![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lubprlem | Structured version Visualization version GIF version |
Description: Lemma for lubprdm 48297 and lubpr 48298. (Contributed by Zhi Wang, 26-Sep-2024.) |
Ref | Expression |
---|---|
lubpr.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
lubpr.b | ⊢ 𝐵 = (Base‘𝐾) |
lubpr.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
lubpr.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
lubpr.l | ⊢ ≤ = (le‘𝐾) |
lubpr.c | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
lubpr.s | ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) |
lubpr.u | ⊢ 𝑈 = (lub‘𝐾) |
Ref | Expression |
---|---|
lubprlem | ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ∧ (𝑈‘𝑆) = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lubpr.s | . . 3 ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) | |
2 | lubpr.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
3 | breq1 5156 | . . . . . . 7 ⊢ (𝑧 = 𝑋 → (𝑧 ≤ 𝑌 ↔ 𝑋 ≤ 𝑌)) | |
4 | lubpr.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | lubpr.c | . . . . . . 7 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
6 | 3, 4, 5 | elrabd 3683 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ {𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌}) |
7 | breq1 5156 | . . . . . . 7 ⊢ (𝑧 = 𝑌 → (𝑧 ≤ 𝑌 ↔ 𝑌 ≤ 𝑌)) | |
8 | lubpr.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | lubpr.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐾) | |
10 | lubpr.l | . . . . . . . . 9 ⊢ ≤ = (le‘𝐾) | |
11 | 9, 10 | posref 18343 | . . . . . . . 8 ⊢ ((𝐾 ∈ Poset ∧ 𝑌 ∈ 𝐵) → 𝑌 ≤ 𝑌) |
12 | 2, 8, 11 | syl2anc 582 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ≤ 𝑌) |
13 | 7, 8, 12 | elrabd 3683 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ {𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌}) |
14 | 6, 13 | prssd 4831 | . . . . 5 ⊢ (𝜑 → {𝑋, 𝑌} ⊆ {𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌}) |
15 | lubpr.u | . . . . 5 ⊢ 𝑈 = (lub‘𝐾) | |
16 | 9, 10, 15, 2, 8 | lublecl 18386 | . . . . 5 ⊢ (𝜑 → {𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌} ∈ dom 𝑈) |
17 | 9, 10, 15, 2, 8 | lubid 18387 | . . . . . 6 ⊢ (𝜑 → (𝑈‘{𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌}) = 𝑌) |
18 | prid2g 4770 | . . . . . . 7 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ {𝑋, 𝑌}) | |
19 | 8, 18 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ {𝑋, 𝑌}) |
20 | 17, 19 | eqeltrd 2826 | . . . . 5 ⊢ (𝜑 → (𝑈‘{𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌}) ∈ {𝑋, 𝑌}) |
21 | 2, 14, 15, 16, 20 | lubsscl 48294 | . . . 4 ⊢ (𝜑 → ({𝑋, 𝑌} ∈ dom 𝑈 ∧ (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌}))) |
22 | 21 | simpld 493 | . . 3 ⊢ (𝜑 → {𝑋, 𝑌} ∈ dom 𝑈) |
23 | 1, 22 | eqeltrd 2826 | . 2 ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) |
24 | 1 | fveq2d 6905 | . . 3 ⊢ (𝜑 → (𝑈‘𝑆) = (𝑈‘{𝑋, 𝑌})) |
25 | 21 | simprd 494 | . . 3 ⊢ (𝜑 → (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌})) |
26 | 24, 25, 17 | 3eqtrd 2770 | . 2 ⊢ (𝜑 → (𝑈‘𝑆) = 𝑌) |
27 | 23, 26 | jca 510 | 1 ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ∧ (𝑈‘𝑆) = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 {crab 3419 {cpr 4635 class class class wbr 5153 dom cdm 5682 ‘cfv 6554 Basecbs 17213 lecple 17273 Posetcpo 18332 lubclub 18334 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-proset 18320 df-poset 18338 df-lub 18371 |
This theorem is referenced by: lubprdm 48297 lubpr 48298 |
Copyright terms: Public domain | W3C validator |