Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  posjidm Structured version   Visualization version   GIF version

Theorem posjidm 48652
Description: Poset join is idempotent. latjidm 18532 could be shortened by this. (Contributed by Zhi Wang, 27-Sep-2024.)
Hypotheses
Ref Expression
posjidm.b 𝐵 = (Base‘𝐾)
posjidm.j = (join‘𝐾)
Assertion
Ref Expression
posjidm ((𝐾 ∈ Poset ∧ 𝑋𝐵) → (𝑋 𝑋) = 𝑋)

Proof of Theorem posjidm
StepHypRef Expression
1 eqid 2740 . . 3 (lub‘𝐾) = (lub‘𝐾)
2 posjidm.j . . 3 = (join‘𝐾)
3 simpl 482 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝐾 ∈ Poset)
4 simpr 484 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝑋𝐵)
51, 2, 3, 4, 4joinval 18447 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → (𝑋 𝑋) = ((lub‘𝐾)‘{𝑋, 𝑋}))
6 posjidm.b . . 3 𝐵 = (Base‘𝐾)
7 eqid 2740 . . 3 (le‘𝐾) = (le‘𝐾)
86, 7posref 18388 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝑋(le‘𝐾)𝑋)
9 eqidd 2741 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → {𝑋, 𝑋} = {𝑋, 𝑋})
103, 6, 4, 4, 7, 8, 9, 1lubpr 48644 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → ((lub‘𝐾)‘{𝑋, 𝑋}) = 𝑋)
115, 10eqtrd 2780 1 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → (𝑋 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {cpr 4650  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  Posetcpo 18377  lubclub 18379  joincjn 18381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-lub 18416  df-join 18418
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator