| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atnlt | Structured version Visualization version GIF version | ||
| Description: Two atoms cannot satisfy the less than relation. (Contributed by NM, 7-Feb-2012.) |
| Ref | Expression |
|---|---|
| atnlt.s | ⊢ < = (lt‘𝐾) |
| atnlt.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| atnlt | ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ¬ 𝑃 < 𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atnlt.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
| 2 | 1 | pltirr 18294 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → ¬ 𝑃 < 𝑃) |
| 3 | 2 | 3adant3 1132 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ¬ 𝑃 < 𝑃) |
| 4 | breq2 5111 | . . . 4 ⊢ (𝑃 = 𝑄 → (𝑃 < 𝑃 ↔ 𝑃 < 𝑄)) | |
| 5 | 4 | notbid 318 | . . 3 ⊢ (𝑃 = 𝑄 → (¬ 𝑃 < 𝑃 ↔ ¬ 𝑃 < 𝑄)) |
| 6 | 3, 5 | syl5ibcom 245 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 = 𝑄 → ¬ 𝑃 < 𝑄)) |
| 7 | eqid 2729 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 8 | 7, 1 | pltle 18292 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 < 𝑄 → 𝑃(le‘𝐾)𝑄)) |
| 9 | atnlt.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 10 | 7, 9 | atcmp 39304 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃(le‘𝐾)𝑄 ↔ 𝑃 = 𝑄)) |
| 11 | 8, 10 | sylibd 239 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 < 𝑄 → 𝑃 = 𝑄)) |
| 12 | 11 | necon3ad 2938 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 → ¬ 𝑃 < 𝑄)) |
| 13 | 6, 12 | pm2.61dne 3011 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ¬ 𝑃 < 𝑄) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 lecple 17227 ltcplt 18269 Atomscatm 39256 AtLatcal 39257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-proset 18255 df-poset 18274 df-plt 18289 df-glb 18306 df-p0 18384 df-lat 18391 df-covers 39259 df-ats 39260 df-atl 39291 |
| This theorem is referenced by: atltcvr 39429 llnnleat 39507 |
| Copyright terms: Public domain | W3C validator |