Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lubprlem Structured version   Visualization version   GIF version

Theorem lubprlem 48759
Description: Lemma for lubprdm 48760 and lubpr 48761. (Contributed by Zhi Wang, 26-Sep-2024.)
Hypotheses
Ref Expression
lubpr.k (𝜑𝐾 ∈ Poset)
lubpr.b 𝐵 = (Base‘𝐾)
lubpr.x (𝜑𝑋𝐵)
lubpr.y (𝜑𝑌𝐵)
lubpr.l = (le‘𝐾)
lubpr.c (𝜑𝑋 𝑌)
lubpr.s (𝜑𝑆 = {𝑋, 𝑌})
lubpr.u 𝑈 = (lub‘𝐾)
Assertion
Ref Expression
lubprlem (𝜑 → (𝑆 ∈ dom 𝑈 ∧ (𝑈𝑆) = 𝑌))

Proof of Theorem lubprlem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 lubpr.s . . 3 (𝜑𝑆 = {𝑋, 𝑌})
2 lubpr.k . . . . 5 (𝜑𝐾 ∈ Poset)
3 breq1 5151 . . . . . . 7 (𝑧 = 𝑋 → (𝑧 𝑌𝑋 𝑌))
4 lubpr.x . . . . . . 7 (𝜑𝑋𝐵)
5 lubpr.c . . . . . . 7 (𝜑𝑋 𝑌)
63, 4, 5elrabd 3697 . . . . . 6 (𝜑𝑋 ∈ {𝑧𝐵𝑧 𝑌})
7 breq1 5151 . . . . . . 7 (𝑧 = 𝑌 → (𝑧 𝑌𝑌 𝑌))
8 lubpr.y . . . . . . 7 (𝜑𝑌𝐵)
9 lubpr.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
10 lubpr.l . . . . . . . . 9 = (le‘𝐾)
119, 10posref 18376 . . . . . . . 8 ((𝐾 ∈ Poset ∧ 𝑌𝐵) → 𝑌 𝑌)
122, 8, 11syl2anc 584 . . . . . . 7 (𝜑𝑌 𝑌)
137, 8, 12elrabd 3697 . . . . . 6 (𝜑𝑌 ∈ {𝑧𝐵𝑧 𝑌})
146, 13prssd 4827 . . . . 5 (𝜑 → {𝑋, 𝑌} ⊆ {𝑧𝐵𝑧 𝑌})
15 lubpr.u . . . . 5 𝑈 = (lub‘𝐾)
169, 10, 15, 2, 8lublecl 18419 . . . . 5 (𝜑 → {𝑧𝐵𝑧 𝑌} ∈ dom 𝑈)
179, 10, 15, 2, 8lubid 18420 . . . . . 6 (𝜑 → (𝑈‘{𝑧𝐵𝑧 𝑌}) = 𝑌)
18 prid2g 4766 . . . . . . 7 (𝑌𝐵𝑌 ∈ {𝑋, 𝑌})
198, 18syl 17 . . . . . 6 (𝜑𝑌 ∈ {𝑋, 𝑌})
2017, 19eqeltrd 2839 . . . . 5 (𝜑 → (𝑈‘{𝑧𝐵𝑧 𝑌}) ∈ {𝑋, 𝑌})
212, 14, 15, 16, 20lubsscl 48757 . . . 4 (𝜑 → ({𝑋, 𝑌} ∈ dom 𝑈 ∧ (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑧𝐵𝑧 𝑌})))
2221simpld 494 . . 3 (𝜑 → {𝑋, 𝑌} ∈ dom 𝑈)
231, 22eqeltrd 2839 . 2 (𝜑𝑆 ∈ dom 𝑈)
241fveq2d 6911 . . 3 (𝜑 → (𝑈𝑆) = (𝑈‘{𝑋, 𝑌}))
2521simprd 495 . . 3 (𝜑 → (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑧𝐵𝑧 𝑌}))
2624, 25, 173eqtrd 2779 . 2 (𝜑 → (𝑈𝑆) = 𝑌)
2723, 26jca 511 1 (𝜑 → (𝑆 ∈ dom 𝑈 ∧ (𝑈𝑆) = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  {crab 3433  {cpr 4633   class class class wbr 5148  dom cdm 5689  cfv 6563  Basecbs 17245  lecple 17305  Posetcpo 18365  lubclub 18367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-proset 18352  df-poset 18371  df-lub 18404
This theorem is referenced by:  lubprdm  48760  lubpr  48761
  Copyright terms: Public domain W3C validator