MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pltne Structured version   Visualization version   GIF version

Theorem pltne 18240
Description: The "less than" relation is not reflexive. (df-pss 3918 analog.) (Contributed by NM, 2-Dec-2011.)
Hypothesis
Ref Expression
pltne.s < = (lt‘𝐾)
Assertion
Ref Expression
pltne ((𝐾𝐴𝑋𝐵𝑌𝐶) → (𝑋 < 𝑌𝑋𝑌))

Proof of Theorem pltne
StepHypRef Expression
1 eqid 2733 . . . 4 (le‘𝐾) = (le‘𝐾)
2 pltne.s . . . 4 < = (lt‘𝐾)
31, 2pltval 18238 . . 3 ((𝐾𝐴𝑋𝐵𝑌𝐶) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐾)𝑌𝑋𝑌)))
43simplbda 499 . 2 (((𝐾𝐴𝑋𝐵𝑌𝐶) ∧ 𝑋 < 𝑌) → 𝑋𝑌)
54ex 412 1 ((𝐾𝐴𝑋𝐵𝑌𝐶) → (𝑋 < 𝑌𝑋𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2113  wne 2929   class class class wbr 5093  cfv 6486  lecple 17170  ltcplt 18216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-plt 18236
This theorem is referenced by:  pltirr  18241  ogrpaddlt  20052  ornglmullt  20786  orngrmullt  20787  ofldchr  21515  isarchiofld  33175  atlen0  39429  1cvratex  39592  ps-2  39597  lhpn0  40123
  Copyright terms: Public domain W3C validator