Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lubprlem Structured version   Visualization version   GIF version

Theorem lubprlem 48859
Description: Lemma for lubprdm 48860 and lubpr 48861. (Contributed by Zhi Wang, 26-Sep-2024.)
Hypotheses
Ref Expression
lubpr.k (𝜑𝐾 ∈ Poset)
lubpr.b 𝐵 = (Base‘𝐾)
lubpr.x (𝜑𝑋𝐵)
lubpr.y (𝜑𝑌𝐵)
lubpr.l = (le‘𝐾)
lubpr.c (𝜑𝑋 𝑌)
lubpr.s (𝜑𝑆 = {𝑋, 𝑌})
lubpr.u 𝑈 = (lub‘𝐾)
Assertion
Ref Expression
lubprlem (𝜑 → (𝑆 ∈ dom 𝑈 ∧ (𝑈𝑆) = 𝑌))

Proof of Theorem lubprlem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 lubpr.s . . 3 (𝜑𝑆 = {𝑋, 𝑌})
2 lubpr.k . . . . 5 (𝜑𝐾 ∈ Poset)
3 breq1 5146 . . . . . . 7 (𝑧 = 𝑋 → (𝑧 𝑌𝑋 𝑌))
4 lubpr.x . . . . . . 7 (𝜑𝑋𝐵)
5 lubpr.c . . . . . . 7 (𝜑𝑋 𝑌)
63, 4, 5elrabd 3694 . . . . . 6 (𝜑𝑋 ∈ {𝑧𝐵𝑧 𝑌})
7 breq1 5146 . . . . . . 7 (𝑧 = 𝑌 → (𝑧 𝑌𝑌 𝑌))
8 lubpr.y . . . . . . 7 (𝜑𝑌𝐵)
9 lubpr.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
10 lubpr.l . . . . . . . . 9 = (le‘𝐾)
119, 10posref 18364 . . . . . . . 8 ((𝐾 ∈ Poset ∧ 𝑌𝐵) → 𝑌 𝑌)
122, 8, 11syl2anc 584 . . . . . . 7 (𝜑𝑌 𝑌)
137, 8, 12elrabd 3694 . . . . . 6 (𝜑𝑌 ∈ {𝑧𝐵𝑧 𝑌})
146, 13prssd 4822 . . . . 5 (𝜑 → {𝑋, 𝑌} ⊆ {𝑧𝐵𝑧 𝑌})
15 lubpr.u . . . . 5 𝑈 = (lub‘𝐾)
169, 10, 15, 2, 8lublecl 18406 . . . . 5 (𝜑 → {𝑧𝐵𝑧 𝑌} ∈ dom 𝑈)
179, 10, 15, 2, 8lubid 18407 . . . . . 6 (𝜑 → (𝑈‘{𝑧𝐵𝑧 𝑌}) = 𝑌)
18 prid2g 4761 . . . . . . 7 (𝑌𝐵𝑌 ∈ {𝑋, 𝑌})
198, 18syl 17 . . . . . 6 (𝜑𝑌 ∈ {𝑋, 𝑌})
2017, 19eqeltrd 2841 . . . . 5 (𝜑 → (𝑈‘{𝑧𝐵𝑧 𝑌}) ∈ {𝑋, 𝑌})
212, 14, 15, 16, 20lubsscl 48857 . . . 4 (𝜑 → ({𝑋, 𝑌} ∈ dom 𝑈 ∧ (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑧𝐵𝑧 𝑌})))
2221simpld 494 . . 3 (𝜑 → {𝑋, 𝑌} ∈ dom 𝑈)
231, 22eqeltrd 2841 . 2 (𝜑𝑆 ∈ dom 𝑈)
241fveq2d 6910 . . 3 (𝜑 → (𝑈𝑆) = (𝑈‘{𝑋, 𝑌}))
2521simprd 495 . . 3 (𝜑 → (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑧𝐵𝑧 𝑌}))
2624, 25, 173eqtrd 2781 . 2 (𝜑 → (𝑈𝑆) = 𝑌)
2723, 26jca 511 1 (𝜑 → (𝑆 ∈ dom 𝑈 ∧ (𝑈𝑆) = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {crab 3436  {cpr 4628   class class class wbr 5143  dom cdm 5685  cfv 6561  Basecbs 17247  lecple 17304  Posetcpo 18353  lubclub 18355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-proset 18340  df-poset 18359  df-lub 18391
This theorem is referenced by:  lubprdm  48860  lubpr  48861
  Copyright terms: Public domain W3C validator