| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lubprlem | Structured version Visualization version GIF version | ||
| Description: Lemma for lubprdm 48955 and lubpr 48956. (Contributed by Zhi Wang, 26-Sep-2024.) |
| Ref | Expression |
|---|---|
| lubpr.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
| lubpr.b | ⊢ 𝐵 = (Base‘𝐾) |
| lubpr.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| lubpr.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| lubpr.l | ⊢ ≤ = (le‘𝐾) |
| lubpr.c | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
| lubpr.s | ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) |
| lubpr.u | ⊢ 𝑈 = (lub‘𝐾) |
| Ref | Expression |
|---|---|
| lubprlem | ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ∧ (𝑈‘𝑆) = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lubpr.s | . . 3 ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) | |
| 2 | lubpr.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
| 3 | breq1 5113 | . . . . . . 7 ⊢ (𝑧 = 𝑋 → (𝑧 ≤ 𝑌 ↔ 𝑋 ≤ 𝑌)) | |
| 4 | lubpr.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | lubpr.c | . . . . . . 7 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
| 6 | 3, 4, 5 | elrabd 3664 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ {𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌}) |
| 7 | breq1 5113 | . . . . . . 7 ⊢ (𝑧 = 𝑌 → (𝑧 ≤ 𝑌 ↔ 𝑌 ≤ 𝑌)) | |
| 8 | lubpr.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | lubpr.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐾) | |
| 10 | lubpr.l | . . . . . . . . 9 ⊢ ≤ = (le‘𝐾) | |
| 11 | 9, 10 | posref 18286 | . . . . . . . 8 ⊢ ((𝐾 ∈ Poset ∧ 𝑌 ∈ 𝐵) → 𝑌 ≤ 𝑌) |
| 12 | 2, 8, 11 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ≤ 𝑌) |
| 13 | 7, 8, 12 | elrabd 3664 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ {𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌}) |
| 14 | 6, 13 | prssd 4789 | . . . . 5 ⊢ (𝜑 → {𝑋, 𝑌} ⊆ {𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌}) |
| 15 | lubpr.u | . . . . 5 ⊢ 𝑈 = (lub‘𝐾) | |
| 16 | 9, 10, 15, 2, 8 | lublecl 18327 | . . . . 5 ⊢ (𝜑 → {𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌} ∈ dom 𝑈) |
| 17 | 9, 10, 15, 2, 8 | lubid 18328 | . . . . . 6 ⊢ (𝜑 → (𝑈‘{𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌}) = 𝑌) |
| 18 | prid2g 4728 | . . . . . . 7 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ {𝑋, 𝑌}) | |
| 19 | 8, 18 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ {𝑋, 𝑌}) |
| 20 | 17, 19 | eqeltrd 2829 | . . . . 5 ⊢ (𝜑 → (𝑈‘{𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌}) ∈ {𝑋, 𝑌}) |
| 21 | 2, 14, 15, 16, 20 | lubsscl 48952 | . . . 4 ⊢ (𝜑 → ({𝑋, 𝑌} ∈ dom 𝑈 ∧ (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌}))) |
| 22 | 21 | simpld 494 | . . 3 ⊢ (𝜑 → {𝑋, 𝑌} ∈ dom 𝑈) |
| 23 | 1, 22 | eqeltrd 2829 | . 2 ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) |
| 24 | 1 | fveq2d 6865 | . . 3 ⊢ (𝜑 → (𝑈‘𝑆) = (𝑈‘{𝑋, 𝑌})) |
| 25 | 21 | simprd 495 | . . 3 ⊢ (𝜑 → (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌})) |
| 26 | 24, 25, 17 | 3eqtrd 2769 | . 2 ⊢ (𝜑 → (𝑈‘𝑆) = 𝑌) |
| 27 | 23, 26 | jca 511 | 1 ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ∧ (𝑈‘𝑆) = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3408 {cpr 4594 class class class wbr 5110 dom cdm 5641 ‘cfv 6514 Basecbs 17186 lecple 17234 Posetcpo 18275 lubclub 18277 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-proset 18262 df-poset 18281 df-lub 18312 |
| This theorem is referenced by: lubprdm 48955 lubpr 48956 |
| Copyright terms: Public domain | W3C validator |