) βͺ
(rankβπ΅))) β
(π΄ βͺ π΅) β βͺ
(π
1 β On)) |
31 | 29, 30 | syl 17 |
. 2
β’ ((π΄ β βͺ (π
1 β On) β§ π΅ β βͺ (π
1 β On)) β (π΄ βͺ π΅) β βͺ
(π
1 β On)) |
32 | | ssun1 4173 |
. . . 4
β’ π΄ β (π΄ βͺ π΅) |
33 | | sswf 9803 |
. . . 4
β’ (((π΄ βͺ π΅) β βͺ
(π
1 β On) β§ π΄ β (π΄ βͺ π΅)) β π΄ β βͺ
(π
1 β On)) |
34 | 32, 33 | mpan2 690 |
. . 3
β’ ((π΄ βͺ π΅) β βͺ
(π
1 β On) β π΄ β βͺ
(π
1 β On)) |
35 | | ssun2 4174 |
. . . 4
β’ π΅ β (π΄ βͺ π΅) |
36 | | sswf 9803 |
. . . 4
β’ (((π΄ βͺ π΅) β βͺ
(π
1 β On) β§ π΅ β (π΄ βͺ π΅)) β π΅ β βͺ
(π
1 β On)) |
37 | 35, 36 | mpan2 690 |
. . 3
β’ ((π΄ βͺ π΅) β βͺ
(π
1 β On) β π΅ β βͺ
(π
1 β On)) |
38 | 34, 37 | jca 513 |
. 2
β’ ((π΄ βͺ π΅) β βͺ
(π
1 β On) β (π΄ β βͺ
(π
1 β On) β§ π΅ β βͺ
(π
1 β On))) |
39 | 31, 38 | impbii 208 |
1
β’ ((π΄ β βͺ (π
1 β On) β§ π΅ β βͺ (π
1 β On)) β (π΄ βͺ π΅) β βͺ
(π
1 β On)) |