![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > posjidm | Structured version Visualization version GIF version |
Description: Poset join is idempotent. latjidm 18457 could be shortened by this. (Contributed by Zhi Wang, 27-Sep-2024.) |
Ref | Expression |
---|---|
posjidm.b | ⊢ 𝐵 = (Base‘𝐾) |
posjidm.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
posjidm | ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
2 | posjidm.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | simpl 481 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Poset) | |
4 | simpr 483 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
5 | 1, 2, 3, 4, 4 | joinval 18372 | . 2 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋) = ((lub‘𝐾)‘{𝑋, 𝑋})) |
6 | posjidm.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
7 | eqid 2725 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
8 | 6, 7 | posref 18313 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾)𝑋) |
9 | eqidd 2726 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → {𝑋, 𝑋} = {𝑋, 𝑋}) | |
10 | 3, 6, 4, 4, 7, 8, 9, 1 | lubpr 48166 | . 2 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → ((lub‘𝐾)‘{𝑋, 𝑋}) = 𝑋) |
11 | 5, 10 | eqtrd 2765 | 1 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {cpr 4632 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 lecple 17243 Posetcpo 18302 lubclub 18304 joincjn 18306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-proset 18290 df-poset 18308 df-lub 18341 df-join 18343 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |