| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atnlt | Structured version Visualization version GIF version | ||
| Description: Two atoms cannot satisfy the less than relation. (Contributed by NM, 7-Feb-2012.) |
| Ref | Expression |
|---|---|
| atnlt.s | ⊢ < = (lt‘𝐾) |
| atnlt.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| atnlt | ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ¬ 𝑃 < 𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atnlt.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
| 2 | 1 | pltirr 18354 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → ¬ 𝑃 < 𝑃) |
| 3 | 2 | 3adant3 1132 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ¬ 𝑃 < 𝑃) |
| 4 | breq2 5129 | . . . 4 ⊢ (𝑃 = 𝑄 → (𝑃 < 𝑃 ↔ 𝑃 < 𝑄)) | |
| 5 | 4 | notbid 318 | . . 3 ⊢ (𝑃 = 𝑄 → (¬ 𝑃 < 𝑃 ↔ ¬ 𝑃 < 𝑄)) |
| 6 | 3, 5 | syl5ibcom 245 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 = 𝑄 → ¬ 𝑃 < 𝑄)) |
| 7 | eqid 2734 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 8 | 7, 1 | pltle 18352 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 < 𝑄 → 𝑃(le‘𝐾)𝑄)) |
| 9 | atnlt.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 10 | 7, 9 | atcmp 39253 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃(le‘𝐾)𝑄 ↔ 𝑃 = 𝑄)) |
| 11 | 8, 10 | sylibd 239 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 < 𝑄 → 𝑃 = 𝑄)) |
| 12 | 11 | necon3ad 2944 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 → ¬ 𝑃 < 𝑄)) |
| 13 | 6, 12 | pm2.61dne 3017 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ¬ 𝑃 < 𝑄) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 class class class wbr 5125 ‘cfv 6542 lecple 17284 ltcplt 18329 Atomscatm 39205 AtLatcal 39206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-proset 18315 df-poset 18334 df-plt 18349 df-glb 18366 df-p0 18444 df-lat 18451 df-covers 39208 df-ats 39209 df-atl 39240 |
| This theorem is referenced by: atltcvr 39378 llnnleat 39456 |
| Copyright terms: Public domain | W3C validator |