Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvolnltN Structured version   Visualization version   GIF version

Theorem lvolnltN 37374
Description: Two lattice volumes cannot satisfy the less than relation. (Contributed by NM, 12-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lvolnlt.s < = (lt‘𝐾)
lvolnlt.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lvolnltN ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → ¬ 𝑋 < 𝑌)

Proof of Theorem lvolnltN
StepHypRef Expression
1 lvolnlt.s . . . . 5 < = (lt‘𝐾)
21pltirr 17846 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑉) → ¬ 𝑋 < 𝑋)
323adant3 1134 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → ¬ 𝑋 < 𝑋)
4 breq2 5062 . . . 4 (𝑋 = 𝑌 → (𝑋 < 𝑋𝑋 < 𝑌))
54notbid 321 . . 3 (𝑋 = 𝑌 → (¬ 𝑋 < 𝑋 ↔ ¬ 𝑋 < 𝑌))
63, 5syl5ibcom 248 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → (𝑋 = 𝑌 → ¬ 𝑋 < 𝑌))
7 eqid 2737 . . . . 5 (le‘𝐾) = (le‘𝐾)
87, 1pltle 17844 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → (𝑋 < 𝑌𝑋(le‘𝐾)𝑌))
9 lvolnlt.v . . . . 5 𝑉 = (LVols‘𝐾)
107, 9lvolcmp 37373 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → (𝑋(le‘𝐾)𝑌𝑋 = 𝑌))
118, 10sylibd 242 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → (𝑋 < 𝑌𝑋 = 𝑌))
1211necon3ad 2953 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → (𝑋𝑌 → ¬ 𝑋 < 𝑌))
136, 12pm2.61dne 3028 1 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉) → ¬ 𝑋 < 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1089   = wceq 1543  wcel 2110   class class class wbr 5058  cfv 6385  lecple 16814  ltcplt 17820  HLchlt 37106  LVolsclvol 37249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5184  ax-sep 5197  ax-nul 5204  ax-pow 5263  ax-pr 5327  ax-un 7528
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3415  df-sbc 3700  df-csb 3817  df-dif 3874  df-un 3876  df-in 3878  df-ss 3888  df-nul 4243  df-if 4445  df-pw 4520  df-sn 4547  df-pr 4549  df-op 4553  df-uni 4825  df-iun 4911  df-br 5059  df-opab 5121  df-mpt 5141  df-id 5460  df-xp 5562  df-rel 5563  df-cnv 5564  df-co 5565  df-dm 5566  df-rn 5567  df-res 5568  df-ima 5569  df-iota 6343  df-fun 6387  df-fn 6388  df-f 6389  df-f1 6390  df-fo 6391  df-f1o 6392  df-fv 6393  df-riota 7175  df-ov 7221  df-oprab 7222  df-proset 17807  df-poset 17825  df-plt 17841  df-lub 17857  df-glb 17858  df-join 17859  df-meet 17860  df-p0 17936  df-lat 17943  df-clat 18010  df-oposet 36932  df-ol 36934  df-oml 36935  df-covers 37022  df-ats 37023  df-atl 37054  df-cvlat 37078  df-hlat 37107  df-llines 37254  df-lplanes 37255  df-lvols 37256
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator