![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atnlt | Structured version Visualization version GIF version |
Description: Two atoms cannot satisfy the less than relation. (Contributed by NM, 7-Feb-2012.) |
Ref | Expression |
---|---|
atnlt.s | ⊢ < = (lt‘𝐾) |
atnlt.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atnlt | ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ¬ 𝑃 < 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atnlt.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
2 | 1 | pltirr 17170 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → ¬ 𝑃 < 𝑃) |
3 | 2 | 3adant3 1125 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ¬ 𝑃 < 𝑃) |
4 | breq2 4788 | . . . 4 ⊢ (𝑃 = 𝑄 → (𝑃 < 𝑃 ↔ 𝑃 < 𝑄)) | |
5 | 4 | notbid 307 | . . 3 ⊢ (𝑃 = 𝑄 → (¬ 𝑃 < 𝑃 ↔ ¬ 𝑃 < 𝑄)) |
6 | 3, 5 | syl5ibcom 235 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 = 𝑄 → ¬ 𝑃 < 𝑄)) |
7 | eqid 2770 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
8 | 7, 1 | pltle 17168 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 < 𝑄 → 𝑃(le‘𝐾)𝑄)) |
9 | atnlt.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
10 | 7, 9 | atcmp 35113 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃(le‘𝐾)𝑄 ↔ 𝑃 = 𝑄)) |
11 | 8, 10 | sylibd 229 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 < 𝑄 → 𝑃 = 𝑄)) |
12 | 11 | necon3ad 2955 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 → ¬ 𝑃 < 𝑄)) |
13 | 6, 12 | pm2.61dne 3028 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ¬ 𝑃 < 𝑄) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 class class class wbr 4784 ‘cfv 6031 lecple 16155 ltcplt 17148 Atomscatm 35065 AtLatcal 35066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-preset 17135 df-poset 17153 df-plt 17165 df-glb 17182 df-p0 17246 df-lat 17253 df-covers 35068 df-ats 35069 df-atl 35100 |
This theorem is referenced by: atltcvr 35236 llnnleat 35314 |
Copyright terms: Public domain | W3C validator |