MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pltne Structured version   Visualization version   GIF version

Theorem pltne 17316
Description: The "less than" relation is not reflexive. (df-pss 3815 analog.) (Contributed by NM, 2-Dec-2011.)
Hypothesis
Ref Expression
pltne.s < = (lt‘𝐾)
Assertion
Ref Expression
pltne ((𝐾𝐴𝑋𝐵𝑌𝐶) → (𝑋 < 𝑌𝑋𝑌))

Proof of Theorem pltne
StepHypRef Expression
1 eqid 2826 . . . 4 (le‘𝐾) = (le‘𝐾)
2 pltne.s . . . 4 < = (lt‘𝐾)
31, 2pltval 17314 . . 3 ((𝐾𝐴𝑋𝐵𝑌𝐶) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐾)𝑌𝑋𝑌)))
43simplbda 495 . 2 (((𝐾𝐴𝑋𝐵𝑌𝐶) ∧ 𝑋 < 𝑌) → 𝑋𝑌)
54ex 403 1 ((𝐾𝐴𝑋𝐵𝑌𝐶) → (𝑋 < 𝑌𝑋𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1113   = wceq 1658  wcel 2166  wne 3000   class class class wbr 4874  cfv 6124  lecple 16313  ltcplt 17295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-sep 5006  ax-nul 5014  ax-pr 5128
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-ral 3123  df-rex 3124  df-rab 3127  df-v 3417  df-sbc 3664  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-nul 4146  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4660  df-br 4875  df-opab 4937  df-mpt 4954  df-id 5251  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-iota 6087  df-fun 6126  df-fv 6132  df-plt 17312
This theorem is referenced by:  pltirr  17317  ogrpaddlt  30264  ornglmullt  30353  orngrmullt  30354  ofldchr  30360  isarchiofld  30363  atlen0  35386  1cvratex  35549  ps-2  35554  lhpn0  36080
  Copyright terms: Public domain W3C validator