Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lubprlem Structured version   Visualization version   GIF version

Theorem lubprlem 49061
Description: Lemma for lubprdm 49062 and lubpr 49063. (Contributed by Zhi Wang, 26-Sep-2024.)
Hypotheses
Ref Expression
lubpr.k (𝜑𝐾 ∈ Poset)
lubpr.b 𝐵 = (Base‘𝐾)
lubpr.x (𝜑𝑋𝐵)
lubpr.y (𝜑𝑌𝐵)
lubpr.l = (le‘𝐾)
lubpr.c (𝜑𝑋 𝑌)
lubpr.s (𝜑𝑆 = {𝑋, 𝑌})
lubpr.u 𝑈 = (lub‘𝐾)
Assertion
Ref Expression
lubprlem (𝜑 → (𝑆 ∈ dom 𝑈 ∧ (𝑈𝑆) = 𝑌))

Proof of Theorem lubprlem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 lubpr.s . . 3 (𝜑𝑆 = {𝑋, 𝑌})
2 lubpr.k . . . . 5 (𝜑𝐾 ∈ Poset)
3 breq1 5092 . . . . . . 7 (𝑧 = 𝑋 → (𝑧 𝑌𝑋 𝑌))
4 lubpr.x . . . . . . 7 (𝜑𝑋𝐵)
5 lubpr.c . . . . . . 7 (𝜑𝑋 𝑌)
63, 4, 5elrabd 3644 . . . . . 6 (𝜑𝑋 ∈ {𝑧𝐵𝑧 𝑌})
7 breq1 5092 . . . . . . 7 (𝑧 = 𝑌 → (𝑧 𝑌𝑌 𝑌))
8 lubpr.y . . . . . . 7 (𝜑𝑌𝐵)
9 lubpr.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
10 lubpr.l . . . . . . . . 9 = (le‘𝐾)
119, 10posref 18224 . . . . . . . 8 ((𝐾 ∈ Poset ∧ 𝑌𝐵) → 𝑌 𝑌)
122, 8, 11syl2anc 584 . . . . . . 7 (𝜑𝑌 𝑌)
137, 8, 12elrabd 3644 . . . . . 6 (𝜑𝑌 ∈ {𝑧𝐵𝑧 𝑌})
146, 13prssd 4771 . . . . 5 (𝜑 → {𝑋, 𝑌} ⊆ {𝑧𝐵𝑧 𝑌})
15 lubpr.u . . . . 5 𝑈 = (lub‘𝐾)
169, 10, 15, 2, 8lublecl 18265 . . . . 5 (𝜑 → {𝑧𝐵𝑧 𝑌} ∈ dom 𝑈)
179, 10, 15, 2, 8lubid 18266 . . . . . 6 (𝜑 → (𝑈‘{𝑧𝐵𝑧 𝑌}) = 𝑌)
18 prid2g 4711 . . . . . . 7 (𝑌𝐵𝑌 ∈ {𝑋, 𝑌})
198, 18syl 17 . . . . . 6 (𝜑𝑌 ∈ {𝑋, 𝑌})
2017, 19eqeltrd 2831 . . . . 5 (𝜑 → (𝑈‘{𝑧𝐵𝑧 𝑌}) ∈ {𝑋, 𝑌})
212, 14, 15, 16, 20lubsscl 49059 . . . 4 (𝜑 → ({𝑋, 𝑌} ∈ dom 𝑈 ∧ (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑧𝐵𝑧 𝑌})))
2221simpld 494 . . 3 (𝜑 → {𝑋, 𝑌} ∈ dom 𝑈)
231, 22eqeltrd 2831 . 2 (𝜑𝑆 ∈ dom 𝑈)
241fveq2d 6826 . . 3 (𝜑 → (𝑈𝑆) = (𝑈‘{𝑋, 𝑌}))
2521simprd 495 . . 3 (𝜑 → (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑧𝐵𝑧 𝑌}))
2624, 25, 173eqtrd 2770 . 2 (𝜑 → (𝑈𝑆) = 𝑌)
2723, 26jca 511 1 (𝜑 → (𝑆 ∈ dom 𝑈 ∧ (𝑈𝑆) = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {crab 3395  {cpr 4575   class class class wbr 5089  dom cdm 5614  cfv 6481  Basecbs 17120  lecple 17168  Posetcpo 18213  lubclub 18215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-proset 18200  df-poset 18219  df-lub 18250
This theorem is referenced by:  lubprdm  49062  lubpr  49063
  Copyright terms: Public domain W3C validator