Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplnnlt Structured version   Visualization version   GIF version

Theorem lplnnlt 39277
Description: Two lattice planes cannot satisfy the less than relation. (Contributed by NM, 7-Jul-2012.)
Hypotheses
Ref Expression
lplnnlt.s < = (lt‘𝐾)
lplnnlt.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplnnlt ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → ¬ 𝑋 < 𝑌)

Proof of Theorem lplnnlt
StepHypRef Expression
1 lplnnlt.s . . . . 5 < = (lt‘𝐾)
21pltirr 18355 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃) → ¬ 𝑋 < 𝑋)
323adant3 1129 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → ¬ 𝑋 < 𝑋)
4 breq2 5149 . . . 4 (𝑋 = 𝑌 → (𝑋 < 𝑋𝑋 < 𝑌))
54notbid 317 . . 3 (𝑋 = 𝑌 → (¬ 𝑋 < 𝑋 ↔ ¬ 𝑋 < 𝑌))
63, 5syl5ibcom 244 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 = 𝑌 → ¬ 𝑋 < 𝑌))
7 eqid 2726 . . . . 5 (le‘𝐾) = (le‘𝐾)
87, 1pltle 18353 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 < 𝑌𝑋(le‘𝐾)𝑌))
9 lplnnlt.p . . . . 5 𝑃 = (LPlanes‘𝐾)
107, 9lplncmp 39274 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋(le‘𝐾)𝑌𝑋 = 𝑌))
118, 10sylibd 238 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 < 𝑌𝑋 = 𝑌))
1211necon3ad 2943 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋𝑌 → ¬ 𝑋 < 𝑌))
136, 12pm2.61dne 3018 1 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → ¬ 𝑋 < 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1084   = wceq 1534  wcel 2099   class class class wbr 5145  cfv 6546  lecple 17268  ltcplt 18328  HLchlt 39061  LPlanesclpl 39204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-proset 18315  df-poset 18333  df-plt 18350  df-lub 18366  df-glb 18367  df-join 18368  df-meet 18369  df-p0 18445  df-lat 18452  df-clat 18519  df-oposet 38887  df-ol 38889  df-oml 38890  df-covers 38977  df-ats 38978  df-atl 39009  df-cvlat 39033  df-hlat 39062  df-llines 39210  df-lplanes 39211
This theorem is referenced by:  lvolnle3at  39294
  Copyright terms: Public domain W3C validator