| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pltne | Structured version Visualization version GIF version | ||
| Description: The "less than" relation is not reflexive. (df-pss 3971 analog.) (Contributed by NM, 2-Dec-2011.) |
| Ref | Expression |
|---|---|
| pltne.s | ⊢ < = (lt‘𝐾) |
| Ref | Expression |
|---|---|
| pltne | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 → 𝑋 ≠ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2737 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 2 | pltne.s | . . . 4 ⊢ < = (lt‘𝐾) | |
| 3 | 1, 2 | pltval 18377 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐾)𝑌 ∧ 𝑋 ≠ 𝑌))) |
| 4 | 3 | simplbda 499 | . 2 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 < 𝑌) → 𝑋 ≠ 𝑌) |
| 5 | 4 | ex 412 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 → 𝑋 ≠ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 class class class wbr 5143 ‘cfv 6561 lecple 17304 ltcplt 18354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-plt 18375 |
| This theorem is referenced by: pltirr 18380 ogrpaddlt 33094 ornglmullt 33337 orngrmullt 33338 ofldchr 33344 isarchiofld 33347 atlen0 39311 1cvratex 39475 ps-2 39480 lhpn0 40006 |
| Copyright terms: Public domain | W3C validator |