MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unwf Structured version   Visualization version   GIF version

Theorem unwf 9805
Description: A binary union is well-founded iff its elements are. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
unwf ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) ↔ (𝐴 βˆͺ 𝐡) ∈ βˆͺ (𝑅1 β€œ On))

Proof of Theorem unwf
StepHypRef Expression
1 r1rankidb 9799 . . . . . . . 8 (𝐴 ∈ βˆͺ (𝑅1 β€œ On) β†’ 𝐴 βŠ† (𝑅1β€˜(rankβ€˜π΄)))
21adantr 482 . . . . . . 7 ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) β†’ 𝐴 βŠ† (𝑅1β€˜(rankβ€˜π΄)))
3 ssun1 4173 . . . . . . . 8 (rankβ€˜π΄) βŠ† ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))
4 rankdmr1 9796 . . . . . . . . 9 (rankβ€˜π΄) ∈ dom 𝑅1
5 r1funlim 9761 . . . . . . . . . . . 12 (Fun 𝑅1 ∧ Lim dom 𝑅1)
65simpri 487 . . . . . . . . . . 11 Lim dom 𝑅1
7 limord 6425 . . . . . . . . . . 11 (Lim dom 𝑅1 β†’ Ord dom 𝑅1)
86, 7ax-mp 5 . . . . . . . . . 10 Ord dom 𝑅1
9 rankdmr1 9796 . . . . . . . . . 10 (rankβ€˜π΅) ∈ dom 𝑅1
10 ordunel 7815 . . . . . . . . . 10 ((Ord dom 𝑅1 ∧ (rankβ€˜π΄) ∈ dom 𝑅1 ∧ (rankβ€˜π΅) ∈ dom 𝑅1) β†’ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)) ∈ dom 𝑅1)
118, 4, 9, 10mp3an 1462 . . . . . . . . 9 ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)) ∈ dom 𝑅1
12 r1ord3g 9774 . . . . . . . . 9 (((rankβ€˜π΄) ∈ dom 𝑅1 ∧ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)) ∈ dom 𝑅1) β†’ ((rankβ€˜π΄) βŠ† ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)) β†’ (𝑅1β€˜(rankβ€˜π΄)) βŠ† (𝑅1β€˜((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)))))
134, 11, 12mp2an 691 . . . . . . . 8 ((rankβ€˜π΄) βŠ† ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)) β†’ (𝑅1β€˜(rankβ€˜π΄)) βŠ† (𝑅1β€˜((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))))
143, 13ax-mp 5 . . . . . . 7 (𝑅1β€˜(rankβ€˜π΄)) βŠ† (𝑅1β€˜((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)))
152, 14sstrdi 3995 . . . . . 6 ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) β†’ 𝐴 βŠ† (𝑅1β€˜((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))))
16 r1rankidb 9799 . . . . . . . 8 (𝐡 ∈ βˆͺ (𝑅1 β€œ On) β†’ 𝐡 βŠ† (𝑅1β€˜(rankβ€˜π΅)))
1716adantl 483 . . . . . . 7 ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) β†’ 𝐡 βŠ† (𝑅1β€˜(rankβ€˜π΅)))
18 ssun2 4174 . . . . . . . 8 (rankβ€˜π΅) βŠ† ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))
19 r1ord3g 9774 . . . . . . . . 9 (((rankβ€˜π΅) ∈ dom 𝑅1 ∧ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)) ∈ dom 𝑅1) β†’ ((rankβ€˜π΅) βŠ† ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)) β†’ (𝑅1β€˜(rankβ€˜π΅)) βŠ† (𝑅1β€˜((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)))))
209, 11, 19mp2an 691 . . . . . . . 8 ((rankβ€˜π΅) βŠ† ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)) β†’ (𝑅1β€˜(rankβ€˜π΅)) βŠ† (𝑅1β€˜((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))))
