![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pltne | Structured version Visualization version GIF version |
Description: The "less than" relation is not reflexive. (df-pss 3966 analog.) (Contributed by NM, 2-Dec-2011.) |
Ref | Expression |
---|---|
pltne.s | β’ < = (ltβπΎ) |
Ref | Expression |
---|---|
pltne | β’ ((πΎ β π΄ β§ π β π΅ β§ π β πΆ) β (π < π β π β π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . 4 β’ (leβπΎ) = (leβπΎ) | |
2 | pltne.s | . . . 4 β’ < = (ltβπΎ) | |
3 | 1, 2 | pltval 18281 | . . 3 β’ ((πΎ β π΄ β§ π β π΅ β§ π β πΆ) β (π < π β (π(leβπΎ)π β§ π β π))) |
4 | 3 | simplbda 500 | . 2 β’ (((πΎ β π΄ β§ π β π΅ β§ π β πΆ) β§ π < π) β π β π) |
5 | 4 | ex 413 | 1 β’ ((πΎ β π΄ β§ π β π΅ β§ π β πΆ) β (π < π β π β π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 class class class wbr 5147 βcfv 6540 lecple 17200 ltcplt 18257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-plt 18279 |
This theorem is referenced by: pltirr 18284 ogrpaddlt 32222 ornglmullt 32413 orngrmullt 32414 ofldchr 32420 isarchiofld 32423 atlen0 38168 1cvratex 38332 ps-2 38337 lhpn0 38863 |
Copyright terms: Public domain | W3C validator |