| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lubprlem | Structured version Visualization version GIF version | ||
| Description: Lemma for lubprdm 48937 and lubpr 48938. (Contributed by Zhi Wang, 26-Sep-2024.) |
| Ref | Expression |
|---|---|
| lubpr.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
| lubpr.b | ⊢ 𝐵 = (Base‘𝐾) |
| lubpr.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| lubpr.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| lubpr.l | ⊢ ≤ = (le‘𝐾) |
| lubpr.c | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
| lubpr.s | ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) |
| lubpr.u | ⊢ 𝑈 = (lub‘𝐾) |
| Ref | Expression |
|---|---|
| lubprlem | ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ∧ (𝑈‘𝑆) = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lubpr.s | . . 3 ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) | |
| 2 | lubpr.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
| 3 | breq1 5122 | . . . . . . 7 ⊢ (𝑧 = 𝑋 → (𝑧 ≤ 𝑌 ↔ 𝑋 ≤ 𝑌)) | |
| 4 | lubpr.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | lubpr.c | . . . . . . 7 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
| 6 | 3, 4, 5 | elrabd 3673 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ {𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌}) |
| 7 | breq1 5122 | . . . . . . 7 ⊢ (𝑧 = 𝑌 → (𝑧 ≤ 𝑌 ↔ 𝑌 ≤ 𝑌)) | |
| 8 | lubpr.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | lubpr.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐾) | |
| 10 | lubpr.l | . . . . . . . . 9 ⊢ ≤ = (le‘𝐾) | |
| 11 | 9, 10 | posref 18330 | . . . . . . . 8 ⊢ ((𝐾 ∈ Poset ∧ 𝑌 ∈ 𝐵) → 𝑌 ≤ 𝑌) |
| 12 | 2, 8, 11 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ≤ 𝑌) |
| 13 | 7, 8, 12 | elrabd 3673 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ {𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌}) |
| 14 | 6, 13 | prssd 4798 | . . . . 5 ⊢ (𝜑 → {𝑋, 𝑌} ⊆ {𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌}) |
| 15 | lubpr.u | . . . . 5 ⊢ 𝑈 = (lub‘𝐾) | |
| 16 | 9, 10, 15, 2, 8 | lublecl 18371 | . . . . 5 ⊢ (𝜑 → {𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌} ∈ dom 𝑈) |
| 17 | 9, 10, 15, 2, 8 | lubid 18372 | . . . . . 6 ⊢ (𝜑 → (𝑈‘{𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌}) = 𝑌) |
| 18 | prid2g 4737 | . . . . . . 7 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ {𝑋, 𝑌}) | |
| 19 | 8, 18 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ {𝑋, 𝑌}) |
| 20 | 17, 19 | eqeltrd 2834 | . . . . 5 ⊢ (𝜑 → (𝑈‘{𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌}) ∈ {𝑋, 𝑌}) |
| 21 | 2, 14, 15, 16, 20 | lubsscl 48934 | . . . 4 ⊢ (𝜑 → ({𝑋, 𝑌} ∈ dom 𝑈 ∧ (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌}))) |
| 22 | 21 | simpld 494 | . . 3 ⊢ (𝜑 → {𝑋, 𝑌} ∈ dom 𝑈) |
| 23 | 1, 22 | eqeltrd 2834 | . 2 ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) |
| 24 | 1 | fveq2d 6880 | . . 3 ⊢ (𝜑 → (𝑈‘𝑆) = (𝑈‘{𝑋, 𝑌})) |
| 25 | 21 | simprd 495 | . . 3 ⊢ (𝜑 → (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌})) |
| 26 | 24, 25, 17 | 3eqtrd 2774 | . 2 ⊢ (𝜑 → (𝑈‘𝑆) = 𝑌) |
| 27 | 23, 26 | jca 511 | 1 ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ∧ (𝑈‘𝑆) = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3415 {cpr 4603 class class class wbr 5119 dom cdm 5654 ‘cfv 6531 Basecbs 17228 lecple 17278 Posetcpo 18319 lubclub 18321 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-proset 18306 df-poset 18325 df-lub 18356 |
| This theorem is referenced by: lubprdm 48937 lubpr 48938 |
| Copyright terms: Public domain | W3C validator |