MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pltne Structured version   Visualization version   GIF version

Theorem pltne 18325
Description: The "less than" relation is not reflexive. (df-pss 3966 analog.) (Contributed by NM, 2-Dec-2011.)
Hypothesis
Ref Expression
pltne.s < = (ltβ€˜πΎ)
Assertion
Ref Expression
pltne ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐢) β†’ (𝑋 < π‘Œ β†’ 𝑋 β‰  π‘Œ))

Proof of Theorem pltne
StepHypRef Expression
1 eqid 2728 . . . 4 (leβ€˜πΎ) = (leβ€˜πΎ)
2 pltne.s . . . 4 < = (ltβ€˜πΎ)
31, 2pltval 18323 . . 3 ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐢) β†’ (𝑋 < π‘Œ ↔ (𝑋(leβ€˜πΎ)π‘Œ ∧ 𝑋 β‰  π‘Œ)))
43simplbda 499 . 2 (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐢) ∧ 𝑋 < π‘Œ) β†’ 𝑋 β‰  π‘Œ)
54ex 412 1 ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐢) β†’ (𝑋 < π‘Œ β†’ 𝑋 β‰  π‘Œ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099   β‰  wne 2937   class class class wbr 5148  β€˜cfv 6548  lecple 17239  ltcplt 18299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6500  df-fun 6550  df-fv 6556  df-plt 18321
This theorem is referenced by:  pltirr  18326  ogrpaddlt  32797  ornglmullt  33022  orngrmullt  33023  ofldchr  33029  isarchiofld  33032  atlen0  38782  1cvratex  38946  ps-2  38951  lhpn0  39477
  Copyright terms: Public domain W3C validator