MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pltne Structured version   Visualization version   GIF version

Theorem pltne 18295
Description: The "less than" relation is not reflexive. (df-pss 3960 analog.) (Contributed by NM, 2-Dec-2011.)
Hypothesis
Ref Expression
pltne.s < = (ltβ€˜πΎ)
Assertion
Ref Expression
pltne ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐢) β†’ (𝑋 < π‘Œ β†’ 𝑋 β‰  π‘Œ))

Proof of Theorem pltne
StepHypRef Expression
1 eqid 2724 . . . 4 (leβ€˜πΎ) = (leβ€˜πΎ)
2 pltne.s . . . 4 < = (ltβ€˜πΎ)
31, 2pltval 18293 . . 3 ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐢) β†’ (𝑋 < π‘Œ ↔ (𝑋(leβ€˜πΎ)π‘Œ ∧ 𝑋 β‰  π‘Œ)))
43simplbda 499 . 2 (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐢) ∧ 𝑋 < π‘Œ) β†’ 𝑋 β‰  π‘Œ)
54ex 412 1 ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐢) β†’ (𝑋 < π‘Œ β†’ 𝑋 β‰  π‘Œ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2932   class class class wbr 5139  β€˜cfv 6534  lecple 17209  ltcplt 18269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-iota 6486  df-fun 6536  df-fv 6542  df-plt 18291
This theorem is referenced by:  pltirr  18296  ogrpaddlt  32728  ornglmullt  32917  orngrmullt  32918  ofldchr  32924  isarchiofld  32927  atlen0  38683  1cvratex  38847  ps-2  38852  lhpn0  39378
  Copyright terms: Public domain W3C validator