Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > llnnlt | Structured version Visualization version GIF version |
Description: Two lattice lines cannot satisfy the less than relation. (Contributed by NM, 26-Jun-2012.) |
Ref | Expression |
---|---|
llnnlt.s | ⊢ < = (lt‘𝐾) |
llnnlt.n | ⊢ 𝑁 = (LLines‘𝐾) |
Ref | Expression |
---|---|
llnnlt | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) → ¬ 𝑋 < 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | llnnlt.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
2 | 1 | pltirr 18098 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → ¬ 𝑋 < 𝑋) |
3 | 2 | 3adant3 1132 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) → ¬ 𝑋 < 𝑋) |
4 | breq2 5085 | . . . 4 ⊢ (𝑋 = 𝑌 → (𝑋 < 𝑋 ↔ 𝑋 < 𝑌)) | |
5 | 4 | notbid 318 | . . 3 ⊢ (𝑋 = 𝑌 → (¬ 𝑋 < 𝑋 ↔ ¬ 𝑋 < 𝑌)) |
6 | 3, 5 | syl5ibcom 245 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) → (𝑋 = 𝑌 → ¬ 𝑋 < 𝑌)) |
7 | eqid 2736 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
8 | 7, 1 | pltle 18096 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) → (𝑋 < 𝑌 → 𝑋(le‘𝐾)𝑌)) |
9 | llnnlt.n | . . . . 5 ⊢ 𝑁 = (LLines‘𝐾) | |
10 | 7, 9 | llncmp 37578 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) → (𝑋(le‘𝐾)𝑌 ↔ 𝑋 = 𝑌)) |
11 | 8, 10 | sylibd 238 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) → (𝑋 < 𝑌 → 𝑋 = 𝑌)) |
12 | 11 | necon3ad 2954 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) → (𝑋 ≠ 𝑌 → ¬ 𝑋 < 𝑌)) |
13 | 6, 12 | pm2.61dne 3029 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) → ¬ 𝑋 < 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 class class class wbr 5081 ‘cfv 6458 lecple 17014 ltcplt 18071 HLchlt 37406 LLinesclln 37547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-proset 18058 df-poset 18076 df-plt 18093 df-lub 18109 df-glb 18110 df-join 18111 df-meet 18112 df-p0 18188 df-lat 18195 df-clat 18262 df-oposet 37232 df-ol 37234 df-oml 37235 df-covers 37322 df-ats 37323 df-atl 37354 df-cvlat 37378 df-hlat 37407 df-llines 37554 |
This theorem is referenced by: lplnnle2at 37597 |
Copyright terms: Public domain | W3C validator |