2118, 20ax-mp 5 . . . . . . 7 (𝑅1β€˜(rankβ€˜π΅)) βŠ† (𝑅1β€˜((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)))
2217, 21sstrdi 3995 . . . . . 6 ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) β†’ 𝐡 βŠ† (𝑅1β€˜((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))))
2315, 22unssd 4187 . . . . 5 ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) β†’ (𝐴 βˆͺ 𝐡) βŠ† (𝑅1β€˜((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))))
24 fvex 6905 . . . . . 6 (𝑅1β€˜((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))) ∈ V
2524elpw2 5346 . . . . 5 ((𝐴 βˆͺ 𝐡) ∈ 𝒫 (𝑅1β€˜((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))) ↔ (𝐴 βˆͺ 𝐡) βŠ† (𝑅1β€˜((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))))
2623, 25sylibr 233 . . . 4 ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) β†’ (𝐴 βˆͺ 𝐡) ∈ 𝒫 (𝑅1β€˜((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))))
27 r1sucg 9764 . . . . 5 (((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)) ∈ dom 𝑅1 β†’ (𝑅1β€˜suc ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))) = 𝒫 (𝑅1β€˜((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))))
2811, 27ax-mp 5 . . . 4 (𝑅1β€˜suc ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))) = 𝒫 (𝑅1β€˜((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)))
2926, 28eleqtrrdi 2845 . . 3 ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) β†’ (𝐴 βˆͺ 𝐡) ∈ (𝑅1β€˜suc ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))))
30 r1elwf 9791 . . 3 ((𝐴 βˆͺ 𝐡) ∈ (𝑅1β€˜suc ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))) β†’ (𝐴 βˆͺ 𝐡) ∈ βˆͺ (𝑅1 β€œ On))
3129, 30syl 17 . 2 ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) β†’ (𝐴 βˆͺ 𝐡) ∈ βˆͺ (𝑅1 β€œ On))
32 ssun1 4173 . . . 4 𝐴 βŠ† (𝐴 βˆͺ 𝐡)
33 sswf 9803 . . . 4 (((𝐴 βˆͺ 𝐡) ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐴 βŠ† (𝐴 βˆͺ 𝐡)) β†’ 𝐴 ∈ βˆͺ (𝑅1 β€œ On))
3432, 33mpan2 690 . . 3 ((𝐴 βˆͺ 𝐡) ∈ βˆͺ (𝑅1 β€œ On) β†’ 𝐴 ∈ βˆͺ (𝑅1 β€œ On))
35 ssun2 4174 . . . 4 𝐡 βŠ† (𝐴 βˆͺ 𝐡)
36 sswf 9803 . . . 4 (((𝐴 βˆͺ 𝐡) ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 βŠ† (𝐴 βˆͺ 𝐡)) β†’ 𝐡 ∈ βˆͺ (𝑅1 β€œ On))
3735, 36mpan2 690 . . 3 ((𝐴 βˆͺ 𝐡) ∈ βˆͺ (𝑅1 β€œ On) β†’ 𝐡 ∈ βˆͺ (𝑅1 β€œ On))
3834, 37jca 513 . 2 ((𝐴 βˆͺ 𝐡) ∈ βˆͺ (𝑅1 β€œ On) β†’ (𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)))
3931, 38impbii 208 1 ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) ↔ (𝐴 βˆͺ 𝐡) ∈ βˆͺ (𝑅1 β€œ On))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107   βˆͺ cun 3947   βŠ† wss 3949  π’« cpw 4603  βˆͺ cuni 4909  dom cdm 5677   β€œ cima 5680  Ord word 6364  Oncon0 6365  Lim wlim 6366  suc csuc 6367  Fun wfun 6538  β€˜cfv 6544  π‘…1cr1 9757  rankcrnk 9758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-r1 9759  df-rank 9760
This theorem is referenced by:  prwf  9806  rankunb  9845
  Copyright terms: Public domain W3C validator