Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lubprlem Structured version   Visualization version   GIF version

Theorem lubprlem 48296
Description: Lemma for lubprdm 48297 and lubpr 48298. (Contributed by Zhi Wang, 26-Sep-2024.)
Hypotheses
Ref Expression
lubpr.k (𝜑𝐾 ∈ Poset)
lubpr.b 𝐵 = (Base‘𝐾)
lubpr.x (𝜑𝑋𝐵)
lubpr.y (𝜑𝑌𝐵)
lubpr.l = (le‘𝐾)
lubpr.c (𝜑𝑋 𝑌)
lubpr.s (𝜑𝑆 = {𝑋, 𝑌})
lubpr.u 𝑈 = (lub‘𝐾)
Assertion
Ref Expression
lubprlem (𝜑 → (𝑆 ∈ dom 𝑈 ∧ (𝑈𝑆) = 𝑌))

Proof of Theorem lubprlem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 lubpr.s . . 3 (𝜑𝑆 = {𝑋, 𝑌})
2 lubpr.k . . . . 5 (𝜑𝐾 ∈ Poset)
3 breq1 5156 . . . . . . 7 (𝑧 = 𝑋 → (𝑧 𝑌𝑋 𝑌))
4 lubpr.x . . . . . . 7 (𝜑𝑋𝐵)
5 lubpr.c . . . . . . 7 (𝜑𝑋 𝑌)
63, 4, 5elrabd 3683 . . . . . 6 (𝜑𝑋 ∈ {𝑧𝐵𝑧 𝑌})
7 breq1 5156 . . . . . . 7 (𝑧 = 𝑌 → (𝑧 𝑌𝑌 𝑌))
8 lubpr.y . . . . . . 7 (𝜑𝑌𝐵)
9 lubpr.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
10 lubpr.l . . . . . . . . 9 = (le‘𝐾)
119, 10posref 18343 . . . . . . . 8 ((𝐾 ∈ Poset ∧ 𝑌𝐵) → 𝑌 𝑌)
122, 8, 11syl2anc 582 . . . . . . 7 (𝜑𝑌 𝑌)
137, 8, 12elrabd 3683 . . . . . 6 (𝜑𝑌 ∈ {𝑧𝐵𝑧 𝑌})
146, 13prssd 4831 . . . . 5 (𝜑 → {𝑋, 𝑌} ⊆ {𝑧𝐵𝑧 𝑌})
15 lubpr.u . . . . 5 𝑈 = (lub‘𝐾)
169, 10, 15, 2, 8lublecl 18386 . . . . 5 (𝜑 → {𝑧𝐵𝑧 𝑌} ∈ dom 𝑈)
179, 10, 15, 2, 8lubid 18387 . . . . . 6 (𝜑 → (𝑈‘{𝑧𝐵𝑧 𝑌}) = 𝑌)
18 prid2g 4770 . . . . . . 7 (𝑌𝐵𝑌 ∈ {𝑋, 𝑌})
198, 18syl 17 . . . . . 6 (𝜑𝑌 ∈ {𝑋, 𝑌})
2017, 19eqeltrd 2826 . . . . 5 (𝜑 → (𝑈‘{𝑧𝐵𝑧 𝑌}) ∈ {𝑋, 𝑌})
212, 14, 15, 16, 20lubsscl 48294 . . . 4 (𝜑 → ({𝑋, 𝑌} ∈ dom 𝑈 ∧ (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑧𝐵𝑧 𝑌})))
2221simpld 493 . . 3 (𝜑 → {𝑋, 𝑌} ∈ dom 𝑈)
231, 22eqeltrd 2826 . 2 (𝜑𝑆 ∈ dom 𝑈)
241fveq2d 6905 . . 3 (𝜑 → (𝑈𝑆) = (𝑈‘{𝑋, 𝑌}))
2521simprd 494 . . 3 (𝜑 → (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑧𝐵𝑧 𝑌}))
2624, 25, 173eqtrd 2770 . 2 (𝜑 → (𝑈𝑆) = 𝑌)
2723, 26jca 510 1 (𝜑 → (𝑆 ∈ dom 𝑈 ∧ (𝑈𝑆) = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  {crab 3419  {cpr 4635   class class class wbr 5153  dom cdm 5682  cfv 6554  Basecbs 17213  lecple 17273  Posetcpo 18332  lubclub 18334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-proset 18320  df-poset 18338  df-lub 18371
This theorem is referenced by:  lubprdm  48297  lubpr  48298
  Copyright terms: Public domain W3C validator