Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  posjidm Structured version   Visualization version   GIF version

Theorem posjidm 49082
Description: Poset join is idempotent. latjidm 18368 could be shortened by this. (Contributed by Zhi Wang, 27-Sep-2024.)
Hypotheses
Ref Expression
posjidm.b 𝐵 = (Base‘𝐾)
posjidm.j = (join‘𝐾)
Assertion
Ref Expression
posjidm ((𝐾 ∈ Poset ∧ 𝑋𝐵) → (𝑋 𝑋) = 𝑋)

Proof of Theorem posjidm
StepHypRef Expression
1 eqid 2731 . . 3 (lub‘𝐾) = (lub‘𝐾)
2 posjidm.j . . 3 = (join‘𝐾)
3 simpl 482 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝐾 ∈ Poset)
4 simpr 484 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝑋𝐵)
51, 2, 3, 4, 4joinval 18281 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → (𝑋 𝑋) = ((lub‘𝐾)‘{𝑋, 𝑋}))
6 posjidm.b . . 3 𝐵 = (Base‘𝐾)
7 eqid 2731 . . 3 (le‘𝐾) = (le‘𝐾)
86, 7posref 18224 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝑋(le‘𝐾)𝑋)
9 eqidd 2732 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → {𝑋, 𝑋} = {𝑋, 𝑋})
103, 6, 4, 4, 7, 8, 9, 1lubpr 49074 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → ((lub‘𝐾)‘{𝑋, 𝑋}) = 𝑋)
115, 10eqtrd 2766 1 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → (𝑋 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cpr 4575  cfv 6481  (class class class)co 7346  Basecbs 17120  lecple 17168  Posetcpo 18213  lubclub 18215  joincjn 18217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18200  df-poset 18219  df-lub 18250  df-join 18252
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator