Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lubprlem | Structured version Visualization version GIF version |
Description: Lemma for lubprdm 46509 and lubpr 46510. (Contributed by Zhi Wang, 26-Sep-2024.) |
Ref | Expression |
---|---|
lubpr.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
lubpr.b | ⊢ 𝐵 = (Base‘𝐾) |
lubpr.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
lubpr.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
lubpr.l | ⊢ ≤ = (le‘𝐾) |
lubpr.c | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
lubpr.s | ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) |
lubpr.u | ⊢ 𝑈 = (lub‘𝐾) |
Ref | Expression |
---|---|
lubprlem | ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ∧ (𝑈‘𝑆) = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lubpr.s | . . 3 ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) | |
2 | lubpr.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
3 | breq1 5090 | . . . . . . 7 ⊢ (𝑧 = 𝑋 → (𝑧 ≤ 𝑌 ↔ 𝑋 ≤ 𝑌)) | |
4 | lubpr.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | lubpr.c | . . . . . . 7 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
6 | 3, 4, 5 | elrabd 3636 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ {𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌}) |
7 | breq1 5090 | . . . . . . 7 ⊢ (𝑧 = 𝑌 → (𝑧 ≤ 𝑌 ↔ 𝑌 ≤ 𝑌)) | |
8 | lubpr.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | lubpr.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐾) | |
10 | lubpr.l | . . . . . . . . 9 ⊢ ≤ = (le‘𝐾) | |
11 | 9, 10 | posref 18106 | . . . . . . . 8 ⊢ ((𝐾 ∈ Poset ∧ 𝑌 ∈ 𝐵) → 𝑌 ≤ 𝑌) |
12 | 2, 8, 11 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ≤ 𝑌) |
13 | 7, 8, 12 | elrabd 3636 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ {𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌}) |
14 | 6, 13 | prssd 4767 | . . . . 5 ⊢ (𝜑 → {𝑋, 𝑌} ⊆ {𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌}) |
15 | lubpr.u | . . . . 5 ⊢ 𝑈 = (lub‘𝐾) | |
16 | 9, 10, 15, 2, 8 | lublecl 18149 | . . . . 5 ⊢ (𝜑 → {𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌} ∈ dom 𝑈) |
17 | 9, 10, 15, 2, 8 | lubid 18150 | . . . . . 6 ⊢ (𝜑 → (𝑈‘{𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌}) = 𝑌) |
18 | prid2g 4707 | . . . . . . 7 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ {𝑋, 𝑌}) | |
19 | 8, 18 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ {𝑋, 𝑌}) |
20 | 17, 19 | eqeltrd 2838 | . . . . 5 ⊢ (𝜑 → (𝑈‘{𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌}) ∈ {𝑋, 𝑌}) |
21 | 2, 14, 15, 16, 20 | lubsscl 46506 | . . . 4 ⊢ (𝜑 → ({𝑋, 𝑌} ∈ dom 𝑈 ∧ (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌}))) |
22 | 21 | simpld 495 | . . 3 ⊢ (𝜑 → {𝑋, 𝑌} ∈ dom 𝑈) |
23 | 1, 22 | eqeltrd 2838 | . 2 ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) |
24 | 1 | fveq2d 6815 | . . 3 ⊢ (𝜑 → (𝑈‘𝑆) = (𝑈‘{𝑋, 𝑌})) |
25 | 21 | simprd 496 | . . 3 ⊢ (𝜑 → (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌})) |
26 | 24, 25, 17 | 3eqtrd 2781 | . 2 ⊢ (𝜑 → (𝑈‘𝑆) = 𝑌) |
27 | 23, 26 | jca 512 | 1 ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ∧ (𝑈‘𝑆) = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 {crab 3404 {cpr 4573 class class class wbr 5087 dom cdm 5607 ‘cfv 6465 Basecbs 16982 lecple 17039 Posetcpo 18095 lubclub 18097 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-proset 18083 df-poset 18101 df-lub 18134 |
This theorem is referenced by: lubprdm 46509 lubpr 46510 |
Copyright terms: Public domain | W3C validator |