Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  posjidm Structured version   Visualization version   GIF version

Theorem posjidm 48894
Description: Poset join is idempotent. latjidm 18470 could be shortened by this. (Contributed by Zhi Wang, 27-Sep-2024.)
Hypotheses
Ref Expression
posjidm.b 𝐵 = (Base‘𝐾)
posjidm.j = (join‘𝐾)
Assertion
Ref Expression
posjidm ((𝐾 ∈ Poset ∧ 𝑋𝐵) → (𝑋 𝑋) = 𝑋)

Proof of Theorem posjidm
StepHypRef Expression
1 eqid 2735 . . 3 (lub‘𝐾) = (lub‘𝐾)
2 posjidm.j . . 3 = (join‘𝐾)
3 simpl 482 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝐾 ∈ Poset)
4 simpr 484 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝑋𝐵)
51, 2, 3, 4, 4joinval 18385 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → (𝑋 𝑋) = ((lub‘𝐾)‘{𝑋, 𝑋}))
6 posjidm.b . . 3 𝐵 = (Base‘𝐾)
7 eqid 2735 . . 3 (le‘𝐾) = (le‘𝐾)
86, 7posref 18328 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝑋(le‘𝐾)𝑋)
9 eqidd 2736 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → {𝑋, 𝑋} = {𝑋, 𝑋})
103, 6, 4, 4, 7, 8, 9, 1lubpr 48886 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → ((lub‘𝐾)‘{𝑋, 𝑋}) = 𝑋)
115, 10eqtrd 2770 1 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → (𝑋 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {cpr 4603  cfv 6530  (class class class)co 7403  Basecbs 17226  lecple 17276  Posetcpo 18317  lubclub 18319  joincjn 18321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-proset 18304  df-poset 18323  df-lub 18354  df-join 18356
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator