Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atnlt Structured version   Visualization version   GIF version

Theorem atnlt 36567
Description: Two atoms cannot satisfy the less than relation. (Contributed by NM, 7-Feb-2012.)
Hypotheses
Ref Expression
atnlt.s < = (lt‘𝐾)
atnlt.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atnlt ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → ¬ 𝑃 < 𝑄)

Proof of Theorem atnlt
StepHypRef Expression
1 atnlt.s . . . . 5 < = (lt‘𝐾)
21pltirr 17564 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → ¬ 𝑃 < 𝑃)
323adant3 1129 . . 3 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → ¬ 𝑃 < 𝑃)
4 breq2 5046 . . . 4 (𝑃 = 𝑄 → (𝑃 < 𝑃𝑃 < 𝑄))
54notbid 321 . . 3 (𝑃 = 𝑄 → (¬ 𝑃 < 𝑃 ↔ ¬ 𝑃 < 𝑄))
63, 5syl5ibcom 248 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (𝑃 = 𝑄 → ¬ 𝑃 < 𝑄))
7 eqid 2822 . . . . 5 (le‘𝐾) = (le‘𝐾)
87, 1pltle 17562 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (𝑃 < 𝑄𝑃(le‘𝐾)𝑄))
9 atnlt.a . . . . 5 𝐴 = (Atoms‘𝐾)
107, 9atcmp 36565 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (𝑃(le‘𝐾)𝑄𝑃 = 𝑄))
118, 10sylibd 242 . . 3 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (𝑃 < 𝑄𝑃 = 𝑄))
1211necon3ad 3024 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 → ¬ 𝑃 < 𝑄))
136, 12pm2.61dne 3097 1 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → ¬ 𝑃 < 𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1084   = wceq 1538  wcel 2114   class class class wbr 5042  cfv 6334  lecple 16563  ltcplt 17542  Atomscatm 36517  AtLatcal 36518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-proset 17529  df-poset 17547  df-plt 17559  df-glb 17576  df-p0 17640  df-lat 17647  df-covers 36520  df-ats 36521  df-atl 36552
This theorem is referenced by:  atltcvr  36689  llnnleat  36767
  Copyright terms: Public domain W3C validator