Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lplnnlt | Structured version Visualization version GIF version |
Description: Two lattice planes cannot satisfy the less than relation. (Contributed by NM, 7-Jul-2012.) |
Ref | Expression |
---|---|
lplnnlt.s | ⊢ < = (lt‘𝐾) |
lplnnlt.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
Ref | Expression |
---|---|
lplnnlt | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ¬ 𝑋 < 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lplnnlt.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
2 | 1 | pltirr 17874 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) → ¬ 𝑋 < 𝑋) |
3 | 2 | 3adant3 1134 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ¬ 𝑋 < 𝑋) |
4 | breq2 5074 | . . . 4 ⊢ (𝑋 = 𝑌 → (𝑋 < 𝑋 ↔ 𝑋 < 𝑌)) | |
5 | 4 | notbid 321 | . . 3 ⊢ (𝑋 = 𝑌 → (¬ 𝑋 < 𝑋 ↔ ¬ 𝑋 < 𝑌)) |
6 | 3, 5 | syl5ibcom 248 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝑋 = 𝑌 → ¬ 𝑋 < 𝑌)) |
7 | eqid 2739 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
8 | 7, 1 | pltle 17872 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝑋 < 𝑌 → 𝑋(le‘𝐾)𝑌)) |
9 | lplnnlt.p | . . . . 5 ⊢ 𝑃 = (LPlanes‘𝐾) | |
10 | 7, 9 | lplncmp 37350 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝑋(le‘𝐾)𝑌 ↔ 𝑋 = 𝑌)) |
11 | 8, 10 | sylibd 242 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝑋 < 𝑌 → 𝑋 = 𝑌)) |
12 | 11 | necon3ad 2956 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝑋 ≠ 𝑌 → ¬ 𝑋 < 𝑌)) |
13 | 6, 12 | pm2.61dne 3031 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ¬ 𝑋 < 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1089 = wceq 1543 ∈ wcel 2112 class class class wbr 5070 ‘cfv 6401 lecple 16842 ltcplt 17848 HLchlt 37138 LPlanesclpl 37280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5196 ax-sep 5209 ax-nul 5216 ax-pow 5275 ax-pr 5339 ax-un 7545 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-id 5472 df-xp 5575 df-rel 5576 df-cnv 5577 df-co 5578 df-dm 5579 df-rn 5580 df-res 5581 df-ima 5582 df-iota 6359 df-fun 6403 df-fn 6404 df-f 6405 df-f1 6406 df-fo 6407 df-f1o 6408 df-fv 6409 df-riota 7192 df-ov 7238 df-oprab 7239 df-proset 17835 df-poset 17853 df-plt 17869 df-lub 17885 df-glb 17886 df-join 17887 df-meet 17888 df-p0 17964 df-lat 17971 df-clat 18038 df-oposet 36964 df-ol 36966 df-oml 36967 df-covers 37054 df-ats 37055 df-atl 37086 df-cvlat 37110 df-hlat 37139 df-llines 37286 df-lplanes 37287 |
This theorem is referenced by: lvolnle3at 37370 |
Copyright terms: Public domain | W3C validator |