Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atnlt Structured version   Visualization version   GIF version

Theorem atnlt 37323
Description: Two atoms cannot satisfy the less than relation. (Contributed by NM, 7-Feb-2012.)
Hypotheses
Ref Expression
atnlt.s < = (lt‘𝐾)
atnlt.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atnlt ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → ¬ 𝑃 < 𝑄)

Proof of Theorem atnlt
StepHypRef Expression
1 atnlt.s . . . . 5 < = (lt‘𝐾)
21pltirr 18051 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → ¬ 𝑃 < 𝑃)
323adant3 1131 . . 3 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → ¬ 𝑃 < 𝑃)
4 breq2 5083 . . . 4 (𝑃 = 𝑄 → (𝑃 < 𝑃𝑃 < 𝑄))
54notbid 318 . . 3 (𝑃 = 𝑄 → (¬ 𝑃 < 𝑃 ↔ ¬ 𝑃 < 𝑄))
63, 5syl5ibcom 244 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (𝑃 = 𝑄 → ¬ 𝑃 < 𝑄))
7 eqid 2740 . . . . 5 (le‘𝐾) = (le‘𝐾)
87, 1pltle 18049 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (𝑃 < 𝑄𝑃(le‘𝐾)𝑄))
9 atnlt.a . . . . 5 𝐴 = (Atoms‘𝐾)
107, 9atcmp 37321 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (𝑃(le‘𝐾)𝑄𝑃 = 𝑄))
118, 10sylibd 238 . . 3 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (𝑃 < 𝑄𝑃 = 𝑄))
1211necon3ad 2958 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 → ¬ 𝑃 < 𝑄))
136, 12pm2.61dne 3033 1 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → ¬ 𝑃 < 𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1086   = wceq 1542  wcel 2110   class class class wbr 5079  cfv 6432  lecple 16967  ltcplt 18024  Atomscatm 37273  AtLatcal 37274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-proset 18011  df-poset 18029  df-plt 18046  df-glb 18063  df-p0 18141  df-lat 18148  df-covers 37276  df-ats 37277  df-atl 37308
This theorem is referenced by:  atltcvr  37445  llnnleat  37523
  Copyright terms: Public domain W3C validator