| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > posjidm | Structured version Visualization version GIF version | ||
| Description: Poset join is idempotent. latjidm 18428 could be shortened by this. (Contributed by Zhi Wang, 27-Sep-2024.) |
| Ref | Expression |
|---|---|
| posjidm.b | ⊢ 𝐵 = (Base‘𝐾) |
| posjidm.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| posjidm | ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 2 | posjidm.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 3 | simpl 482 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Poset) | |
| 4 | simpr 484 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 5 | 1, 2, 3, 4, 4 | joinval 18343 | . 2 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋) = ((lub‘𝐾)‘{𝑋, 𝑋})) |
| 6 | posjidm.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 7 | eqid 2730 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 8 | 6, 7 | posref 18286 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾)𝑋) |
| 9 | eqidd 2731 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → {𝑋, 𝑋} = {𝑋, 𝑋}) | |
| 10 | 3, 6, 4, 4, 7, 8, 9, 1 | lubpr 48956 | . 2 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → ((lub‘𝐾)‘{𝑋, 𝑋}) = 𝑋) |
| 11 | 5, 10 | eqtrd 2765 | 1 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cpr 4594 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 lecple 17234 Posetcpo 18275 lubclub 18277 joincjn 18279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-proset 18262 df-poset 18281 df-lub 18312 df-join 18314 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |