![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pltne | Structured version Visualization version GIF version |
Description: The "less than" relation is not reflexive. (df-pss 3815 analog.) (Contributed by NM, 2-Dec-2011.) |
Ref | Expression |
---|---|
pltne.s | ⊢ < = (lt‘𝐾) |
Ref | Expression |
---|---|
pltne | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 → 𝑋 ≠ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2826 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
2 | pltne.s | . . . 4 ⊢ < = (lt‘𝐾) | |
3 | 1, 2 | pltval 17314 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐾)𝑌 ∧ 𝑋 ≠ 𝑌))) |
4 | 3 | simplbda 495 | . 2 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 < 𝑌) → 𝑋 ≠ 𝑌) |
5 | 4 | ex 403 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 → 𝑋 ≠ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ≠ wne 3000 class class class wbr 4874 ‘cfv 6124 lecple 16313 ltcplt 17295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pr 5128 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-ral 3123 df-rex 3124 df-rab 3127 df-v 3417 df-sbc 3664 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4660 df-br 4875 df-opab 4937 df-mpt 4954 df-id 5251 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-iota 6087 df-fun 6126 df-fv 6132 df-plt 17312 |
This theorem is referenced by: pltirr 17317 ogrpaddlt 30264 ornglmullt 30353 orngrmullt 30354 ofldchr 30360 isarchiofld 30363 atlen0 35386 1cvratex 35549 ps-2 35554 lhpn0 36080 |
Copyright terms: Public domain | W3C validator |