Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplnnlt Structured version   Visualization version   GIF version

Theorem lplnnlt 37353
Description: Two lattice planes cannot satisfy the less than relation. (Contributed by NM, 7-Jul-2012.)
Hypotheses
Ref Expression
lplnnlt.s < = (lt‘𝐾)
lplnnlt.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplnnlt ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → ¬ 𝑋 < 𝑌)

Proof of Theorem lplnnlt
StepHypRef Expression
1 lplnnlt.s . . . . 5 < = (lt‘𝐾)
21pltirr 17874 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃) → ¬ 𝑋 < 𝑋)
323adant3 1134 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → ¬ 𝑋 < 𝑋)
4 breq2 5074 . . . 4 (𝑋 = 𝑌 → (𝑋 < 𝑋𝑋 < 𝑌))
54notbid 321 . . 3 (𝑋 = 𝑌 → (¬ 𝑋 < 𝑋 ↔ ¬ 𝑋 < 𝑌))
63, 5syl5ibcom 248 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 = 𝑌 → ¬ 𝑋 < 𝑌))
7 eqid 2739 . . . . 5 (le‘𝐾) = (le‘𝐾)
87, 1pltle 17872 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 < 𝑌𝑋(le‘𝐾)𝑌))
9 lplnnlt.p . . . . 5 𝑃 = (LPlanes‘𝐾)
107, 9lplncmp 37350 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋(le‘𝐾)𝑌𝑋 = 𝑌))
118, 10sylibd 242 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 < 𝑌𝑋 = 𝑌))
1211necon3ad 2956 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋𝑌 → ¬ 𝑋 < 𝑌))
136, 12pm2.61dne 3031 1 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → ¬ 𝑋 < 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1089   = wceq 1543  wcel 2112   class class class wbr 5070  cfv 6401  lecple 16842  ltcplt 17848  HLchlt 37138  LPlanesclpl 37280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5196  ax-sep 5209  ax-nul 5216  ax-pow 5275  ax-pr 5339  ax-un 7545
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3425  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5153  df-id 5472  df-xp 5575  df-rel 5576  df-cnv 5577  df-co 5578  df-dm 5579  df-rn 5580  df-res 5581  df-ima 5582  df-iota 6359  df-fun 6403  df-fn 6404  df-f 6405  df-f1 6406  df-fo 6407  df-f1o 6408  df-fv 6409  df-riota 7192  df-ov 7238  df-oprab 7239  df-proset 17835  df-poset 17853  df-plt 17869  df-lub 17885  df-glb 17886  df-join 17887  df-meet 17888  df-p0 17964  df-lat 17971  df-clat 18038  df-oposet 36964  df-ol 36966  df-oml 36967  df-covers 37054  df-ats 37055  df-atl 37086  df-cvlat 37110  df-hlat 37139  df-llines 37286  df-lplanes 37287
This theorem is referenced by:  lvolnle3at  37370
  Copyright terms: Public domain W3C validator