Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mainerim Structured version   Visualization version   GIF version

Theorem mainerim 38884
Description: Every equivalence relation implies equivalent coelements. (Contributed by Peter Mazsa, 20-Oct-2021.)
Assertion
Ref Expression
mainerim (𝑅 ErALTV 𝐴 → CoElEqvRel 𝐴)

Proof of Theorem mainerim
StepHypRef Expression
1 mainer2 38883 . 2 (𝑅 ErALTV 𝐴 → ( CoElEqvRel 𝐴 ∧ ¬ ∅ ∈ 𝐴))
21simpld 494 1 (𝑅 ErALTV 𝐴 → CoElEqvRel 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2111  c0 4283   CoElEqvRel wcoeleqvrel 38233   ErALTV werALTV 38240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-eprel 5516  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ec 8624  df-qs 8628  df-coss 38447  df-coels 38448  df-refrel 38548  df-cnvrefrel 38563  df-symrel 38580  df-trrel 38610  df-eqvrel 38621  df-coeleqvrel 38623  df-dmqs 38675  df-erALTV 38701  df-comember 38703  df-funALTV 38719  df-disjALTV 38742  df-eldisj 38744  df-part 38803  df-membpart 38805
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator