| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pltne | Structured version Visualization version GIF version | ||
| Description: The "less than" relation is not reflexive. (df-pss 3922 analog.) (Contributed by NM, 2-Dec-2011.) |
| Ref | Expression |
|---|---|
| pltne.s | ⊢ < = (lt‘𝐾) |
| Ref | Expression |
|---|---|
| pltne | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 → 𝑋 ≠ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 2 | pltne.s | . . . 4 ⊢ < = (lt‘𝐾) | |
| 3 | 1, 2 | pltval 18233 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐾)𝑌 ∧ 𝑋 ≠ 𝑌))) |
| 4 | 3 | simplbda 499 | . 2 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 < 𝑌) → 𝑋 ≠ 𝑌) |
| 5 | 4 | ex 412 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 → 𝑋 ≠ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5091 ‘cfv 6481 lecple 17165 ltcplt 18211 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-plt 18231 |
| This theorem is referenced by: pltirr 18236 ogrpaddlt 20048 ornglmullt 20782 orngrmullt 20783 ofldchr 21511 isarchiofld 33163 atlen0 39348 1cvratex 39511 ps-2 39516 lhpn0 40042 |
| Copyright terms: Public domain | W3C validator |