Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lubprlem Structured version   Visualization version   GIF version

Theorem lubprlem 48954
Description: Lemma for lubprdm 48955 and lubpr 48956. (Contributed by Zhi Wang, 26-Sep-2024.)
Hypotheses
Ref Expression
lubpr.k (𝜑𝐾 ∈ Poset)
lubpr.b 𝐵 = (Base‘𝐾)
lubpr.x (𝜑𝑋𝐵)
lubpr.y (𝜑𝑌𝐵)
lubpr.l = (le‘𝐾)
lubpr.c (𝜑𝑋 𝑌)
lubpr.s (𝜑𝑆 = {𝑋, 𝑌})
lubpr.u 𝑈 = (lub‘𝐾)
Assertion
Ref Expression
lubprlem (𝜑 → (𝑆 ∈ dom 𝑈 ∧ (𝑈𝑆) = 𝑌))

Proof of Theorem lubprlem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 lubpr.s . . 3 (𝜑𝑆 = {𝑋, 𝑌})
2 lubpr.k . . . . 5 (𝜑𝐾 ∈ Poset)
3 breq1 5113 . . . . . . 7 (𝑧 = 𝑋 → (𝑧 𝑌𝑋 𝑌))
4 lubpr.x . . . . . . 7 (𝜑𝑋𝐵)
5 lubpr.c . . . . . . 7 (𝜑𝑋 𝑌)
63, 4, 5elrabd 3664 . . . . . 6 (𝜑𝑋 ∈ {𝑧𝐵𝑧 𝑌})
7 breq1 5113 . . . . . . 7 (𝑧 = 𝑌 → (𝑧 𝑌𝑌 𝑌))
8 lubpr.y . . . . . . 7 (𝜑𝑌𝐵)
9 lubpr.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
10 lubpr.l . . . . . . . . 9 = (le‘𝐾)
119, 10posref 18286 . . . . . . . 8 ((𝐾 ∈ Poset ∧ 𝑌𝐵) → 𝑌 𝑌)
122, 8, 11syl2anc 584 . . . . . . 7 (𝜑𝑌 𝑌)
137, 8, 12elrabd 3664 . . . . . 6 (𝜑𝑌 ∈ {𝑧𝐵𝑧 𝑌})
146, 13prssd 4789 . . . . 5 (𝜑 → {𝑋, 𝑌} ⊆ {𝑧𝐵𝑧 𝑌})
15 lubpr.u . . . . 5 𝑈 = (lub‘𝐾)
169, 10, 15, 2, 8lublecl 18327 . . . . 5 (𝜑 → {𝑧𝐵𝑧 𝑌} ∈ dom 𝑈)
179, 10, 15, 2, 8lubid 18328 . . . . . 6 (𝜑 → (𝑈‘{𝑧𝐵𝑧 𝑌}) = 𝑌)
18 prid2g 4728 . . . . . . 7 (𝑌𝐵𝑌 ∈ {𝑋, 𝑌})
198, 18syl 17 . . . . . 6 (𝜑𝑌 ∈ {𝑋, 𝑌})
2017, 19eqeltrd 2829 . . . . 5 (𝜑 → (𝑈‘{𝑧𝐵𝑧 𝑌}) ∈ {𝑋, 𝑌})
212, 14, 15, 16, 20lubsscl 48952 . . . 4 (𝜑 → ({𝑋, 𝑌} ∈ dom 𝑈 ∧ (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑧𝐵𝑧 𝑌})))
2221simpld 494 . . 3 (𝜑 → {𝑋, 𝑌} ∈ dom 𝑈)
231, 22eqeltrd 2829 . 2 (𝜑𝑆 ∈ dom 𝑈)
241fveq2d 6865 . . 3 (𝜑 → (𝑈𝑆) = (𝑈‘{𝑋, 𝑌}))
2521simprd 495 . . 3 (𝜑 → (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑧𝐵𝑧 𝑌}))
2624, 25, 173eqtrd 2769 . 2 (𝜑 → (𝑈𝑆) = 𝑌)
2723, 26jca 511 1 (𝜑 → (𝑆 ∈ dom 𝑈 ∧ (𝑈𝑆) = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3408  {cpr 4594   class class class wbr 5110  dom cdm 5641  cfv 6514  Basecbs 17186  lecple 17234  Posetcpo 18275  lubclub 18277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-proset 18262  df-poset 18281  df-lub 18312
This theorem is referenced by:  lubprdm  48955  lubpr  48956
  Copyright terms: Public domain W3C validator